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Abstract--This paper describes a framework for automating 

road networks using GPS (Global Positioning Systems) 

track measurements. Through observation and experiments 

on the data, it is decided that automating road networks is 

done in a two-step process. The first step is to identify 

intersections of roads, following an intersection model that 

also identifies and holds tracking groups leading to the first 

legs of incident roads. The second step, road segments 

incident to intersection nodes will be iteratively discovered 

by moving probe lines perpendicular to the heading 

directions of the generated roads. Initial intersections are 

assessed through analysing turns of vehicle trajectories and 

characteristics pertinent to where roads meet.  Statistical 

techniques are used on tracks in relation to probe lines to 

exclude outliers and to locate median positions as vertices of 

roads. The method described in this paper exploits 

topological and geometric measures about neighbourhood 

of roads and applies machine learning techniques that 

iteratively compute optimized results for these measures.   

Keywords – vehicle GPS data tracking; automated road 

extraction; road network analysis; geospatial data mining and 

knowledge discovery; machine learning. 

I. INTRODUCTION 

The availability of ever increasing amount of GPS data 
has given rise to the needs for capabilities of processing 
large quantities of data and of discovering knowledge, 
patterns, or actionable information. One practical need is 
to find roads from GPS tracks representing trip 
trajectories of vehicles moving on roads or parking areas. 
The roads can serve as base maps for mapmaking, trip 
planning, guiding navigations, or as updates to existing 
map databases. Compared to traditional methods of 
collecting transportation data through field surveying or 
remotely sensed images, GPS tracks provide an 
inexpensive, significantly massive, and timely data 
sources for conventional and emerging applications 
requiring road networks. This paper proposes an 
algorithm that generates roads from GPS tracks which are 
chronological records, for example, of Uber vehicle trips. 
No prior knowledge of existing road databases is 
assumed. Fig. 1 illustrates a study area which contains a 
dataset of Uber GPS points captured around San 
Francisco area (left). The tracks formed by 
chronologically connecting GPS points belonging to same 
vehicle trips are shown at the right. 

 
 

Figure 1. Uber GPS points and tracks. 

As evident from the above figures, GPS points or 
connected tracks form clusters largely in linear shapes 
along roads in background images. Comparing the left 
and right maps in Fig. 1, one can see that “discrepancies” 
of data become a norm as arbitrary lines can be observed 
crossing the map. These lines are indeed caused by errors 
in GPS data. In addition, there are GPS tracks or sections 
of which that appear ambiguous on which roads they are 
supposed to adhere to. These ambiguities are noises 
among the largely clustered data. Furthermore, in the 
highly built-up downtown area where GPS location 
estimation becomes widely inaccurate, large number of 
spurious points have severely blurred street patterns. The 
errors and noises in GPS data collection presents 
additional challenges for devising a robust automated 
method of extracting roads. 

Problems of extracting roads from GPS tracks have 
been tackled ever since GPS became a popular addition to 
vehicles. The diversity of published methods reflects 
usages of the extracted road structures. One type of the 
objectives, refining and enriching existing maps for 
advanced trip planning and navigation, requires accurate 
road geometries, better connectivity, multi-lanes, and 
intersection structures [1][2]. The algorithms to this end 
usually depend on existing road networks; and have a 
prerequisite for a map matching [3][4] algorithm to find 
correspondence between GPS tracks and existing roads. 
Another type of goals is more general. It does not require 
the existence of road maps but attempts to extract roads 
from scratch on GPS tracks only [5]-[9]. This type of 
algorithms usually applies statistical and machine learning 
techniques, such as least squares, k-means or density-
based spatial clustering of applications with noise 
(DBSCAN), to discover road network patterns. The result 
roads can be served as base maps for new development 
areas or as timely updates to existing databases. Biagioni 
and Eriksson [10] made a comprehensive survey on 
earlier methods of map generation and pointed out the 
issue of lacking automated procedures for verifying and 
evaluating results. Ahmed et al [11] followed up with a 
book summarizing the published major algorithms on map 
construction and highlighted three types of algorithms, 
namely point clustering, incremental track insertion, and 
intersection linking. 

