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Abstract—Regression and cross-correlation analyses have been 
widely used to detect neural activation in the dynamic brain 
imaging data. These analyses require a preliminarily assumed 
reference function, which reflects temporal changes in neural 
activation. In other words, only the neural activations, whose 
temporal patterns resemble to the reference function, can be 
detected. In cases which reference functions are hardly defined, 
these analyses are not applicable. In our previous study, we 
have proposed a method of spatio-temporal filtering to 
overcome these disadvantages. This method enables us to 
detect the time and region when and where dynamical state 
transition according to neural activation arises in repeatedly 
recorded data (multiple trial data). Moreover, we showed the 
capability to detect neural activation in single-trial data, such 
as recording of spontaneous brain activity, using sliding time 
window.  

Keywords-Spatio-temporal filtering; Innovation approach; 
Brain functional imaing; Optical imaging 

I.  INTRODUCTION 
There have been developed many techniques for 

biological signal recording e.g., functional magnetic 
resonance imaging (fMRI) and optical recording, and they 
enable us to perform detailed investigation of neural 
activation. However, with the dimensions and size of the 
data becoming larger and the structure of the data becoming 
more complicated, a more efficient and automatic method 
for analysis is required. 
One of the widely used methods is based on regression or 
correlation analysis to detect spatial information of neural 
activation pattern [1]. 

For the investigation of microscopic neural activation, 
an optical imaging technique has been used. This technique 
offers us the information of temporal transition of 
membrane potential in excitable tissue [2]-[4]. The structure 
of optical imaging data is three dimensional: two of them 
are for space and one is for time. Although the structure of 
optical imaging data is similar to that of fMRI data, there 
has been no widely used method for data analysis. Respect 
to this situation, Oku et al. [2], [3] and Okada et al. [4] 
applied time-lagged correlation analysis to optical imaging 
data to elucidate the mechanism of respiratory rhythm and 
pattern generation in the rat and frog brainstem. In the 
studies of rat brainstem [2], [4], they used 4th cervical 

spinal cord ventral root (C4VR) output signals that are 
equivalent to phrenic inspiratory burst activity as the 
reference function, and found appearances of earlier and 
simultaneous activities relative to the output signals in the 
regions of respiratory rhythm generators. 

The advantage of regression analysis or cross-correlation 
analysis is that the significance of the coefficients can be 
statistically evaluated. Moreover, the test values can be 
mapped on an anatomical image and it gives spatial 
information. However, still there have been several 
problems in these analyses. The regression or correlation 
analysis evaluates only the morphological resemblance 
between the time series and the reference function. If there 
is some activation pattern that does not resemble the 
reference function, then it cannot be detected. More 
seriously, in the case that the reference function cannot be 
defined, the data can hardly be analyzed by these methods. 

In the field of time series analysis, innovation approach 
has been efficiently applied to detect the changes in signal 
dynamics. The dynamical properties of stationary time 
series, whose statistical properties, e.g., mean value and 
variance, do not depend on time, can be identified using 
mathematical models such as autoregressive (AR) model 
and autoregressive moving average (ARMA) model [12]. 
Let us suppose that we prepare two time series; one is used 
as test time series for model identification, and the other is 
for filtering with the identified model. If new time series is 
filtered through the identified model, unpredictable signals 
remain in residuals. The residuals are called innovations. If 
the amplitude of innovations of filter output becomes 
significantly higher than the innovation of test data, the state 
is detected as a phase transition of dynamics in the system. 
This approach has been applied in various fields, e.g., plant 
monitoring system [5]-[9]. 

In this session, we will review our previous works which 
applied the innovation approach to optical imaging data 
attempted to detect biological activation in innovations and 
introduce methods to evaluate statistical significance of the 
activation for multiple-trials and single-trial data [10][11]. 

The methods to detect biological activation is explained 
in Section II. Section III provides the information about the 
imaging data which was analysed in this paper. Section IV 
presents the detected activation using AR model based 
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filtering method and compare the performance with time-
lagged cross-correlation analysis. 

II. METHOD 

A. Time-lagged cross correlation analysis 
The time-lagged cross-correlation analysis provides 

temporal information of the appearance of the signals in the 
imaging data whose wave forms resemble pre-defined 
reference function [2]. Suppose ( )tη v is a time series of 

imaging data for a pixel ( , )v l m= and ( )tϕ  is a pre-
defined reference function, the time-lagged cross-correlation 
can be denoted as  

 

( ) ( ) ( ) ( )2 2/R t tτ η ϕ τ η ϕ= −v v v ,            (1) 

 
where τ is a relative time lag. The lagged correlation 
coefficient can be straightforwardly converted to a t-value. 
Then time dependent correlation t-map can be obtained if 
this procedure is repeated for all pixels. In the case 0τ = , 
it will be ordinary cross-correlation analysis. 

