
An Approach for Assessing Array DBMSs for Geospatial Raster Data

Janne Kovanen∗, Ville Mäkinen† and Tapani Sarjakoski‡
Finnish Geospatial Research Institute,

National Land Survey of Finland
Email: ∗janne.kovanen@iki.fi, †ville.p.makinen@nls.fi, ‡tapani.sarjakoski@nls.fi

Abstract—The increasing quantity and use of high-resolution
raster data has put its management in the forefront of develop-
ment. In this paper, we describe an approach that can be used to
assess the capabilities of Array Database Management Systems
(DBMSs) regarding the management and processing of raster
data. The paper presents a framework that can be used to com-
pare the functionalities of Array DBMSs and benchmark them.
The main feature of the framework is assessing functionality
using both targeted test cases and benchmarking. This assessment
is followed by leveraging the gained experiences to assess non-
functionality using characteristics from existing quality models.
The framework can be extended by further DBMSs, benchmarks
and additional hardware resources. The assessment was first
implemented for the community editions of SciDB and rasdaman.
The study presents some key initial observations regarding the
particular Array DBMSs.

Keywords–array DBMS; software assessment; benchmarking;
SciDB; rasdaman.

I. INTRODUCTION
Array Database Management Systems (DBMSs) have been

proposed as a solution for data that naturally – or with a
meagre conversion – fits on a regular multi-dimensional grid.
Their significance has especially been noticed in the era of the
Big Data phenomenon. Climate data, high-resolution rasters
and sensor time series represent data that may suit an array
data model. For example, the pixels of a raster can be mapped
to cells in the array, and the four axes of climate data can
correspond to a geographic location, altitude and time.

Array-oriented management solutions have been available
for several decades; for instance, the development of Hierar-
chical Data Format (HDF) [1] and NetCDF [2] data formats
and libraries started in the late 1980s. Their contemporary
implementations, however, only conceptually resemble their
earliest versions.

In addition to the aforementioned machine-independent
data formats, SciDB [3], rasdaman [4], Ophidia [5] and TileDB
[6] represent modern, domain-independent solutions. Domain-
specificity may be gained by using associated components
(e.g., Petascope [7] for rasdaman or H5IM for HDF5), third-
party interface layers (e.g., scidb4geo [8] for SciDB) or with
application-specific solutions. An alternative to domain inde-
pendence is to use ready-made raster-centric solutions, like
PostGIS’s raster type [9] or the GeoRaster feature of Oracle
Spatial and Graph [10].

A. Previous work
The diversity of prospective systems makes analysing and

comparing them a challenging task for both developers and
management. To help with reasoning, comparison studies
have been published. Merticariu, Misev and Baumann [11]
compared the sequential performance of rasdaman, SciDB and
SciQL [12] using randomly generated artificial dense eight-
bit data. They came to the conclusion that, in general, their

rasdaman implementation outperformed the others by one to
two orders of magnitude if really small queries or data inges-
tions were not taken into account. Liu et al. [13] compared the
performance of the file-based NetCDF-4 and SciDB regarding
three-dimensional spatio-temporal rainfall data. Their study
found the uncompressed NetCDF-4 to be more efficient than
SciDB.

The published comparisons assess the different Array
DBMSs concerning relevant functions; however, they primarily
look at the systems from the performance point of view
using benchmarking. The most extensive work on database
benchmarking has been performed by the non-profit TPC
[14]. Its benchmarks evaluate performance with use cases
from different areas of business – like stock brokerage – and
execution scenarios, which vary in parallelism and complexity.
None of the TPC benchmarks are, however, relevant for array
DBMS. The Standard Science DBMS Benchmark (SS-DB),
instead, is a benchmark developed by Cudre-Mauroux et al.
[15], which was designed with astronomy in mind but may be
used as a generic benchmark for scientific 1D–3D array data.
Cudre-Mauroux et al. used it to compare the performance of
MySQL and SciDB, the outcome of which was that overall
SciDB performed two orders of magnitude faster.

While the execution time is important, several other quality
characteristics also affect whether an Array DBMS meets the
needs of stakeholders. A plethora of models for software
quality have been published (e.g [16]–[18]). A comparison
of models is presented by Miguel [19]. The models have
different purposes by which they can be classified as definition,
assessment or prediction models of quality [20]. The quality
of software can even be validated as being up to standards: the
International Organization of Standardization (ISO) has a full
series (ISO/IEC 25000) of standards for software quality and
its evaluation. For instance, the standard ISO/IEC 25010:2011
[21] defines a dual model that splits quality into in-use quality
and internal/external product quality. Figure 1 outlines the two-
level characteristics included in the latter.