The method proposed in this paper constructs road 
networks, as planar graphs, by discovering linear and 
connectivity patterns from GPS tracking points. Upon 
observations and experiments on data, it is decided that 
the first step is to identify intersections of roads, based on 
an intersection model. In the second step, road segments 
incident to each intersection node will be iteratively 
discovered by progressively moving probe lines 
perpendicular to the heading directions of the trailing road 
segments. Statistical techniques are used on tracks in 
relation to probe lines to exclude outlier tracks and to 
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locate median positions as vertices of roads. The output is 
a dataset of road features with an average speed and a 
count indicating the number of vehicles travelling on each 
road. The method that determines intersection first is in 
line with the approach taken by Fathi and Krumm [12]. 
Unlike training a shape descriptor and time-exhaustively 
moving it around to detect intersections [12], the 
intersections in this paper are discovered by evaluating 
and clustering turns of trajectories, so the intersections are 
found analytically and are more likely corresponding to 
real world road junctions with stop signs. Furthermore, 
the validation process designed in this paper, in addition 
to determining final positions of intersections, 
accomplishes a discovery of similar tracks belonging to 
same roads incident to intersection nodes.  

Testing and evaluating the goodness of generated road 
networks faces a challenge to producing automated 
qualitative and quantitative assessment. Fortunately, 
recent development in feature matching [13] and the 

commercially available Detect Feature Changes ArcGIS® 
geoprocessing tool [14] can provide comprehensive 
comparisons with existing roads in databases. 

Section II will be devoted to identifying intersections. 
It is followed by Section III, analyzing track orientations 
bearing on which incident roads starts or ends. In Section 
IV, road segments, starting from an intersection will be 
extracted in a progressive fashion. Preliminary results of 
road networks will be presented in Section V and 
evaluated in Section VI.  Discussion and future work will 
conclude the paper. 

II. IDENTIFY INTERSECTIONS 

In a prime [15] planar graph, intersections are nodes at 
which road segments meet as edges. Real world roads 
projected on a plane can be viewed as crossing each other, 
not all of the crossing points are intersections, i.e., there 
are no stop signs or roads not crossing at the same 
elevation level. Computing all intersections between two 
tracks is not only expensive, as there are too many of 
them, but also inconclusive. The results have to be 
screened considering elevations and other factors. On the 
other hand, real world intersections can be identified 
through a number of statistically significant indications. 
For example, 1) vehicles must stop at the stop signs or red 
lights; 2) vehicles are able to turn left or right; 3) the 
degrees of turning angles formed by adjacent roads cannot 
be arbitrary; and 4) the number of incident roads unlikely 
exceeds 6. Considering these indications and performance 
effectiveness, it is decided in this research that road 
intersections will be sought after first. Apparently, the 
first indication is of temporal: it can be revealed by 
observing longer time laps between two consecutive 
points around an intersection. This indication can help 
determining intersections with no turning tracks. 
Establishing a reliable tolerance for the laps, however, 
needs to be further investigated. The other indications can 
be captured through metric measures. In this paper, 
intersections are primarily identified by traffic turns. 
 
A. Determine Turns at Intersections 

Turns in a trajectory, from one road to another, can be 
captured by turning angles. It is assumed most roads 
intersect by an angle near 90 degrees. If two legs of a 

trajectory before and after a turn form an angle, say 90 ± 
δ, where δ is a tolerance threshold, a turn point could be 
located. In the experiment taken by this research, we 
calculate turn points considering three turning cases 
shown in Fig. 2.  

 
 

Figure 2. Three cases determining turns. 

Additional screening processes are needed, however, 
to disqualify turns in parking lots, which are characterized 
by multiple turns within an area with short legs. It is 
desirable to identify the trajectory sections roaming 
around parking lots, and to exclude these GPS points from 
participating in extraction of roads. The accumulation of 
these GPS points may help to outline parking areas. 
Observation shows most of the parking lot GPS points are 
occurred at the beginning or end of trips.  
 