B. Autoregressive(AR) model 
There exist many models used for the analysis of time 

series. The most commonly used model for time series data 
is the autoregressive (AR) model. The autoregressive 
process is a difference equation determined by random 
variables. The most simplest AR model is the first order 
autoregressive model, written as AR(1), which considers the 
immediate past value ( )1tη −  to determine the present 

value ( )tη . An example of AR(1) model is denoted as  
 

( ) ( ) ( )0.8 1η η ε= − +t t t ,                      (2) 
 

where ( )tε  is a white noise series with zero mean and 

variance 2
εσ . 

An example of second order AR model is denoted as 
 

( ) ( ) ( ) ( )1.8596 1 2η η η ε= − − − +t t t t .      (3) 
 
 The autoregressive (AR) model for a time series 
( ) , 1,..., ,t t Sη =  can be generalized to the p-th order AR 

model, which is defined as a linear combination of the past 
values with a prediction error ( )tε  and a constantβ , 
 

( ) ( ) ( ) ( )
1

p

i
t i t i tη β α η ε

=

− = − +∑ ,             (4) 

 

where ( )iα  are AR coefficients. The linear dynamic 
properties of the system can be identified with a parameter 
vector ( ) ( ){ }21 ,…, , ,p εα α β σ=ϑ , here 2

εσ  is a variance of 

( )tε . 
In the case of AR(2) model, the relation between AR 

coefficients and oscillation frequency f  can be denoted as  
 

( ) ( ) 21 2 cos 2 ,  2fr r
Fs

α π α = = − 
 

,          (5) 

 
where, Fs is a sampling frequency and r is a length of 
radius in the Gaussian plane which corresponds to 
attenuation coefficient. For example an oscillation with 

3[Hz]=f , 50[Hz]=Fs  and 1=r  can be realized with (3). 
The AR coefficients in (4) can be estimated from 

actual data by least square method, Yule-Walker method and 
so on[12]. And the optimal model order p can be decided 
by Akaike Information Criterion (AIC)[12][13].   

C. Filtering using AR model 
Suppose the AR model is written as， 

 

( ) ( ) ( ) ( )
1

ε η α η
=

= − −∑
p

i
t t i t i  ,                (6) 

 
it can be interpreted as a filter whose input is data and 
output is prediction error. The prediction error is also called 
innovation. In the case the frequency for filtering is 
previously known, the AR coefficients can be adjusted by 
(5). If the AR coefficients are estimated from actual data, 
the innovation time series contains the signals which cannot 
be predict from the vibration characteristic of the data. 

The most widely used filtering method is the Fourier-
based filtering method to eliminate specific frequency 
components. Here, the difference between the Fourier-based 
filtering and AR model based filtering with simulated data. 
The simulated data was generated by (3) and impulse I  was 
applied as unpredictable signal with AR (2) process,  

 
( ) ( ) ( ) ( )1.8596 1 2 Iη η η ε= − − − + +t t t t .      (7) 

 
The impulse I 1= was applied at 3.0[ses] ( 150=t ) and 
continuously during the period of 4.0-5.0[sec] 
( 200 250≤ ≤t ). Fig. 1 (a) and (b) show the simulated 
time series and output signal from Fourier-based band stop 
filter (2.5 – 3.5 Hz). Though there can be observed a cusp 
point at 3[ses] ( 150=t ) in the output signal which 
correspond to the timing of applied impulse, it is hardly 
recognized without prior information about the timing. And 
the onset and offset of continuously applied impulse during 
4-5[sec] ( 200 250≤ ≤t ) are not clearly detected. A new 
AR (2) model was applied to the period of simulated data 0 
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– 1.0 [sec] and the model was identified with estimating 
coefficients. And the rest part of the simulated data was 
filtered through the identified AR (2) model. Fig. 1(c) shows 
the output signal from the AR (2) model, i.e., innovation 
times series. Unlike the result from Fourier-based filtering, 
the amplitude of the innovation time series was steeply 
increased at the time and the period impulse was applied. 
This method is called innovation approach. 