This paper presents an approach to assess array DBMS.
In Section II, we propose a framework to assess them that
includes the criteria used for evaluation and benchmarking.
Next, in Section III, we describe how the framework was used
to evaluate two different Array DBMSs, the used hardware
and some of the initial key findings. Finally, in Section IV, we
discuss some issues and conclude the paper.

II. THE ASSESSMENT METHOD
In an optimal situation, a rigorous assessment can be per-

formed based on a set of application-specific user requirements
that represent the needs of stakeholders. However, in the case
of Array DBMSs, the number of potential stakeholders is so
high that it is impossible to determine all the requirements.
Moreover, it is not enough to assess their functionality based

71Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 1. The characteristics and sub-characteristics of the ISO/IEC
25010:2011 product quality model.

on the documentation alone because of the rapid evolution
that DBMSs are undergoing. For this reason, instead of using
existing quality models as such, we divided the assessment
into three parts: two parts concerning functionality and one
part non-functionality.

Functionality is first reviewed against the documentation
based on a set of criteria. Next, the found functionality is
validated using an open web client. The client can be run from
anywhere to verify that the statements regarding functionality
are valid. The client is implemented using Jupyter Notebook
[22], which is an open-source web application integrating
live code, visualisations and accompanying text that uses
Markdown language. The validation tests are written in Python
and made small enough that they can be performed within a
reasonable time limit. The test data is created on the fly by
the web client or by using an array generator query. Hence,
different instances of the same Array DBMS can be validated
simply by changing the access parameters, like IP address,
username and password.

Secondly, functionality is benchmarked on the server side.
In this way, we can run long-lasting queries without worrying

about network connection problems, and we do not need to
speculate on how extensively the network transfers affect the
timing. Nevertheless, benchmarking is affected by the chosen
DBMS parameters and internal communication between nodes.
As many users will not go through the burden of finding the
optimal parameter combination, the benchmarking is run with
the default settings. Bare bones results can be complemented
by those gained from better performing configurations or
external third-party software as long as they can be clearly
distinguished and the default results are also included in the
comparison.

The last part – evaluating non-functionality – is initiated af-
ter both parts concerned with functionality have been executed.
This is to gain an initial understanding of the relevant quality
characteristics (like reliability, maintainability and usability)
through real use.

A. The criteria for comparison
Software, including Array DBMSs, can be assessed qual-

itatively using the experts of a particular field. Alternatively,
the assessment may follow a predefined criteria list that scores
several aspects of the software in a quantitative manner. The
benefit of criteria is that they may be used by different
people against diverse software. Criteria may be domain-
specific or look at the software from a more general point of
view. For example, the criteria of the Software Sustainability
Institute [23] specialise in code quality, usability and overall
sustainability.

Domain-specific criteria are based on the needs or concerns
of a particular problem domain’s potential stakeholders. Good
criteria are also objective and unbiased; for example, no single
software should be used as a reference. In the case of Array
DBMSs, domain-specific requirements have been listed by
Stonebraker et al. [24] and Xie [25]. The user concerns brought
up by Stonebraker et al. are especially related to those raised
by scientists and scientific data. Xie, on the other hand, looks
at the requirements of a raster-specific DBMSs, which also
apply in large part to generic array databases. Some of them
are only relevant for spatial data though, like raster algebra
and analytics, re-projection and cartographic modelling. As
the most important characteristics, Xie picks out scalability
and performance, and suggests that a database preferably has
in-built analytics capabilities in order to achieve the required
performance.

We split the criteria into functional and non-functional
parts. The non-functional criteria first assess general software
properties, like dependencies, hardware requirements, licens-
ing, operating system support, source code access, means of
installation, documentation, logging, memory-use, and error-
handling. Next, other non-functional qualities are evaluated
using existing quality models as a guideline.

