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Abstract—Hawai’i and similar island populations can fol-
low a different course of pandemic spread than large
cities/states/nations and are often neglected in major studies.
We provide a detailed epidemiological model of the spread of
COVID-19 in Hawai’i and explore effects of different intervention
strategies in both a prospective and retrospective fashion. We
use a modified compartmentalized extended Susceptible-Exposed-
Infected-Recovered (SEIR) model with a simple step function
time dependence calibrated using the current data. We model
asymptomatic carriers and actual mitigation strategies such as
social distancing, contact tracing and quarantine policy. We find
different outcomes for different scenarios: predicting retrospec-
tively that if we successfully isolated 52% (alternately 38.8%) of
the asymptomatic on days 2-4 (alternately 3-5) after exposure as
we came out of the first lockdown, we would have reduced daily
cases, hospitalisation and Intensive Care Unit (ICU) occupancy
by about 74% (alternately 50%), where alternately refers to the
second of two retrospective modeling scenarios. Going forward,
we forecast that successful identification and isolation of 49%
between days 2-4 of exposure as well as compliance from
individuals to reduce the transmission rate by 14.4% provides a
scenario where the daily cases would peak for a third time at a
moderate triple digit rate of 193 in early December, potentially
avoiding a third lockdown. Furthermore, because of the unique
isolation of Hawai’i to incoming travelers fitting our specific data
and using our methodology to predict outcomes serves as an
important semi-controlled experiment to help others in applying
epidemiological models to their populations.

Keywords— COVID-19; Compartmentalized Epidemiological
Model; Contact Tracing; Pandemic Mitigation; Hawai’i.

I. INTRODUCTION

Hawai’i and other US Islands have recently been noted by the
media as COVID-19 hotspots after a relatively calm period of low
case rates. U.S. Surgeon General Jerome Adams came in person on
August 25 to Oahu to address the alarming situation. In this paper,
we capture the peculiarity of the situation in Hawai’i and provide
detailed modeling of current virus spread patterns aligned with dates
of lockdown and similar measures. We use this analysis to formulate
predictive scenarios.

Hawai’i finds itself in a unique position due to its extremely
isolated geographic location, mostly linear population distribution
along the coast, and a heavy dependence on the tourism and hos-
pitality sectors of the economy. While the first two factors appeared
advantageous in the fight against the disease, the latter one creates
a tempering effect on feasible long-term mitigation efforts, since
too stringent an approach may lead to a catastrophic impact on the
economy. We study the unique aspects of Hawai’i from both a social
and data-driven modeling perspective to understand and recommend

the critical intervention measures that make the most impact on spread
of the disease while mitigating societal adversities.

This is not the first Hawai’i encounter with an invasive virus. In the
past, measles, whooping cough, dysentery, and influenza decimated
the native Hawaiian population. In the first recorded introduction of
major diseases to the islands, measures were taken to prevent sailors
from being in close contact with natives; ultimately, this failed due
to complications demanding sailors stay on the islands for several
days. Upon later visits, the westerners noticed the heavy impact of
the disease upon the entire archipelago. Later on in the Kingdom’s
history, foreign ships brought about more diseases: cholera (1804),
influenza (1820s), mumps (1839), measles and whooping cough
(1848-9) and smallpox (1853). King Kamehameha V, noticing the
loss of his people, established the Kingdom’s first quarantine station,
which later moved from Honolulu to Moloka’i. Not only were a large
portion of Native Hawaiian lives lost, but schools were left empty
and the economy disrupted due to the great mortality [1]–[3]. Today,
Hawaii remains vulnerable to disease because it is geographically
isolated and does not have hospital and other facilities capable of
treating large numbers of infected non-residents, nor does it have the
ability to shift excess COVID-19 cases to neighboring hospitals or
care centers other than perhaps military ships.

Today facing the COVID-19 pandemic, the state government
has taken several measures to mitigate spread, including a stay-at-
home order and an incoming arrival 14-day quarantine, a reflection
of the past. As with minority populations in other states, certain
populations (in our case self-identified Pacific Islanders exclusive
of native Hawaiians) are impacted at a significantly larger rate,
both in terms of testing positive for the disease compared to their
population percentage and presumably with respect to the economical
loss since this population depends heavily on the tourist industry for
economic stability [4] [5]. The March stay-at-home order brought
applause when the epidemic was stomped flat but as a result Hawai’i
remained extremely vulnerable to the disease exemplified by the
current alarming situation in which the islands saw a very significant
second wave of infections. The state’s seven day average case rate
per 100,000 of populations went from months at the bottom of the
US list to holding a clear spot in the top 15 as of the ending days of
August 2020 [6].