For the analysis of biological signals, the biological 
activation can be detected using the AR model based 
filtering method. However there is possibility that some 
noise or artifact is also detected. In order to discriminate 
biological activation and noise or artifact, the amplitude of 
innovation time series has to be statistically evaluated with 
repeatedly recorded data. Fig. 2 shows the transition of the 
amplitude of innovations for all repetitions. The area A is a 
set of the innovations within the period for model 
identification and the line B is a set of innovations of filter 
output at the time t′ . We evaluated the statistical 
significance of the difference of mean amplitude of the 
innovations in area A and on line B using standard t-test. 
 
 

 
Figure 1. (a) Simulated data with AR(2) process (impulse was applied at 
3.0 sec. and continuously during 4.5 – 5.0 sec). (b) Output signal from 
Fourier-based band stop filter (2.5 Hz – 3.5 Hz) (c) Innovation time series 
from AR(2) model 

III. BENCHMARK DATA 
We selected the same imaging data set from 2 day and 0 

day old rats (corresponding to data1 and data2 respectively 
in this study) that was used in the study of developmental 
aspects of the respiratory neuronal activation in the rat 
brainstem [2] in order to evaluate our method by comparing 
its outputs with those of the time-lagged cross-correlation 
analysis.  

Optical signals were sampled at 50 Hz (20 ms/frame) for 
data1 and data2. Analog signals of raw and integrated 
C4VR activities were recorded at 1 kHz for data1 and data2. 
These analog signals were amplified and digitized, then 
stored in a hard disk together with optical signals. Analog 

signals were window-discriminated to yield Transistor-
Transistor Logic (TTL) pulses and used to trigger the optical 
recording system. Total number of recorded time frames 
were 1024/256, the recording was started at 768/64 frames 
before the trigger signal, and repeated 30/34 times for 
data1/data2, respectively. Among these repetitions, 29 and 
27 repetitions, which were contaminated with relatively 
small artifacts, were selected for data1 and data2, 
respectively.  

Fig. 3 shows the recorded area in the brainstem, which 
contains two putative rhythm generators those which have 
been reported as the para-facial respiratory group (pFRG) 
[12] and the pre-Bötzinger complex (preBötC) [16]. 
Inspiratory-related respiratory activity was monitored from 
the C4VR with a suction electrode. The raw nerve signal 
was amplified, band-pass filtered from 15 Hz to 3 kHz, full-
wave rectified, and integrated with a decay time constant of 
100ms. This integrated signal was used as the reference 
function for the cross-correlation analysis. Further 
experimental condition and preprocessing were explained in 
[10]. 

 

Figure 2.  Temporal transition of the amplitude of innovations for all 
simulated data (30 repetitions). The area A is the set of the innovations 
within the period of model identification and the line B is the set of the 
innovations of filter output at the time t′ .  
 

IV. RESULTS 
In the case when imaging data are repeatedly recorded, 

we obtain multiple time series ( ) ,  1, ,t t Sη = 

w , for each 

pixel ( ( ), ,w l m n= , l and m are the indices of a pixel, n  is 
the index of the repetition, 1 n N≤ ≤ ) (Fig. 4). The signal 
from a pixel is contaminated irregular reflection light and 
scattered light from neighbouring pixels. In order to reduce 
these contamination, we consider following exogenous type 
AR model.  

Suppose the measurement points of the imaging data are 
on the two dimensional pixel that are labeled by an index 

( , )v l m=  and only the influences of nearest neighbor upon 
each pixel are considered as exogenous inputs, the ARX 
model will be specialized as 
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( )

( ) ( ) ( ) ( )
( )

( )
1 1

,
p q

i j

t

i t i j t j t

η β

α η δ η ε
= ∈Ν =

−

= − + − +∑ ∑ ∑

v v

v v u u v

u v

   (8) 

 

where ( )Ν v  is a set of indices of the neighbor pixels to 
the pixel at  ( , )v l m= .  Suppose neighbor pixels are 
restricted to the pixels, which contact with the edge of the 
pixel at the point v , a set of indices of neighbor pixels will 
be 

 
( ) ( ) ( ) ( ) ( ){ }1, , , 1 , , 1 , 1, .l m l m l m l mΝ = + − + −v         (9) 

 
The ARX model with the restricted neighbor pixels will 

be referred as Nearest Neighbor Autoregressive model 
(NNAR) in this paper. The innovations for the pixel at v , 

 
( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )1 1

ˆ

        

        
p q

i j

t t t

t

i t i j t j

ε η η

η

α η δ η β
= ∈Ν =

= −

=

 
− − + − +  
 
∑ ∑ ∑

v v v

v

v v u u v

u v

  ,(10) 

 
contain the signals which cannot be predicted by a linear 
AR process even though the spatial influences from the 
neighbors are taken into consideration. 
 