The functional criteria are decomposed into 1) general
DBMS capabilities, 2) a data model and schemas, and 3) a
processing model. We also include geospatial capabilities as a
domain-specific subgroup of the criteria. The general DBMS
criteria assess the functionality that may be available with
any type of data, like data compression, interfaces, support
for accelerators and user-defined functions. The data model
and schemas concentrate on array-specific capabilities, like
restrictions of the data type, the density of data, the regularity
of data bounds, uncertainty and multiple representation. The
processing model looks at what operations the arrays can be

72Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

used for – like aggregation, algebraic, bitwise, logical, moving
window and string operations – but also transcendental func-
tions, subsetting and joining. The criteria are then converted
into questions to be answered in a consistent way; for example,
the following questions are made regarding the array-specific
dimensionality:

• What is the maximum number of dimensions?
• Is it possible to name the dimensions? Is it manda-

tory to name the dimensions? Can a dimension be
renamed?

• Can a dimension be added or removed?
• Can the data be scaled by an integer for a dimension;

that is, can a cell be duplicated a number of times
before moving to the next cell?

• Can the bounds (lower/upper) of a dimension be
changed after being defined?

• Can a dimension be used for time? Are time zones
supported? Can time be treated as a continuous dimen-
sion or does it need to be treated as a discrete quantity;
for example, if a time series is initially stored at one-
second resolution, can data be added, that is defined,
with millisecond accuracy in between old values?

B. Benchmarking
For benchmarking, we used two datasets, both licensed

under CC BY 4.0 and having coordinates in the ETRS-
TM35FIN projected coordinate reference system. KM10 [26]
data represents the digital elevation model (DEM) of Finland
in 10-metre resolution. It is composed of 1,509 GeoTiff files
with a combined size of 9.7 GB. The data is two-dimensional
with elevations being 16-bit floating point numbers, and it
contains null values, which are coded -9,999. The benchmark-
ing includes ingestion, export, cropping, operations (average,
minimum), the moving average and simultaneous queries. The
operations are performed on different sized square areas up to
60,000 × 60,000 cells. The moving average query is performed
with different window sizes, ranging from 3 × 3 to 51 ×
51 cells. The performance is measured by computing average
values for cells within different windows. For each window
size, several areas of different sizes, starting from 100 × 100
cells, are used. Regarding ingestion, it is performed in the
format preferred by the DBMS; the time to translate to the
format is not included in the timing.

The second dataset is CORINE [27]–[29], which represents
the land cover classification of Finland for three different
years (2000, 2006 and 2012). It is used for three-dimensional
benchmarking. The resolutions of the original data are 25
and 20 metres, but in the benchmarking these are converted
to a uniform five metres, allowing cell-by-cell comparisons
to be made. The benchmarks include ingestion, counting the
number of filtered cells and counting changes between two
years. Filtering is done by area, timestamp and attribute value.

III. EVALUATION CASE
We performed an assessment of the rasdaman community

(version 9.5.0) and SciDB Community Edition (version 16.9).
For rasdaman, we installed Petascope, the Semantic Coordinate
Reference System Resolver (SECORE) [30] and their depen-
dencies like Apache Tomcat [31] and PostgreSQL [32]. As the
storage backend for rasdaman, we selected SQLite [33]. For
SciDB, to store its metadata, we installed PostgreSQL.

A. Software and hardware used in validation
Concerning hardware, the evaluation was performed using

an Infrastructure as a Service (IaaS) [34], where each node was
composed of six virtual CPUs (2 GHz; 4096 KB cache from
Intel Xeon E312xx (Sandy Bridge)) and 15.6 GB of RAM. The
CPUs are over-committed and thus require the benchmarking
to be run several times in order to give a good estimate. The
network bandwidth between servers was validated to be 8 Gb/s
with iPerf [35]. The servers have an 80GB root disk that is
stored on a central storage system. Additional disks were added
as required. The operating system was decided to be the latest
version of Ubuntu, which was supported by the DBMS; version
16.04 was used with rasdaman and version 14.04 with SciDB.

Logging was set to warning level as the more detailed lev-
els affected the running time. In the case of multiple rasdaman
nodes (peers), each node was given its own replicated data
source. The option of using a centralised data storage was not
tested. Neither did the tests consider the option of splitting
the data into separate arrays and distributing those to different
nodes.

B. Functional comparison
We performed the functional comparison according to the

presented criteria. As the information source, we used publicly
accessible documentation. We also tried to use scientific liter-
ature, but it turned out to be too imprecise or it referred to
planned functionality.

As we expected, the fast evolution of DBMSs seems to
make it hard to keep the documentation up to date. It also
turned out that developing both a commercial and a community
version side by side is a really challenging task. For example,
in SciDB, some functionality was marketed as being available
in the community edition but actually was not. Meanwhile,
some functionality of the enterprise edition was found in the
community edition. Most troubling, however, was realising
that the disclaimers of some code in the community edition
required an enterprise license. This applied, for example, to
the support of complex numbers, which is provided as a user-
defined type.

