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Abstract—To identify sources of pollution and predict future 
pollution events, the Environmental Protection 
Administration of Taiwan has deployed dense sensor 
networks in industrial districts. In face of overwhelming real-
time data collected from the Internet of Things (IoT) 
applications for smart environmental sensing, no standard 
procedure based on the space-time statistical methods, such 
as Getis-Ord G* or Moran's I exist for defining and analyzing 
pollution events. We used raw data generated from 
microsensors as the data source, adopted spatial statistics to 
perform hotspot analysis, then define the event base on the 
result of statistical hypothesis and grid connectivity. This 
approach was effective in distinguishing independent 
pollution events when two or more events occurred 
concurrently in the same region. Finally, spatial and temporal 
descriptive statistical analysis was performed on the targeted 
pollution events, including the identity of pollution events 
through spatial-temporal hotspot analysis integrated with 
data visualization. 
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I.  INTRODUCTION 
The media coverage and the government's 

environmental policies raised environmental awareness 
among the general population and increased attention to air 
pollution. Excessive levels of ozone and fine particulate 
matter which less than 2.5 micrometers in diameter in the 
air, known as “PM2.5”, pose a considerable threat to human 
health. Air quality has become a crucial indicator of 
people’s quality of life, and small-scale air pollution 
monitoring was seen as increasing demand. In Taiwan, air 
quality monitoring is typically performed by examining 
data from the network of national air quality monitor 
stations. However, the limitations of micro-sensors mean 
that air quality determined using a single datum cannot be 
used as evidence for inspection. Therefore, this study 
organized sensor data into clusters and adopted spatial-
temporal statistics to solve problems concerning the 
processing of microsensor data; in addition, data mining 
was employed to identify trends in the data clusters.  Many 
industrial districts of various cities in Taiwan have begun to 
establish microsensor networks embedded in streetlights, 
which in the future could serve as a source of real-time 
monitoring for emerging air pollutions or air quality 
monitoring. Specifically, data regarding local weather 

dynamics are integrated into microsensor networks, which 
can be used not only for tracing but also for predicting short-
term pollution events to rapidly identify pollution sources. 

This paper is organized as follows: Section II introduces 
the research methods, including statistical methods and the 
weight matrix we adopted. Section III presents the results. 
Section IV concludes the paper.  

II. RESEARCH METHODS 
Studies have reached no consensus on the definitions of 

pollution clusters or events, and spatial analysis has been a 
bottleneck in Statistics. Since the 1990s, in addition to 
national air quality monitoring systems, which are 77 
stations in Taiwan, newly deployed microsensors (more 
3,000) have monitored PM2.5 as an indicator of pollution 
caused by suspended particulates, volatile organic 
compounds (VOCs), and black carbons emitted from 
factories. For various pollutants in the atmosphere, such as 
the above-mentioned PM2.5 and VOCs, there are also 
nitrogen oxides (NOx), sulfides (SO2). These pollutants 
have different production factors and have different effects 
on human health. Therefore, the sources of these substances 
are often discussed in previous researches. 

Many studies are discussing the relationship between 
pollution concentrations and other factors, such as the 
relationship between different human activities and various 
pollutant concentrations, the covariation between different 
pollutants [1], and the relationship between weather factors 
and various pollutants [2]. In the studies mentioned above, 
researchers describe the pollution event along the 
concentration of contaminants, duration, return period, etc. 
They develop the follow-up study on the characteristics of 
the above pollutants. Additionally, the EU government also 
controls the contaminants by the average concentration over 
a period of time as standards [3]. However, spatial 
autocorrelation has not been widely used in the above 
studies.  Therefore, there is still a lack of useful indicators 
for the accumulation of pollutants caused by small-scale 
human activities in industrial parks, helping researchers to 
identify the development, concentration, and diffusion of 
pollution clusters in the study area.  

This study performed a hotspot analysis based on spatial 
statistics approaches. However, a small industrial park in 
Taiwan is typically 10 – 15 km#; the occurrence of a severe 
pollution event easily affects all the devices in the overall 
industrial park at the same time, so only considering the 
spatial dimension is insufficient because it will lack relative 
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reference values. Therefore, we must also incorporate the 
temporal dimension to determine the temporal continuity 
and trend of the events hotspots. That implies we should 
conduct a spatial-temporal extended version of spatial 
autocorrelation instead of pure spatial autocorrelation to 
prove the assumption [4].  

First, data aggregation was conducted to reduce the 
time complexity involved in data preprocessing. Second, 
using “Global Moran’s I” (1) to confirm whether there is a 
significant autocorrelation on the concentrations of fine 
particulate matter through time and space [5]. Third, local 
spatial statistical techniques such as “Local Getis-Ord Gi*” 
(2)  or “Local Moran’s I” were employed to determine the 
distribution of cold spots and hot spots. [5, 6] 

𝐼 = 	
∑ ∑ ()*+)+*/-.*)

∑ +)
//	0)

	  ( 1 ) 

𝐺2∗ = 	
∑ ()*4**
∑ 4**

    ( 2 ) 

Both global and local spatial autocorrelation methods 
need to define a weight matrix 𝑤26 to point out the degree 
of dependency between every two elements. Our weight 
matrix is based on the spatial-temporal neighbors and 
generated by the three-dimensional “Queen” rule (Fig.1) as 
in [7]. The identified spatial-temporal hotspots served as 
the basis for defining pollution events. Finally, the 
pollution events were analyzed using descriptive statistics, 
and the results were applied for subsequent analysis of 
pollution trends and patterns.  