Compartmentalized SEIR models of the COVID-19 provide the
basis for much of the current epidemiological modeling efforts world-
wide, however variants in the compartmental choices and corre-
sponding variables allow for parameter matching and optimizations,
thus providing useful predictive information specific to our Island
population [7] [8]. In this paper, we adapt and use these models on
Oahu data. Oahu is the most populated island in the chain, providing
an appropriate data set for interpretation of our models as well as
guidance for the entire state. We focus specifically on Oahu, the most-
affected by COVID-19 Island as of now, since each island (or group
of islands in the case of Maui) has its own mayor and thus restrictions
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and governmental actions may vary slightly within the entire state as
they are determined not only uniformly by the Governor but also by
the Mayors and local governments of the outer islands.

Our simulations demonstrate that to control the spread of COVID-
19 both actions by the State in terms of testing, contact tracing and
quarantine facilities as well as individual actions by the population
in terms of behavioral compliance to wearing a mask and gathering
in groups are vital. They also explain the turn for the worst Oahu
took after a very successful stay-at-home order back in March.

It is time critical that models for COVID-19 transmission are
applied across a variety of US regions with populations exhibiting
different characteristics. Results are presented for Italy [9] and Austin,
Texas [10] highlighting the impact of proper timing for efficient
mitigation measures. Tuning our model to Hawai‘i specific data
ensures proper assessment of the local spread of the disease that
may not be feasible via larger and more common studies. Also, the
controlled environment plays a role in assessing the effectiveness of
current and future mitigation strategies. Our methodology is directly
applicable to other States and counties with similar accessible data.
Observed qualitative behavior of the transmission rate for the States of
Alaska, Oregon and Montana, as well as the corresponding numbers
for the daily cases, are comparable to Hawai‘i’s [11] [12]. Our work
suggests that a lack of individual compliance prevented a significant
decrease in the number of daily cases in these states, and indicates
that they are likely to see the daily case numbers increase further
following the recent increase in transmission rate. There is a need
to either expand asymptomatic isolation or request more severe
compliance from the population.

II. MATHEMATICAL MODEL AND PARAMETERS

A. SEIR Compartmentalized Model

To model the spread of COVID-19, we employ a compartmental-
ized model inspired by [13], which is based on a standard discrete
SEIR model. As in the standard SEIR model, we partition a given
population into four compartments: Susceptible (not currently in-
fected), Exposed (infected with no symptoms), Infected (infected with
symptoms), Removed (recovered or deceased). However, to better
capture the dynamics of the infection, we divide the whole population
into two population groups: the general community and healthcare
workers (healthcare workers play a vital role and are exposed in
different ways than the general community, see for instance [14]
[15]). We shall denote these groups by C and H, respectively.
These groups interact with each other, and each of them consists
of the aforementioned compartments. Hence, variables representing
the compartments may be decorated with a sub-index c or h, to
indicate the appropriate group. In addition, compartments Exposed
and Infected (in each population group) are split into multiple stages
to better reflect the progression of the disease.

The dynamics of each population group have two distinguished
parts: the dynamics of Susceptible individuals, and the dynamics of
the rest of the compartments. The former is governed by the hazard
rate, λ(t), which depends on time and essentially determines the
probability, 1 − e−λ(t), of an individual becoming exposed at time
t. The hazard rate is different for different population groups and
takes into account interactions between the groups, thus coupling
their dynamics.

The equations for the dynamics of the two population groups are
essentially the same and are given below. Only the hazard rate and
the parameters determining transition rates into quarantine may be

different between the two groups.

S(t+ 1) = e−λ(t)S(t) (1)

E0(t+ 1) = (1− e−λ(t))S(t) (2)
Ei(t+ 1) = (1− pi−1)(1− qa,i−1)Ei−1(t),

i = 1, . . . , 13 (3)
Eq,i(t+ 1) = (1− pi−1)(qa,i−1Ei−1(t)+

+ Eq,i−1(t)), i = 1, . . . , 13 (4)

I0(t+ 1) =

13∑
i=0

pi(1− qa,i)Ei(t) (5)

I1(t+ 1) = (1− qs,0)I0(t) (6)
I2(t+ 1) = (1− qs,1)I1(t) + (1− r)(1− qs,2)I2(t) (7)
Ij(t+ 1) = r(1− qs,j−1)Ij−1(t)+

+ (1− r)(1− qs,j)Ij(t), j = 3, 4 (8)

Iq,0(t+ 1) =

13∑
i=0

pi(qa,iEi(t) + Eq,i(t)) (9)