Suppose the NNAR model is identified with a limited 
period 

1 2t t t≤ ≤ , any arbitrary selected other period 

1 2t t t′ ′≤ ≤ can be filtered through the identified NNAR 
model. Let the innovations corresponding to the period for 
the NNAR model identification and for filtering ( )1, tε w  

and ( )2, tε w , respectively. The amplitude level of 

( )2, tε ′w will increases at the time point t′ when the 
unpredictable signals arise. Then the statistical significance 
can be evaluated by comparing the mean value between the 
innovations at t′ , ( ) ( )2, , ,1

1

N
l m n

n
N tε−

=

′∑  and whole innovations 

within the period
1 2t t t≤ ≤ , ( ) ( ) ( )

2

1

1 1, , ,
2 1

1
( )

t N
l m n

t t n
N t t tε−

= =

− ∑∑  

by some statistical test. In this study, we employed standard 
t-test for this purpose. By shifting time point t′ , time-
dependent t-values can be computed. Then time-dependent 
activation t-map, which shows dynamic state transition, can 
be obtained by repeating this procedure for all pixels. 

This method detects not only biological activation as 
dynamic state transition but also some artifact inevitably. 
Some procedure for artifact discrimination has to be 
considered. There are mainly two types of artifacts. One is 
stationary oscillatory noise such as those caused by electric 
power supply (hum noise) and mechanical vibration of 
measurement system. This sort of artifacts can be identified 

by AR-type model, and then ( )1, tε w  will be close to 
Gaussian white noise. Therefore the oscillatory noise will 
not appear in ( )2, tε ′w , because these artifacts consist of 
predictable signals. The other is caused by non-stationary 
sporadic noise, and it will appear in ( )2, tε ′w  because it 
cannot be predicted by the identified AR-type model. This 
sort of artifact can be partly removed from final results such 
as activation t-map by setting a threshold for spatial cluster 
size and/or duration. 

 

 
Figure 3.  (a) Ventral brainstem area for optical imaging (surrounded by the 
red square), (b) Schematic representation of anatomical structure of the 
brainstem and the recorded area, (c) Raw output signal from C4VR, (d) 
Integrated C4VR output signal. 

 
Background stationary oscillations were identified by a 

NNAR model on the period sufficiently before or after the 
respiration onset. In this study four neighboring pixels, 
which contact with edge of a pixel of interest were 
employed for the NNAR model for saving the 
computational cost. The parameters in the NNAR model 
were estimated using the least square method. Then the rest 
part of the data was filtered through the identified model 
and the innovations were estimated. We defined the origin 
of time axis as the onset of respiratory activity observed in 
the C4VR signal. The NNAR model was identified on the 
period sufficiently before the onset of respiratory activity, 
i.e., from -4.22s to -2.24s (100 time frames). Subsequently, 
the period from -2.22s to 5.24s (374 time frames) was 
filtered for the data 1.  

In principle, model order of the NNAR model should be 
optimized according to some criterion, such as Akaike 
Information Criterion (AIC) [13] for each pixel. However, 
since it would not be appropriate to individually optimize 
the model order for a large number of pixels, a common 
value should be chosen. It is important to choose a 
sufficiently large value, lest any relevant correlations in the 
data should be missed. On the other hand, too large model 
orders may cause over-fitting problems and reduce the 
reliability of the estimated model parameter values. In this 
study, the model order for p and q in (10) was fixed to the 
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same values for the simplification of the model. Then, we 
gradually increased the model order from two and found 
that stationary oscillations were properly identified and 
removed from the innovation by NNAR model with 

7p q= = . Therefore, we conclude that for our data a model 
order of this value represents a good compromise.  

 
 
 

 
 

Figure 4.  Conceptual representation of the structure of the optical imaging 
data. The recorded imaging data can be reconstructed with three 
dimensional data (two dimensional space corresponding to recording area 
and time axis) for each repetition. 