 

 

III. EMPIRICAL DATA DISCUSSION 
The study examined the Dafa Industrial District in 

Kaohsiung City, a municipality in Taiwan known for its 
heavy industry. The industrial district is 374 ha with a 
trapezoid shape. Sensors in the region were deployed every 
200 m, with a total of 150 sensors. The Sensors placed in 
the Dafa Industrial District began operations in September 
2018 and encompasses nearly 700 factories that mostly 
provide services to the light industry and mixed metal-
based heavy industry (see Fig. 2).  

The raw data were displayed on the leaflet online map 
which we developed every 5 minutes. During the first 
month after sensor installation, we found the sensor 
readings continually increased in the evenings, and the 
increases were mostly in the southern and northwestern 
part of the industrial district. From this data, the locations 

of pollution sources were identified manually according to 
factory locations and wind directions.  

 

 
Figure 2. Deployment of sensors in the study area. 

 
In this paper, we further propose an automated hot spot 

identification program. The implementation details and 
parameters are set as follows: 

First, we number the grids according to the spatial-
temporal locations of the sensors, so that we created 200 × 
200 meters grids on the XY-plane, with units of time is 
equal to 10 minutes.  Then, we use eight days of sensor data, 
the temporal dimensions of space-time cubes were divided 
into 1,110 grids. Therefore, all data be divided into 
approximately 69,709 data cubes.  

Second, we calculate grid neighbors. Some modules of 
python like GeoPandas, Pandas, and PySal were used to 
obtain the adjacent 5 × 3 × 3 - 1 spatial-temporal neighbors 
(excluding the grid itself), and produce a weight matrix 
based on the spatial-temporal neighbors we calculated 
above.  

Third, Spatial-temporal autocorrelation was calculated 
using the spatial-temporal weight matrix and sensor data.  
The “Global Moran’s I” is 0.491067 (values of I usually 
range from −1 to 1). The result indicates there is a positive 
autocorrelation. In this step, we performed a hypothesis 
testing using the Monte Carlo method, and the one-tailed p 
is 0.000; therefore, H0 (random distribution) was rejected, 
indicating that significant clustering existed. The result 
implies that we can use the local autocorrelation to identify 
when and where the hot spot and cold spot appear and 
disappear. 

Fourth, we conduct local autocorrelation analysis. The 
cold spots and hot spots were verified using Getis-Ord’s Gi*. 
The Gi* statistics calculated by statistical software are 
usually converted into Z-scores, which indicates the level of 
significance and thus could be explained easily.  

Finally, we develop a new visualization method 
combines Z-score statistics, three-dimensional contour 
plots, and the concept of space-time cubes to present the 
significance level of local autocorrelation across space and 
time. With such a tool, let us initially observe whether we 
proposed is better than the traditional spatial autocorrelation. 

 
  

Figure 1. Data processing and testing methods. 
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TABLE I.  COMPARISON OF RESEARCH METHODS 

 Experimental 
group 1* 

Experimental 
group 2 

Control 
group 1 

Control 
group 2 

Spatial-
temporal 
interpolation 

No Yes No Yes 

Definition of 
neighbors 

Spatially and temporally  
adjacent 

Only spatially 
adjacent 

Calculation 
results of 
spatial-
temporal Gi* 

Non-
interpolation 

Data pre-
interpolation 

Non-
interpola
tion 

Data 
pre-
interpola
tion 

1. Temporal (continuous) 
clustering can be detected. 

1.Temporal 
clustering cannot be 
detected. 

2. Nonexistent edge hotspots can 
be estimated through spatial-
temporal interpolation.  

2. When the polluted 
area was large, the 
hotspots area shrank.   

*Research Recommendations 
 

Table 1  shows the comparison between traditional pure 
spatial autocorrelation which was used as the control group 
(i.e., the spatial Gi*) and spatial-temporal Gi* which was 
used as the experimental group.  

For the control groups, the results show that although 
the hotspots mostly exhibited a continuous distribution, 
they were shaking (see Fig 3. (a)). That is because the Gi* 
statistics of each time were calculated only according to the 
values in the corresponding time slice. Moreover, when the 
raw values of the sensors throughout the study area increase 
at the same time, the hotspots in the space-time contour plot 
will become scattered, and each of them will gradually 
shrink. That is inconsistent with the considerable increase 
observed in reality.  

As for whether we should interpolate the missing values 
before the hotspot analysis, we found if the grids are located 
at the perimeter of the study site, the lack of neighbors easily 
resulted in the appearance of false hotspots at the place. 
That is because extrapolation is typically less accurate than 
interpolation. 