B. Find Clusters of Turns 

Intuitively, turns at the same intersections should be 
located near a real intersection center, which form a 
cluster. Finding these clusters, using a DBSCAN, involves 
building a spatial index to facilitate searches and 
expanding neighboring turns from any seeds. The prime 
criteria for stopping expanding a cluster is the distance 
between any two neighboring turn points. Additional 
criteria may consider the shapes of clusters which, ideally, 
are round and limited in sizes. Compact clusters, round 
and gathered with large numbers of turns, are excellent 
candidates for computing intersection centers.  

 
 

Figure 3. Clusters of turn points. 

Fig. 3a illustrates a distribution of turn points (black 
dots) within a regular grid street area. Referred to the 
background map image, most intersections are 
superimposed with densely clustered turn points. At the 
low traffic volume areas, only one or two turns can be 
identified near intersections. The clusters with one or two 
turn point will also be considered for the reason that we 
don’t wish to miss an intersection. This needed relaxation 
brings in a lot of dubious clusters. As shown in Fig. 3b, 
there is a large number of loosely distributed turn points 
in the urban core area where GPS points are scattered, 
mostly due to the street canyon effect. Verification is a 
must to exclude false clusters. 

III. VALIDATE CLUSTERS AND COMPUTE 

INTERSECTIONS 

Turn point clusters are intended for computing centers 
of road intersections. Validating turn clusters will largely 
rely on this purpose, by examining all nearby tracks 
passing through or turning at a cluster center. This process 
will also identify and group tracks that are statistically 

b. Turn clusters in urban core area  a. Turn clusters in grid-like street area 
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appropriate to form coherent clusters for roads which are, 
regardless outgoing or incoming, incident to the cluster 
center, i.e., the intersect. Fig. 4 illustrates turns that might 
or might not lead to intersections.  

 
 

Figure 4. Intersection model. 

When trajectories of multiple tracks form one of the 
configurations in cases a, b, and c, an intersection will be 
validated. Cases in d will not be assessed as intersections 
at this time but will be recognized as fork-like splits later 
in extracting roads. Fork-like splits will be dynamically 
treated as intersection nodes. The 2-way intersection in 
case c qualifies only when it constitutes a near 90-degree 
turn. Otherwise it is just like a curve as one in cases e. 

A. Collect Tracks Involved Around an Intersect 

Validating a cluster uses a square box centered at its 
mass center to clip all tracks intersecting the box. The size 
of the box, say 60x60 m2, is experimented to cover the 
entire intersection area. The clipped lines, mostly straight 
some with a vertex within the box, will be served as the 
basis for the analysis (Fig. 5), as described below. 

For each clipped straight or near straight line, a 
projection from the box center is made. If the foot is in the 
box, the line will be split into two oppositely directed 
lines, as shown in the left box. For a non-straight line, 
there must be a turning point and the turning angle is near 
90 degrees. The turning point will be used to extend the 
two sections from both ends to meet the box border. The 
two thus formed straight lines will start from the extended 
border points, shown in the middle box. The extension 
will be needed later for computing intersections. As is 
shown in the right box, without the extension, (dashed 
parts), some tracks will be missed for intersecting and the 
initial mass center cannot be accurately located. 

 
 

Figure 5. Clipping boxes for intersection analysis. 

B. Group Tracks by Orientation 

Orientations of straight lines obtained from above will 
be classified for grouping similar tracks. We use an 8-
sector circle to classify track clips (Fig. 6), i.e., an 8-
means clustering. The east axis is on degree 0 and angles 
increases anticlockwise. Each sector has a range of 45 
degrees to hold orientations falling in. For example, the 
first group is the shaded sector. It holds orientations from 
-22.5 to 22.5 degrees, as (-22.5, 22.5]. Orientation values 
in the range of (22.5, 45] will fall into the second group, 
and so forth. 