Iq,1(t+ 1) = Iq,0(t) + qs,0I0(t) (10)
Iq,2(t+ 1) = Iq,1(t) + qs,1I1(t)+

+ (1− r)(qs,2I2(t) + Iq,2(t)) (11)
Iq,j(t+ 1) = r(qs,j−1Ij−1(t) + Iq,j−1(t))+

+ (1− r)(qs,jIj(t) + Iq,j(t)), j = 3, 4 (12)
R(t+ 1) = R(t) + rI4(t) + rIq,4(t)+

+ (1− p13)E13(t) + (1− p13)Eq,13(t) (13)

Below is a detailed description of the variables, all of which depend
on time, t, measured in days.
• Variable S(t). The number of susceptible individuals.
• Variables Ei(t). The number of asymptomatic infected

individuals i days after exposure who are not quarantined.

• Variables Eq,i(t). The number of quarantined asymptomatic
infected individuals i days after exposure.

• Variables Ij(t), i = 0, 1. The number of symptomatic infected
individuals i days after the onset of symptoms who are not
quarantined.

• Variables Ij(t), j = 3, 4, 5. The number of symptomatic
infected individuals at the nominal stage i of the illness. Note
that a person can stay at a given stage for several days.

• Variables Iq,j(t), j = 0, 1. The number of quarantined
symptomatic infected individuals, with j representing either
the number of days after the onset of the symptoms (j = 0, 1),
or the stage of the illness (j = 2, 3, 4).

• Variable R(t). The number of removed (recovered or deceased)
individuals.

Splitting exposed individuals into multiple stages, Ei, allows us to
capture possible differences in the progression of the asymptomatic
phase of the disease. Importantly, it allows us to take into account
that, according to the Centers for Disease Control and Prevention
(CDC) as well as other sources, about 40% of people who contract
SARS-CoV-2 remain asymptomatic, and the incubation period for
those who do develop symptoms is somewhere between 2 to 14 days
after exposure, with the mean incubation period between 4 and 6 days
[16]–[18]. Individuals who do not develop symptoms after 14 days
are assumed recovered. The use of the quarantine sub-compartments,
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Eq,i, allows us to capture the effect of contact tracing and the reduced
transmission rate for quarantined individuals.

Similarly, having multiple stages for infected individuals better
reflects progression of the symptomatic phase of the disease. The
first two stages represent the first two days of symptoms, but the next
three should be understood as phases of the immune system fighting
the disease. There is a substantial variability (due to age as well as
other factors) in the number of days any given person can spend
at each stage. Our model implicitly assumes that the symptomatic
phase of the illness lasts at least 5 days (in the unlikely case that
each stage lasts just one day). From the variables above, we can
compute hospitalization count and the total number of ICU beds (it
is assumed 8% of people with symptoms are hospitalized, and of
those, 20% enter the ICU.)

As we mentioned, a crucial part of the dynamics relates to the
hazard rate. For the general community, group C, we have

λc(t) = β
[
(Ic + εEc) + γ((1− ν)Ic,q + εEc,q)+

ρ[(Ih + εEh) + γ((1− ν)Ih,q + εEh,q)]
]
/Nc, (14)

where we suppressed the dependency on t on the right for con-
venience. Subscripts c and h indicate the general community and
healthcare workers, respectively, and subscript q indicates quarantined
individuals. Variables E and I here represent the sum over all the
stages within these compartments. Nc denotes the mixing pool for
the general community, computed as

Nc(t) = Sc + Ec + Ic +Rc + ρ(Sh + Eh + Ih +Rh). (15)

For the healthcare worker group, we have

λh(t) = ρλc + βη
[
(Ih + εEh) + κν(Ih,q + Ic,q)

]
/Nh, (16)

where Nh(t) = Sh + Eh + Ih +Rh.

B. Parameters and Initial Conditions
The model parameters have been chosen to reflect the spread

of COVID-19 on Oahu, taking into account the fit for the daily
cases and active hospitalizations. Most parameters remain fixed over
time. However, parameter β, capturing the basal transmission rate
due to various interactions among individuals, as well as parameters
reflecting the rates of quarantine can change over time along with
active mitigation measures. Specifically, we use several different
values of β that capture changes in COVID-19 policy on Oahu
(specific values can be seen in Table II). Table I provides the
description of the model parameters and their values.

The values of the basal transmission rate β change over time,
as shown in Table II, and are obtained by minimizing the sum of
squared differences between the recorded number of daily cases and
the number given by the model (the latter is calculated as the number
of individuals about to be quarantined). The optimization is done
using the Levenberg–Marquardt algorithm [19], which is well suited
for solving the nonlinear least squares problem. The Jacobian of the
objective function, required by the algorithm, is computed exactly by
implementing the dynamics of the derivatives of our variables with
respect to β.