 
We evaluated the statistical significance of the 

difference of mean amplitude of the innovations in the 
period of model identification and filter output by the 
method mentioned with Fig. 2. This procedure was repeated 
for all pixels, and then temporal transition of activation t-
map was illustrated. Five representative time frames of 
activation time map are illustrated as time dependent t-maps 
in Fig. 8(c), which shows the area and time at which 
significant dynamic state transition arises. The activation 
initiated at the caudal part of pFRG, corresponding to the 
rostral ventrolateral medulla (RVLM) [14] and [15], and 
then extended rostrally toward the rostral part of pFRG and 
caudally toward the preBötC. Subsequently the activation 
traveled to more caudal structures of the brain. Finally the 
activation of the high cervical spinal cord reached its 
maximum (Fig. 5(c) in the time frame at 0.24s) just before 
the peak of C4VR output signals (Fig. 5(d)). Further, a line 
from preBötC toward caudal brain structures could be seen 
in Fig. 5(c) in the time frame at 0.64s.  This sequence may 
correspond to the fact that caudal brain structures such as 
ventral respiratory group (VRG) contain premotor and 
motor neurons that relay respiratory outputs to the C3-5 
segments of the spinal cord with a certain time delay.  

Fig. 5(a) displays activation t-maps for the raw imaging 
data instead of the innovations using the procedure 
described above. Although both images for the imaging data 
and innovations were thresholded at the same level, 
significant areas for the imaging data were less than those 
for the innovations. Further, the propagation from the 
preBötC toward caudal brain structures could not be 
detected in activation t-maps for the raw imaging data. 

The results of correlation analysis with averaged 
imaging data across repetitions is illustrated in Fig. 5(b) as 
correlation t-maps. The respiratory related activated areas, 
such as pFRG and preBötC, were effectively detected. 
However, the duration of detected activations was shorter 

than that of activation t-maps for the innovations. Besides, 
the propagation from the preBötC toward caudal brain 
structures could not be detected.  

Data2 did not have enough time frames before the onset 
of respiratory activation because of the parameter setting for 
setting recording condition. Therefore the analysis cannot be 
applied to data2 under the same condition for data1. In order 
to solve this problem, the NNAR model was identified at 
the period sufficiently after the onset of respiration, i.e., 
from 1.98 to 3.96s (100 time frames), and then the period 
from -1.12 to 1.96s (155 time frames) was filtered. The 
activation t-maps for the imaging data and innovations are 
illustrated in Fig. 6 (a) and (c), respectively. The correlation 
map is shown in Fig. 6 (b). The analyses yielded similar 
results to those for data1. Furthermore, the time lag of the 
activation between preBötC and VRG could be clearly 
detected in the activation time map for the innovations (Fig.  
6 (c) in the time frames of 0s and 0.26s), which was not 
distinct in the correlation map (Fig. 6 (b)). 

 
Figure 5.  Representative time frames of temporal transition of the 
activation t–maps for the imaging data (a) and the innovations (c), and the 
correlation t–map with averaged imaging data across repetition (b). The 
C4VR output signal and time points corresponding to the time frames (d). 
The t-maps were thresholded of p<0.05 (corrected by the False Discovery 
Rate (FDR)) and a cluster extent of five pixels. 

 
Fig. 2 shows the temporal transition of the amplitude of 

innovations that was estimated in the simulated data. In the 
case of the data with single repetition, the line B will consist 
of only one innovation. Therefore, mean amplitudes of the 
innovations in the area A and on the line B cannot be 
statistically evaluated because of the insufficient number of 
samples. Nevertheless, our method is applicable if the line B 
is replaced with a time window in order to obtain sufficient 
number of samples, i.e., innovations, although there is a 
trade-off with respect to temporal resolution. In this study, 
we employed a sliding time window 

( / 2) ( / 2)t w t t w′ ′ ′− ≤ ≤ +  ( :  even integer)w  and the 
difference of mean values of the innovations within the 

sliding window ( ) ( )
2

1

1 1,
2 1 1

t

t t
t t tε−

=

− + ∑ v   and the period for 
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NNAR model identification 

( ) ( )
2

1

1 1,
2 1 1

t

t t
t t tε−

=

− + ∑ v ( )1 2t t t≤ ≤  was evaluated using t-

test. Then, we could obtain time dependent t-value with 
sifting time t′ . We empirically selected the width of sliding 
window at 30w = . Fig. 7 (b) shows activation t-maps for 
five representative time frames from a repetition in data1. 
The regions of pFRG and preBötC were successively 
detected and its spatio-temporal distribution pattern is 
similar to the Fig. 5 (c). Fig. 7 (a) displays activation t-maps 
for the raw imaging data instead of the innovations. The 
square of the detected regions was smaller than the t-maps 
from innovation time series. 