 
 

Figure 6. An 8-sector circle for clustering orientations. 

After assigning clipped tracks into sectors based on 
their orientations, some groups may have large number of 
occurrence and some may end up empty. Empty groups 
will be removed. Mean values and squared errors of each 
group orientations are calculated. The template circle will 
then be rotated an interval of 7.5 degrees anticlockwise 
from its initial sector division, up to 3 times, which brings 
the first group ranges to be (-15.0, 30.0], (-7.5, 37.5], and 
(0, 45.0], respectively. After each rotation, clipped tracks 
will be re-assigned and the mean and squared errors re-
calculated. The new error values will be compared with 
the previously saved ones. If they are not better, the 
rotation is stopped. Experiment shows that the optimized 
results are obtained after 1 or 2 iterations. 

C. Remove Unlikely Incident Tracks 

Track clusters with three or more groups will be 
further validated. False track groups, that would lead to 
plausible incident roads, need to be eliminated. Given the 
fact that we use an 8-means clustering method, at most 8 
cluster groups may be initially produced. Fig. 7 shows 8 
initially grouped tracks by orientation (left) and the final 
groups remained after removal of false groups (right). One 
distinguished characteristic about intersections is that 
most of the times, there is at least one pair of track groups 
(like Groups 1 and 6) would lead to through traffic roads 
before and after the intersection. Furthermore, straight-
through tracks usually form larger groups. This 
observation is useful in eliminating smaller groups that 
are slant to through-pairs. The analysis and reasoning 
below illustrate the removal of plausible groups. 

 
  

Figure 7. Eliminating false track groups. 

Group 3 can be immediately removed due to lacking 
confidence for a determination of an incident road from a 
single track. Groups 2 and 5, slanting to a through-pair, 
are removed because they are likely the shortcut tracks 
missing a GPS point near the neighboring intersections. 
This hint can be verified by looking at the rightness of the 
sum of the turning angles at both ends of a slanting track 
segment. Group 4 is removed for it does not have an 
agreeable orientation. Group 7 will be removed because it 
slants to the through-pair with an angle smaller than 30 
degrees. Of the remaining groups, the lowest track in 
Group 1 will be removed because its orientation is an 
outlier compared with the group mean. The left track in 
Group 8 is removed because its intersect position on the 
square box is an outlier. The right track in Group 8 is 
excluded because both its orientation and intersect 
position are outliers to respective means of the group. 

The clustering that ends up with only two groups will 
not result in an intersection, if the difference of their mean 
orientations is not an anger near 90 degrees. Two track 
clusters forming a shallow angle are likely trajectories that 
traverse through a circular curve. They will not be 
considered further. 

1 
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a. 4-way b. 3-way 

c. 2-way d. fork split e. curves 
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D. Adjust Intersection Centre with Validated Tracks 

After removing plausible track groups, intersections 
are left with mostly 3-way and 4-way traffic routes. Some 
5-way intersections exist, but 6-way intersections are rare 
the relationship of whose traffic routes usually need to be 
sorted out by additional analysis and reasoning. The final 
intersection point will be computed with the validated 
tracks. Fig. 8 shows the final intersections (red dots) on 
top of turn points (black dots). 

 
 

Figure 8. Verified intersections shown as red dots. 

IV. EXTRACT ROADS 

With a successful establishment of road intersections, 
extracting roads becomes relatively easier and controlled. 
Recall that associated with each intersection node are 
emitting orientations of incident roads which indicate the 
directions where the roads extend. All extraction will do is 
to use probe lines perpendicular to a road orientation and 
to progressively discover concentrations of tracks likely 
traversing on the road. Once a concentration is located, 
calculating and analyzing intersections of the tracks on the 
probe line, eliminating tracks unlikely traversing the road, 
and then taking the mean intersection point as the next 
vertex. New probe lines will be progressively moving 
ahead based on what has been discovered previously. A 
road will be terminated once another intersection node is 
discovered or no proper tracks can be found by the last 
probe line. This section describes what need to be 
considered in each step. 