It is useful to regard parameters pi, qa,i, and qs,i as probabilities,
which is their role in stochastic SEIR epidemiological models [20].
The values of pi are chosen to reflect the observations that, if symp-
toms do develop, it takes between 2 to 14 days, with a mean between
4 and 6 days [16]. We also take into account the estimate that about
40% of all infections remain asymptomatic. In the stochastic setup,
the probability to remain asymptomatic is given by

∏13
i=0 (1− pi),

and the expected length of incubation period, given that symptoms
do develop, is calculated using the formula

13∑
i=0

(i+ 1)pi
∏i−1
j=0 (1− pj)

1−
∏13
i=0 (1− pi)

. (17)

TABLE I
VARIABLE AND PARAMETERS FOR OAHU MODEL

Parameter, meaning Value
β, basal transmission rates optimized to fit data

Factors modifying transmission rate
ε, asymptomatic transmission 0.75
ρ, reduced healthcare worker
interactions

0.8

γ, quarantine 0.2
κ, hospital precautions 0.5
η, healthcare worker precautions 0.5

Population fractions
pi, i =0,. . . ,13, onset of symptoms
after day i

0.000792, 0.00198,
0.1056, 0.198, 0.2376,
0.0858, 0.0528, 0.0462,
0.0396, 0.0264, 0.0198,
0.0198, 0.0198, 0

qa,i, i =0,. . . ,13, asymptomatic
quarantine after day i

0 before June 10, then
q5 = q6 = q7 = 0.05

qs,i, i =0,. . . ,4, symptomatic
quarantine after day/stage i

C: 0.1, 0.4, 0.8, 0.9, 0.99;
H: 0.2, 0.5, 0.9, 0.98,
0.99

r, transition to next symptomatic
day/stage

0.2

ν, symptomatic hospitalization 0.08

As we mentioned earlier in the paper, the choice of qa,i reflects the
testing and contact tracing efforts in Hawaii. The values of qs,i reflect
the sentiment that symptomatic individuals are likely to quarantine,
especially after a couple of days of symptoms.

Similarly, parameter r can be viewed as the probability of tran-
sitioning from one stage of the illness to the next (with the final
stage being recovery or death). Taking into account that the reported
length of illness ranges from 2 weeks (for mild cases) to 6 weeks
(for severe cases), and that there is a high prevalence of mild and
moderate cases, the value of r is chosen to yield an expected length
of illness of 17 days. It is calculated using the following formula:

2 +

∞∑
n=3

n(n− 1)(n− 2)

2
r3(1− r)n−3 = 2 +

3

r
. (18)

a) Initial Conditions.: The initial values of most variables
are zero. The only non-zero values are the number of susceptible
individuals in the general community and the healthcare worker
community, Sc(0) = 937711, Sh(0) = 15000, as well as a single
not quarantined symptomatic individual, Ic,0(0) = 1.

III. MODEL FIT AND FORECASTING

Our simulations demonstrate the critical impact of testing and
timely contact tracing with adequate quarantine facilities on the
number of hospitalizations and required ICU beds. This information
is vitally important to immediate disease mitigation strategy.

We also highlight in our work that individual behavior is vital to
control the spread of the virus; if we rely solely on testing/contact
tracing and quarantine facilities, we would need an unrealistically
high success rate to overcome the transmission rate.

A. Fitting the curve from March 6 to August 31, 2020
In this section, we summarize specifics of the model and param-

eters necessary for an accurate data fit of Oahu data from March
6th to August 27. We use data from the Hawaii Data Collaborative
[21] for the count of daily cases as well as active hospitalisations and
active ICU beds. The basal rate of transmission β of SARS-CoV-2 in
our model is adjusted in time to reflect non-pharmaceutical measures
taken by state of Hawai’i during this pandemic. On March 25, the
governor imposed a stay-at-home order which was then progressively
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lifted throughout the months of May and June. The exact timeline
of events can be found here [22], but we focus on five major events
as transition points for adjusting the β. Due to an alarming spike in
daily cases, U.S. Surgeon General Jerome Adams visited Hawaii for
a couple of days starting on August 25 to address the situation with
Hawaii government and talk to the public. On August 27, a new stay-
at-home order was imposed. This second lockdown is complemented
with improved access to testing with a goal of improving contact
tracing and to once again stop the spread.

The primary goal of our work is to fit model to current data
by selecting appropriate parameter values and then to employ the
model in a predictive fashion to improve the mitigation strategy. In
general, fitting parameters in an SEIR model is often a combination
of mathematics and sociology, since changes in the transmission
rate generally occur with a certain time lag based on governmen-
tal restrictions and population response [23]. Except for the basal
transmission rate, our model parameters are fixed to correspond to
available information about the virus and the disease. The basal
transmission rates are obtained by optimizing the fit to the data using
the Levenberg–Marquardt algorithm and are shown in Table II. A
more detailed description of our complete model and parameters is
given in Section II.