 

 
Figure 6.  Representative time frames of temporal transition of the 
activation t–maps for the imaging data (a) and the innovations (c), and the 
correlation t–map with averaged imaging data across repetition (b). The 
C4VR output signal and time points corresponding to the time frames (d). 
The t-maps were thresholded of p<0.05 (corrected by the False Discovery 
Rate (FDR)) and a cluster extent of five pixels. 

 
 

 
Figure 7.  Representative time frames of temporal transition of the 
activation t–maps for the imaging data (a) and the innovations (b) The 
C4VR output signal and time points corresponding to the time frames (c). 
The t-maps were thresholded of p<0.05 (corrected by the False Discovery 
Rate (FDR)) and a cluster extent of five pixels.  
 

Fig. 8 illustrates temporal fluctuation of the t-values the 
point A – D in Fig. 7 (a) and (b) where neural activations 
were clearly observed in the t-maps. At the point A, the 
fluctuations of the t-values from both raw data and 
innovations have similar pattern, and exceed the threshold 
level about 0.28sec later than the onset of inspiration. At the 
point B and D, only t-values from the innovation exceed 
threshold level. The neurons around this region start to 
activate about 0.1sec earlier and 0.8 sec later than the onset 
of inspiration respectively.  At the point C, the difference of 
t-values from the raw data and the innovation is remarkable. 
There can be seen clear neural activation about 0.1 sec after 
the onset of inspiration. 
 

V. DISCUSSION 
Using the ordinary cross-correlation analysis, which is 

equivalent to the time-lagged cross-correlation analysis with 
a restriction 0τ = , only one of the two respiratory rhythm 
generators, the preBötC, was detected with data2. The result 
can be seen in Fig. 9(b) in the time frame at 0.00s. The 
reason why the other respiratory rhythm generator was 
missed is that the activation of pFRG appeared earlier than 
the onset of the C4VR activity in the reference function. 
Therefore significant correlation was not found between 
pFRG and C4VR signals. In this situation, time-lagged 
cross-correlation analysis gave a solution. Oku, et al. [2] 
applied this method to the optical imaging data and reported 
an earlier respiratory activation in the pFRG (Fig. 6(b)).  

However, there are still several problems in the ordinary 
or time-lagged cross-correlation analysis. First, it does not 
consider dynamical properties of time series, but evaluates 
only morphological resemblance between the two time 
series. Therefore, only pixels whose temporal activity 
pattern has a similar shape to the reference function can be 
detected. 

 
Figure 8.  Fluctuation of the t-values from the raw data (broken line) and 
the innovations (solid line). The horizontal dotted line indicates threshold 
level t = 4.1950 (p<0.05) (corrected by the False Discovery Rate (FDR)) 

 

68Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-314-8

GLOBAL HEALTH 2013 : The Second International Conference on Global Health Challenges



Second, it has been applied only to averaged imaging 
data across the repetition of means. Any method has not 
been proposed that can be applied to each repetition nor 
statistically evaluated across the repetition of the 
measurement. Third, in the case of the time-lagged 
correlation analysis, the larger the time lag is, the shorter the 
overlapping length of the two time series becomes. Then, 
inaccuracy of the analysis will increase with larger time lags. 
Fourth, the absolute time point of the appearance of 
activations cannot be investigated by time-lagged cross-
correlation analysis. This is because the origin of time axis 
is defined arbitrarily. Therefore the correlation t-map of 
averaged imaging data and activation t-map for innovations 
cannot be compared on the common time axis. If the time 
point corresponding to the peak of C4VR signal is selected 
as the origin of time frame for the time-lagged cross-
correlation, the time point of the onset of activations in the 
correlation t-map and activation t-map will agree. 

Our method is free from the above-mentioned problems. 
Namely, our method can sensitively detect the spatio-
temporal emergence of activations through the investigation 
of the dynamic state transition and statistical evaluation 
across the repetition of the measurement. The earliest 
activation is localized in RVLM (the caudal part of pFRG), 
which can be seen typically with data2 (Fig. 6(c) in the time 
frame at -0.26 s). The activation extends bidirectionally to 
the rostral part of pFRG and to the preBötC region and 
travels to the high cervical spinal cord (Fig. 5(c) in the time 
frame at 0.64s, and Fig. 6(c) in the time frame at 0.26s). 

We conclude that our method can precisely detect the 
biological activation without employing additional 
information such as reference time series data, and the 
significance can be evaluated with statistical test values. 
Further, it can be generally used to spatio-temporal data, e.g., 
functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG), near infrared spectroscopy 
(NIRS).  
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