A. Sort Road Initial Segments by Track Frequencies 

Firstly, the result from Section III.C, which are all 
intersection nodes and track groups organized together by 
similar orientations, will be sorted in descending order by 
the number of tracks in each group. Utilizing a priority 
queue holding the sorted track groups, each element of the 
queue contains the node ID, intersection point, the 
orientation to extend the first segment of a road, and the 
count of tracks in the group. The reason for earlier 
extracting roads from more heavily concentrated tracks is, 
the more tracks found traversing on a road, likely the 
more accurately the road can be extracted. The earlier 
accurate knowledge can be discovered, the easier 
successive analysis on insufficient data can be made. 
Since heavily traveled roads likely represent major roads 
or freeways, early extraction of them can help to control 
quality of a hierarchical road network. 

B. Probe and Compute Road Vertices 

Iteratively popping the top element from the priority 
queue, we will have the node location as the first vertex of 
a working road, the initial orientation bearing on which 

the first road segment will be proposed, and a list of track 
IDs passing the intersection. The initially proposed second 
vertex is a polar point whose coordinates are determined 
by an offset distance from the first vertex and the bearing 
orientation. To finally determine the first road segment, a 
probe line will be utilized. The probe line is centered at 
the polar point, has the length of a specified road width, 
and is perpendicular to the bearing orientation of the 
proposed road segment (Fig. 9). Intersections of the probe 
line with the known tracks associated with the node will 
be computed. From the intersections, the second vertex is 
obtained by an k-means clustering. The previous and the 
current vertices forms a road segment, which provides an 
updated orientation for the next probe line. Retained for a 
new probing are the track IDs and their intersection points 
with the previous probe line. Fig. 9 illustrates the terms of 
entities used in this section, and their relationships.  

Unlike the initial probing where the tracks are already 
known to a road branch associated with the intersection 
node, spatial searches will be needed for the second probe 
line and onwards to find intersecting tracks. It is obvious 
that there could be tracks involved in previous probing 
will no longer be found (fading away) and tracks not seen 
previously be discovered (emerging). It is also easy to 
understand that not all intersected tracks should be used 
for computing a new vertex. Erroneous tracks should be 
identified and be eliminated. This research uses the 
following clues to identify erroneous tracks: 

• Firstly, most of the intersected tracks should be 
known and are continuous from the previous probing. 
For each known track, computing its moving 
orientation from previously retained and current 
intersections, and comparing it with the extended 
orientation of the previously extracted road segment, 
if the orientation difference is too big, say greater 
than 60 degrees, the track will not be used. 

• Secondly, newly found tracks will be more carefully 
inspected for use, considering their orientations and 
occurrence frequencies. If an emerging track does not 
satisfy orientation requirement but its intersection 
falls in the probe intersect point range, its occurrence 
frequency will be increased so it might be admitted 
for use in next probing.  

This iterative process continues until an intersection node 
is found on the way, or a probing line catches no or just 
one track. In the case that an intersection is met, the road 
will be terminated there. In the other case, the road may 
end dangling, or additional analysis is needed for 
detecting possible turns that are missed in Section II, to be 
described next.  

 
 

Figure 9. Terms and concept involved in probe lines. 
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C. Detect Turns 

In the case that a probe line does not find any proper 
intersections, it is possible that the tracks have sharp turns, 
like what is shown in Fig. 10a. The task here is to find a 
turning point and an updated moving orientation after the 
turn, like what is shown in Fig. 10b. The turning point can 
be found by examining one or two vertices of a track near 
the last probe line intersection, and two segments prior to 
and after the vertices. If the angle formed by the two 
segments is near 90 degrees, a turn and changing 
orientation are computed. Doing so for all tracks retained 
in the last probing and taking the means of both the 
turning points and the post-turn orientations.  

 
 

Figure 10. Finding a turn and modifying probing orientation. 