TABLE II
OPTIMIZED TRANSMISSION RATES TO FIT OAHU DATA. THEY REFLECT

THE STATE AND OAHU NON-PHARMACEUTICAL MITIGATION MEASURES.

Transmission rates
March 6 - April 2 April 2 - May 20 May 20 - May 30
β = 0.3657 β = 0.0491 β = 0.1133
May 30 - June 10 June 10 - Aug 11 Aug 11 - Aug 27
β = 0.2109 β = 0.1694 β = 0.1086

Figure 1 displays the model, run with the transmission rates from
Table II, versus the real data. The dots are the recorded daily case
counts and the solid line gives the model daily counts.
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Fig. 1. Daily cases. Dots are the actual data and the plain line represents
the model. We also delineate the various mitigation measures that took place
during that period.

An important quantifier in COVID-19 is the number of hospital-
ization and ICU beds. This is a concrete number (as opposed, say, to
unknown carriers) that is historically used to document the amount
of disease. Additionally, since we have seen hospitals throughout
the world being overwhelmed by the number of COVID-19 patients,
it is a critical element of mitigation strategy. Figure 2 shows our
model values for active hospitalizations (left) and active ICU beds
(right) along with the corresponding recorded values. Note that the
model values are slightly smaller than the best data fit would yield,
however this results from the fact that hospitalisation and ICU data
are available for the entire State only, while the model is fitted to

the daily cases on Oahu. Also, the data are shown starting July 18,
since the numbers for earlier dates have not been released by the
Department of Health.
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Fig. 2. Data fit for data on active hospitalization (blue) and ICU beds (green).
Real data are dots and model predictions are lines.

B. Impact of testing, contact tracing, and quarantine measures
1) Revisiting the Past: In this section, we retrospectively predict

the impact on the number of hospitalisations and ICU beds if proper
testing/contact tracing and quarantine measures would have been in
place on June 10, corresponding to the date when many of the Hawai’i
stay-at-home restrictions were lifted.

Some level of testing and contact tracing were in place, but precise
data have not been shared publicly and it has turned into a very
controversial issue for the State that we will not discuss here. We
therefore assume minimal contact tracing and limited testing which
we believe is the most accurate representative of the situation. In
Figures 1 and 2, we assume that starting June 10, 15% of the
asymptomatic people are going into quarantine as the result of testing
and contact tracing. More precisely, we assume we catch about 14.3%
of asymptomatic population as follows: 5% after day 5 of being
exposed, then 5% of the remaining after day 6 of exposure, and
then another 5% of the remaining after day 7. We will denote this
scenario as 5 : 0.05, 6 : 0.05, 7 : 0.05 (days 5,6 and 7, each at 5%).

There are several factors which affect the number of asymptomatic
individuals going into quarantine, thus slowing down the spread of
the virus: improved testing with more rapid turn around, increased
contact tracing, and dedicated quarantine facilities.

a) Impact of early asymptomatic quarantine.: Faster de-
tection of asymptomatic individuals can be achieved through a more
rapid turnaround on testing as well as through increased contact
tracing. Our model parameters reflect this combined effect. Table III
shows the impact of the earlier detection on the total number of cases
from June 10 to August 27 as well as on the cumulative number of
active hospitalisations and active ICU patients for the two and a half
month period. These cumulative numbers are computed by summing
up the number of all hospitalized (ICU) patients for each day. Table
IV shows the same comparison but with a higher percentage of
detected asymptomatic individuals going into quarantine.

The financial impact of these measures are addressed in more
details in Section IV but just improving time to trace asymptomatic
from days 5,6,7 to days 2,3,4 under this minimal contact tracing
scenario would save about $2.6 million.
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TABLE III
IMPACT OF DELAY IN ASYMPTOMATIC DETECTION ON THE SPREAD OF

COVID-19

Testing/Contact Tracing Total
Cases

Cum act
Hospt.

Cum act
ICU

5:0.05, 6:0.05, 7:0.05 6517 4721 944
3:0.05, 4:0.05, 5:0.05 5658 4163 833
2:0.05, 3:0.05, 4:0.05 5102 3799 760
Note: Cum Act Hospt. (Cum act ICU) refers to the cumulative
number of active hospitalizations (ICU patients).

TABLE IV
IMPACT OF DELAY IN ASYMPTOMATIC DETECTION ON THE SPREAD OF

COVID-19

Testing/Contact Tracing Total
Cases

Cum act
Hospt.