Compared with control groups, spatial-temporal 
autocorrelation defines the adjacent space and time as 
spatial-temporal neighbors. This method was found to 
generate satisfactory calculation results, and the identified 
hotspot areas (e.g., Z-Scores > 1.6) continuous changes with 
the development of the events could also be presented 
clearly (see Fig 3. (b)). As a result, we chose Experimental 
group 1 to do the final analysis and discussion.  

 

 
Figure 3. (a) Space-time contour plots for the control groups. (left: non-
intepolation; right: intepolation) (b) Space-time contour plots for our 
work. (left: non-intepolation; right: intepolation) 

 
Hotspot maps were illustrated based on the central 

points of pollution events and standard distance. Numerous 
pollution events were observed to be clustered and 
overlapping in the southeastern region of the study site. This 
implicated that major pollution sources were located in that 
region and that therefore further inspection was required 
(see Fig. 4). 

 

  
Figure 4. Overlaying all hotspot maps of the study site. 
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     To further demonstrate the potential of using this 
method to identify events, we first give each event some 
corresponding descriptive statistics, make simple chart 
plots, and try to explain the results. In Fig. 5 (a), each point 
denotes a cluster of individual pollution values. The x-axis 
indicates the pollution hotspot duration, and the y-axis 
indicates the standard distance of each pollution events, 
representing the level of pollution transmission in space. 
The color of each point indicates the maximum value of the 
Gi* (Z-score) of the hotspots. In Fig. 5 (b), each point 
denotes a cluster of individual pollution values. The x-axis 
indicates the pollution hotspot duration. The y-axis 
indicates the moving distance, which is the distance 
between the first geometric center of the statistical unit 
serving as the hotspot and the last geometric center of the 
statistical unit that was identified as the hotspot, namely the 
amount of cluster movement. The color of each point 
indicates the maximum value of the Gi* (Z-score) of the 
hotspots. 

  

 

Figure 5. (a) Pollution hotspot duration versus range of the pollution event.  
(b) Pollution hotspot duration versus cluster movement distance. 

 
In Fig. 5 (a), the data were divided into four quadrants 

as follows: The first quadrant denotes large-scale pollution 
events with long durations and large affected areas. 
Compared with small-scale pollution events, these large-
scale pollution events had higher maximal Gi* value; that 
is, the raw data were highly spatial-temporal autocorrelated. 
The second quadrant comprises pollution events with short 
durations but large affected areas. Wind direction and 
speed were inferred as the causes of pollution transmission 
within a region. The third quadrant contains local events 

such as small-scale emission events, which featured short 
durations and low levels of transmission. The fourth 
quadrant indicates events featuring long pollution 
durations but short standard distances. This type of event 
was not included in our result. 

In Fig. 5 (b), the data were divided into four quadrants 
as follows: The first quadrant represents events featuring 
long durations and vast moving distances of pollution 
cluster centers. In this study, this type of event had a 
relatively high maximum value of Gi* (i.e., the sensor data 
were highly spatial-temporal autocorrelated). The second 
quadrant contains pollution events with short durations and 
large moving distances, which were possibly caused by 
large wind speeds. The third quadrant denotes 
instantaneous events featuring short pollution durations 
and small moving distances, including short-term 
emissions or equipment failure. The fourth quadrant 
comprises pollution events with long durations and short 
moving distances. This type of event had a relatively high 
Gi* value, representing the continuously accumulating 
pollution.  

IV. CONCLUSION  
This study interpolated data points on a 3D plane, and 

the time dimension was considered to perform raw data 
interpolation and obtain experimental group 1 (see Fig 6.). 
When localized pollution became a pollution event for the 
entire industrial district, spatial-temporal Gi* continued to 
increase, which is consistent with the distribution of the 
actual data. Our work demonstrates the feasibility of using 
spatial-temporal Gi* to examine this type of data. The 
present study observed spatial Gi* (3D spatial contour plot) 
and found that the hotspot of each time interval was 
discontinuous, thus generating the vibration phenomenon, 
possibly because the statistics for each time section were 
calculated separately. On the other hand, a 3D spatial-
temporal contour plot was drawn to present the results, 
providing greater continuity to help researchers understand 
the development of pollution events. 

 
Figure 6. Identification of pollution events through spatial-temporal 
hotspot analysis integrated with visualized display method. 
 

Moreover, the space-time kernel density was not used 
because (1) the focus was on clustered sensor data, rather 
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than the number of clustered sensors, and (2) previous 
studies have often used Gi* to identify hotspots. Therefore, 
it was most critical to locate the spatial-temporal range. 

Continuous transmission of pollutant data in industrial 
districts requires automatic spatial-temporal monitoring to 
provide instant warnings regarding excess pollution. In 
future studies, we will integrate the heterogeneous data of 
environmental dynamics as the basis for early signs 
regarding the dispersion of pollutants. Weather dynamics, 
especially wind-related information, should also be 
included. Research limitations of the current study included 
a lack of information about the wind patterns in the 
industrial district and a lack of building models. Thus, 
models were fixed by using wind direction and wind speed 
data from the monitoring station of the Central Weather 
Bureau to the industrial district. 
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