D. Reach an Intersection Node 

Every time when a new polar point is obtained to start 
a probing, a search in the vicinity of the point will be 
made to check whether there is a proper intersection node 
to snap onto. For each node found, a verification process 
will be carried out to make sure the bearing orientation of 
the incoming road matches the orientation of a track group 
associated with the node. If no such a match can be found, 
a decision needs to be made whether to keep or discard 
the generated road. In the experiment of the paper, the 
number of tracks contributed to the last road segment will 
be the key factor for the decision. If the number is greater 
than 20, the road will snap onto the node; if less than 10, 
the road will be discarded; otherwise, the road will end 
and dangle at the last vertex. The verification has been 
proven especially useful in areas where GPS tracks are 
messed up to avoid erratically generated lines. 

Once a snapping node is determined, the node ID and 
the orientation corresponding to the track group will be 
marked as processed, so the same road will be not be 
extracted again from the other end. 

E. Split or Merge 

As probe lines move forward, a fork-like split might 
be encountered (Fig. 11) when the range of intersections 
on the probe line becomes wider (left), or some of the 
track IDs suddenly missed from intersecting (right). 
Recall in Section III that fork-like shallow turns do not 
produce an intersection node, which will be created here. 
To find the split node, the probe line can be extended long 
enough to intersect the missing tracks. It is followed by 
finding two intersection clusters and their median 
positions on the probe line. With the knowledge of two 
track groups, a mean orientation for each group can be 
obtained. Two lines each passing a cluster center and 
bearing respective orientation can be used to find the 
intersection node. A final adjustment might be needed to 

make sure the node is on the heading direction of the last 
segment of the road extracted so far. After this, the current 
road will be terminated at the new node, which will be 
associated with the two splitting track groups and added to 
the priority queue of tracking groups. 

 
 

Figure 11. Detect splits by checking changes on probe. 

Similarly, a merge node could be discovered when a 
range of intersection point on a probe line is shifted with 
new tracks appeared. The new IDs represent the other 
group of tracks involved in the merge. To find the 
intersection node, shallow turning vertices between the 
current and the previous probe lines can be found from 
which the merge intersection can be determined. 

V. EXPERIMENT RESULT 

Based on the algorithm, a geoprocessing tool to 
generate road networks from GPS tracking points has 

been prototyped using the ArcGIS® Pro platform. 
Applying the prototype tool, experiment on Uber GPS 
tracking data in San Francisco and surrounding suburb has 
been carried out. The dataset contains over 1 million GPS 
points covering urban core area with high rise buildings, 
streets of regular grids, and sparsely travelled country 
roads. It took about 30 minutes running on a desktop PC 
to create a road network with identified intersections. The 
result is displayed on top of a background image, shown 
in Fig. 12 where input tracks are in gray, the generated 
roads in purple, and the intersection nodes in red.  

 
 

Figure 12. Road Network of SF area from GPS Points. 

Fig. 13-15 illustrate zoomed-in images of the generated 
roads and intersections in grid-street, irregular road, and 
urban core areas.  

 
 

Figure 13. Generated roads of regular grids. 

a. A new probe line 

intersects no tracks 

b. Detect turning point and 

determine new orientation 
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Figure 14. Generated irregular roads. 

 
 

Figure 15. Generated roads around urban core. 

It is easy to see that the proposed method works better 
when input tracks present clear linear threads and poor 
when there are no obvious patterns. 