Cum act
ICU

5:0.1, 6:0.1, 7:0.1 5760 3953 791
3:0.1, 4:0.1, 5:0.1 4346 3088 618
2:0.1, 3:0.1, 4:0.1 3551 2590 518

b) Impact of the volume of asymptomatic quarantine.:
The actual percentage of detected asymptomatic individuals is af-
fected by the amount of testing done, by the amount of contact
tracing resources available, and in large part, by quarantine facilities.
Quarantine facilities are particularly important for the Oahu model-
ing, since a large number of residents live in multi-generational and
non-family member shared households. Table V shows how various
fractions of quarantined asymptomatic individuals affect the total
number of cases, hospitalizations, and ICU occupancy, while the dates
of quarantine remain the same. Note that the quarantine fraction of
0.1 on each of the three days leads to the overall 27% detection of
asymptomatic cases, 0.2 reaches 48.8%, and 0.3 reaches 65%.

TABLE V
IMPACT OF VOLUME OF ASYMPTOMATIC DETECTION ON THE SPREAD OF

COVID-19

Testing/Contact Tracing Total
Cases

Cum act
Hospt.

Cum act
ICU

5:0.05, 6:0.05, 7:0.05 6517 4721 944
5:0.1, 6:0.1, 7:0.1 5760 3953 791
5:0.2, 6:0.2, 7:0.2 4499 2865 573
5:0.3, 6:0.3, 7:0.3 3573 2175 435

Together, Tables IV and V show that both the detection day
of asymptomatic individuals as well as the volume of quarantined
asymptomatic individuals have a significant impact on the hospitali-
sation and ICU occupancy. Our model suggests a larger benefit when
asymptomatic individuals are caught early. Combining both of the
above factors, we create various scenarios to predict how the total
hospitalisation and ICU beds would have been affected. Figure 3
compares the fit based on real data with two scenarios where testing
and contact tracing is assumed to be 3 : 0.15, 4 : 0.2, 5 : 0.1 and
2 : 0.15, 3 : 0.3, 4 : 0.2, which represents earlier detection of exposed
individuals and in larger quantities. While the two scenarios yield
continuously decreasing numbers of daily cases, with the second
scenario achieving single digits by the end of the year, this does
not represent a proper forecasting due to unrealistic assumptions. We
address the forecasting question in detail in the next section.

Notice that the gain from this last scenario compared to the control
simulation would amount to a savings of about $10 million.

2) Forecasting: The data fitting and parameter matching specific
to our Oahu data allows us to better understand the effects of
the various parameters as well as the transmission rate fits. We
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Fig. 3. Comparison of the daily cases real data fit (plain line) to
two alternate scenario assuming 3 : 0.15, 4 : 0.2, 5 : 0.1 (dash line) and
2 : 0.15, 3 : 0.3, 4 : 0.2 (dotdash line) respectively for testing/contact tracing
and quarantine.

TABLE VI
HOSPITALISATION AND ICU VARIATIONS FOR DIFFERENT SCENARIOS

Testing/Contact Tracing Total
Cases

Cum act
Hospt.

Cum act
ICU

5:0.05, 6:0.05, 7:0.05 6517 4721 944
3:0.15, 4:0.2, 5:0.1 3249 2269 454
2:0.15, 3:0.3, 4:0.2 1667 1208 242

then use this to provide forecasting scenarios that are dependant on
testing/contact tracing and quarantine measures. These forecasting
scenarios are critical to guiding Hawaii decision makers.

All of our predictive scenarios start on Aug 27 using a transmission
rate of β = 0.1086 from Aug 27 to Aug 30. The transmission rate is
then adjusted for each scenario depending on various societal events:
stay-at-home order (we assume β slightly higher than during the first
stay-at-home order due to community spread); Labor day holiday
weekend (increase in transmission rate for a few days); lifting the
stay-at-home order on October 5 (varies depending on population
behavior), Thanksgiving holiday (variable spike over a few days). At
the same time, parameters for testing and contact tracing are gradually
adjusted starting August 30 to attain the target values by October 5.

a) Scenario 1.: The first scenario assumes very aggressive
testing/contact tracing and facility quarantine but moderate compli-
ance in individual behavior. The target parameter values for testing
and contact tracing are taken as 2 : 0.4, 3 : 0.4, 4 : 0.4, which as-
sumes catching a total of 78% of asymptomatic individuals between
days 2 and 4 of exposure. Table VII provides the transmission rates
for the various periods. In this scenario, we assume the population
will behave similarly to what happened after June 10 once the stay-
at-home order is lifted.