VI. THE EVALUATION METHOD 

Evaluating the goodness of roads generated from GPS 
tracks, quantitatively, is challenging in that there has been 
no standard automated workflows to carry out the task. 
The challenge is aggravated due to the fact that tracking 
data is simply a snapshot of all possible travel patterns. 
Less travelled roads may not have any tracking records in 
the snapshot. In this paper, we explore a framework of 
evaluation and database updates by considering temporal 
aspects of GPS datasets. The commercially available GIS 

tool, Detect Feature Changes (DFC), in ArcGIS® Pro is 
utilized as a start for the framework. Based on a feature 
matching algorithm, the DFC tool takes in an existing 
road map as the base, a new road map as the update, a 
search distance and a change tolerance. The goal is: for 
each road in update dataset, find the correspondent road in 
base. If there is a match and the update road is within the 
tolerance buffer of the base road, the change type of the 
update will be NC – no change. If not within the buffer, or 
there is a 1:m / m:1 relationship, the change type would be 
S – spatial change. If an update finds no match, the type 
would be N – new. Any base roads with no matches in 
update would have the change type D – to delete. Let’s 
use a map section (Fig. 16) to illustrate the evaluation 
process. 

 
 

Figure 16. Existing streets (brown) on topographic image (gray). 

Fig. 16 shows the existing road map in brown, on top 
of a topographical image (gray) for visual reference. The 
new roads (black) and the intersections (red dots) 
generated by the method presented in this paper are 
displayed in Fig. 17. Also displayed in Fig. 17 are GPS 
tracks (gray) and the brown base map for comparison.  

 
 

Figure 17. Automated roads and intersections. 

 Now running the DFC tool with the new and base, 
giving 10 meters and 5 meters for search distance and 
change tolerance, respectively. The result is a feature 
layer symbolized with change types (Fig. 18).  

 
 

Figure 18. Symbolized DFC output layer. 

The records holding the DFC output features are 
shown in Tab. 1. The table and the layer map provide 
interactive ways to inspect DFC result.  

TABLE I.  DFC OUTPUT, TOPOLOGICAL CHANGES HIGHLIGHTED 

 
 
 

For example, one can highlight features with change 
type S and 0s under LEN_PCT, meaning 0 percent 
geometry change. the highlighted features will be 
displayed in the map (Fig. 19). By looking at the map 
result, it becomes obvious that these highlighted new 
roads match 2 or 3 features in base. The reason for the 
1:m relationship is that there are no intersections 
identified with the tracks. At this time, the inspector could 
modify the change type to NC. Similarly, the inspector 
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can examine the features with D type (brown roads in Fig. 
19) and would find that there are no GPS tracks recorded 
on those roads during the time. Upon verification, they 
would not be counted as errors.  

 
 

Figure 19. Features with topological changes. 

After all suspected features are inspected, we can 
summarize the quality assessment for the map section: Of 
the 125 roads generated, all match corresponding ones in 
base. Furthermore, 71 roads are within 5 meters similar to 
their base peers, and all, except one, features with the S 
type are within 7 meters of their peers. The finding is 
encouraging for areas with clear patterns.  

Other areas can be inspected based on the DFC result. 
It can be expected that there would be a lot of D type 
features that do not have roads generated from this 
snapshot. They might be available with additional 
tracking data taking from various other time periods. 
Automation could be enhanced to reduce manual 
inspection. For example, for each DFC feature with D 
change type, a proximity search can be made to verify that 
there are indeed no tracking data for the missing roads. 

VII. CONCLUSION AND FUTURE WORK 

The proposed method constructed road networks from 
scratch on input GPS tracking points by paying premier 
attention to analyzing road intersection nodes. The quality 
of nodes and roads produced is largely dependent on the 
quality of GPS tracks. The method identifies and excludes 
erroneous or outlier tracks by analyzing temporal gaps 
and excessive turns within a limited area, and by 
combining the use of spatial reasoning, statistical, and 
machine learning techniques.  

Future work includes the following considerations: 

• Paying attention to implementation details to learn 
and refine parameter values for better result; 

• Adding algorithms to generate ramps, possibly 
with supervised ramp patterns and learning; 

• Refining k-means clustering on the intersecting 
points along probe lines to identify and generate 
multiple lanes;  

• Researching on quantitative and qualitative  
assessment methodology using feature matching 
tools and considering dynamic and real-time 
updates; and 

• Developing a post processing tool to detect and if 
possible, to correct errors in the output road 
networks to prepare them ready for use in routing 
and network analysis.  
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