TABLE VII
TRANSMISSION RATES FOR SCENARIO 1

Transmission rates
Aug 30 - Sep 11 Sep 11 - Sep 14 Sep 14 - Oct 5
β = 0.09 β = 0.12 β = 0.09
Oct 5 - Dec 1 Dec 1 - Dec 5 Dec 5 - Dec 31
β = 0.17 β = 0.2 β = 0.17

b) Scenario 2.: The second scenario assumes a more realistic
testing/contact tracing and facility quarantine but higher compliance
in individual behavior starting after lifting the stay-at-home order on
October 5. The target parameter values for testing and contact tracing
are taken as 2 : 0.2, 3 : 0.2, 4 : 0.2, which assumes catching a total of
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49% of asymptomatic individuals between days 2 and 4 of exposure.
Table VIII provides the transmission rates for the various periods.
We assume the population will behave in a more compliant way than
what happened after June 10 once the stay-at-home order is lifted.
The transmission rate is thus reduced from 0.1694 to 0.145.

TABLE VIII
TRANSMISSION RATES FOR SCENARIO 2

Transmission rates
Aug 30 - Sep 11 Sep 11 - Sep 14 Sep 14 - Oct 5
β = 0.09 β = 0.12 β = 0.09
Oct 5 - Dec 1 Dec 1 - Dec 5 Dec 5 - Dec 31
β = 0.145 β = 0.2 β = 0.145

c) Scenario 3: The third scenario is identical to scenario 2 but
with more a relaxed testing/contact tracing and facility quarantine,
reflected by the target testing/contact tracing parameter values of
3 : 0.2, 4 : 0.2, 5 : 0.2, which still assumes catching a total of 49% of
asymptomatic individuals, but now between day 3 and 5 of exposure.
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Fig. 4. In red we have the daily cases, and green ICU beds. Scenario 1: plain
line. Scenario 2: dot-dash line. Scenario 3: dash line. Scenario 1 is better at
first but scenario 2 is provides the best outcome over the long run.

TABLE IX
HOSPITALISATION AND ICU VARIATIONS AS OF DECEMBER 31

Testing/Contact Tracing Total
Cases

Cum act
Hospt.

Cum act
ICU

Scenario 1 25141 21043 4209
Scenario 2 19318 18162 3632
Scenario 3 26471 22434 4487

In Figure 4 we compare the three scenarios. The plain line
corresponds to scenario 1, the dot-dash line is scenario 2 and the

dash one is scenario 3. The number of active hospitalisation cases
is qualitatively identical to ICU beds, with the first spike around
228 and the dashed line reaching about 287 on December 31. It is
important to note that the line for scenario 2 starts to decrease in
early 2021, while the number of daily cases for scenarios 1 and 3
see keeps increasing, with a peak of 594 daily cases on April 3 for
scenario 1, and a peak of 541 daily cases on April 23 for scenario 3.

IV. SIMULATIONS ANALYSIS

A zoom on Figure 1 for dates between March 6 and May 30
demonstrates the efficiency and good timing of the first stay-at-
home order, Hawai’i even being referred at the time as the safest
state. Starting in mid-June we see the daily cases increasing and
following an exponential trend for a 40 day period to become one
of the worst states in dealing with the pandemic. Our simulations
attempt to provide an explanation to this observation and produce
some forecasting scenarios to help decision makers as we will come
out of the second stay-at-home order around October 5.

In Section III-B, we show that with an increased structure of
testing/contact tracing and quarantine facilities, we could have dra-
matically impacted the outcome as of August 27. Our results show
that earlier detection of asymptomatic individuals has the most effect
on the behavior of the model. From Figure 3 and Table VI, assuming
we traced and quarantine successfully 52% of the asymptomatic
population after days 2, 3 and 4 (more dominantly after day 3 of
being exposed), we would have seen a reduction of 4850 total daily
cases, 3513 cumulative active hospitalisation and 702 cumulative
active ICU beds which is equivalent to a reduction of about 74%
for total daily case, and for both hospitalisation and ICU beds. We
can only speculate why these measures were not in place back in
June, it was likely due to a combination of different challenges
that have been well addressed in the newspapers. For instance, per
an article in the Star advertiser on July 8, one of Hawaii’s largest
COVID-19 testing laboratories supply of chemicals needed to run
test locally was restricted and reduced testing capabilities by about
70%. This was a consequence of surge in coronavirus cases across
the country and supplies were distributed in priority to states where
the intensive care units were overrun. Lack of contact tracing and
quarantine facilities for people testing positive have also been issues
that prevented the State to successfully keep the count under control.
It is easy to downplay quarantine facilities compared to testing and
contact tracing, however in Hawaii’s a disproportionate fraction of
individuals affected by the spread of the virus are Pacific Islanders
and they very often live in multi-generational housing that does not
permit for isolation. Recently the State has made agreements with
hotels to turn them into quarantine facilities.

The forecasting portion of Section III-B raises a very important
point. Figure 4 and Table IX demonstrate how different transmission
rates and testing/contact tracing, quarantine facilities affect the future
of the curve. The take away from these results is that to succeed
in controlling the curve, we need a combination of aggressive
testing/contact tracing, quarantine facilities as well as compliance
from individual to keep the transmission rate to lower levels. Scenario
1 assumes almost perfect success in quarantining exposed individuals
but transmission rates comparable to what we had after the State
lifted the first stay-at-home order. The second scenario assumes better
compliance from the population (lower transmission rate β) and
aggressive but doable contact tracing; it provides the best outcome.
The scenario 3 with same transmission rate as scenario 2 but shifting
the contact tracing by one day shows significantly more cases. The
conclusion is that to control the curve long term we need both:
aggressive contact tracing and high compliance from the population.
Unless the State can enforce such measures, we will be back into a
third stay-at-home order in about a couple from months from lifting
the second one. Note that for scenario 2, the maximum daily cases
will not exceed 193 and the peak will occur in early December due
to an assumed increase in non-compliance during the Thanksgiving
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holiday, while for scenario 3 we are looking at 541 cases in early
April, and we reach 594 cases in late April for scenario 1. Those
results are aligned with other work that has been published for
instance in [24] [25].

V. CONCLUSION AND FUTURE WORK

The goal of our model is not primarily to predict the single most
likely outcome for the COVID-19 outbreak on Oahu, but rather is to
compare the benefits and costs of implementing various mitigation
strategies. We conclude that, provided contact tracing was in place
with quarantine facilities as well as explicit guidance for the public on
how to behave and compliance to those, we would be now under 50
daily cases and a second stay-at-home would not have been necessary.
The State absolutely needs to be prepared when lifting the second
stay-at-home order.

A. Economic Impact
It is possible to associate some numbers to the quantitative study

we have done. Indeed, calculating the differences between two
scenarios for the total hospitalization and ICU beds, we can assign
a cost reduction for Oahu over the period June 10 to August 27.
Numbers need, however, to be taken with a grain of salt since we
are only providing estimates.

We are assuming the cost of a hospitalization day to be $2,000
and we average the daily cost at the intensive care to $4,200. The
last number accounts for the fact that a fraction of patients are in
need of ventilators and that the first two days in ICU are more costly
than the rest of the stay. As mentioned above in the discussion
the best scenario in Table VI reduces the total hospitalisation and
ICU beds by 74% which amount to almost $10 million. Contact
tracing, as well as quarantine facilities also have a cost, but it
will be quite lower. Comparing the forecasting scenario, we obtain
that as of December 31, scenario 2 saves more than $12 million
compared to scenario 3 and scenario 1 saves almost $4 million
compared to scenario 3. Those amounts increase quite dramatically
after December 31, 2020.

B. Tourism and Vaccines
The State of Hawai’i is, since March 26, 2020, in an effective

isolation bubble following the mandatory 14-day traveler quarantine
that has not yet been lifted. The interisland quarantine was lifted
on June 16 and then partially reinstated on August 11. This is the
reason why travelers are not explicitly included in our work; they are
currently virtually nonexistent (counts dropped to the lower hundreds
from a historical norm of about 30,000 a day). Once tourism is open
again, it will be added to the model and new simulations can take
place. The form of re-instating tourism is still undetermined, and we
expect it will be gradual and measured. Furthermore, if and when
a vaccine is developed, our compartmental model can be used to
account for the additional sub-population of the vaccinated.

ACKNOWLEDGMENT

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 2030789. We would like to thank
Prof. Andrea Bertozzi for her insightful comments and feedback.

REFERENCES

[1] D. Herman, Shutting Down Hawai‘i: A Histori-
cal Perspective on Epidemics in the Islands, 2020,
https://www.smithsonianmag.com/history/shutting-down-hawaii-
historical-perspective-epidemics-islands-180974506/, retrieved: October,
2020.

[2] E. Blakemore, How Measles Helped Destroy the Hawaiian Monar-
chy, 2019, https://www.history.com/news/hawaii-monarchy-downfall-
measles-outbreak/, retrieved: October, 2020.

[3] R. Schmitt and E. Nordyke, “Death in Hawai’i: the epidemics of 1848
- 1849,” The Hawaii Journal of History, vol. 35, pp. 1–13, 2001.

[4] The COVID Tracking Project, 2020,
https://www.covidtracking.com/race, retrieved: October, 2020.
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