Next, we created a validation client for each DBMS with
Jupyter Notebook. In the clients, we used application-specific
declarative languages, and the queries were passed to the
DBMSs from their web interfaces. To access rasdaman, we
used its web service that forwards requests in rasdaman query
language (rasql). In the case of SciDB, we used shim [36].
It allows the execution of arrays managing queries using
SciDB’s Array Functional Language (AFL), which has a SQL-
like syntax. However, we could not use operations defined
in SciDB’s Array Query Language (AQL), because it is not
supported by shim.

Validating every functionality found in the documentation
would have required us to implement a complete unit testing
framework for both DBMSs. Hence, we chose to direct the
testing towards the 1) basic functionality, 2) the most demand-
ing functionality and 3) the most recent functionality. This
approach paid off regarding finding problems. In particular,
the late addition of null values in rasdaman turned out to be
problematic. At worst, their use in data types corrupted the
whole database. Without the validation, the problems of the
functionality would not have been found. Moreover, isolating
problem sources gave significant input for the non-functional
assessment.

73Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

C. Performance evaluation
The performance evaluation was executed using bash

scripting on the server side. For each DBMS, a single server
instance was run. If the Array DBMS supported multiple
nodes, then distributed instances were also tested; hence, we
had three different configurations: sequentially on a node,
parallel on a node and parallel on four nodes. We did not
assess additional software, whether from the same author as
the DBMS or a third-party, but acknowledged them and their
potential in the functional comparison.

1) The KM10 benchmark: The KM10 data was stored
in two dimensions (E, N) with an attribute containing the
elevation as a floating point value. The data was stored without
overlap. On SciDB, the chunk size was selected to be 2,400 ×
1,200 cells and the history of array modifications was removed
during ingestion.

On both DBMSs, the data was ingested from CSV files.
For rasdaman, the files only contained elevation values, not
coordinates. For SciDB, the files contained coordinates and
elevations for the cells for which data existed. The uncom-
pressed data sizes were 76.8 and 84.5 GB for rasdaman and
SciDB respectively. Figure 2 represents the ingestion speed.
For rasdaman, it includes the time (3,039 s) required to set
the initial null values into blocks sized 10,000 × 10,000 cells.
This had to be performed because otherwise the DBMS has
zeros as null values, which is unacceptable in the case of a
DEM.

0

0.5

1

·104

Ti
m

e
(s

)

rasdaman 1 node
SciDB 1 node sequential
SciDB 1 node parallel
SciDB 4 nodes

Figure 2. The ingestion time of the KM10 digital elevation model.

The data was exported from rasdaman using the CSV
format, but in the case of SciDB we had to use its CSV+
format because the data contained empty cells. Initially, the
servers had no swap memory, but it was added to enable testing
rasdaman operations, because they failed when the RAM ran
out. For example, rasdaman failed the 30,000 × 30,000 cell
crop test without swap; still, not even an unlimited swap helped
it in the execution of the 60,000 × 60,000 sized query. Figure
3 illustrates the time required for export from KM10.

In the moving window calculations, for each window size,
the execution times with different analysis areas were scaled to
comparable units and averaged out. The results are shown in
Figure 4. The execution times with rasdaman showed little
variation with respect to the size of the analysis area. On
the other hand, the largest area analysed with rasdaman was
5,000 × 5,000 cells, whereas with SciDB 10,000 × 10,000
and 28,000 × 28,000 sized areas were analysed with single
node and cluster installations respectively, with window sizes
of up to 21 × 21 cells.

100 101 102 103 104 105 106 107 108 109
10−2

10−1

100

101

102

103

Number of cells

Ti
m

e
(s

)

rasdaman 1 node
SciDB 1 node
SciDB 4 nodes

Figure 3. The time required for export from the KM10 digital elevation
model.

3x
3

5x
5

7x
7

11
x1

1
21

x2
1

31
x3

1
51

x5
1

0

1

2

3

4

Window size

Ti
m

e
(s

ec
)

rasdaman 1 node
SciDB 1 node
SciDB 4 nodes

Figure 4. The time required for computing the moving window average for
10,000 cells with the KM10 digital elevation model.

2) The CORINE benchmark: On SciDB, the CORINE data
was stored in three dimensions (E, N, year) and the land cover
code was stored as a 16-bit unsigned integer. The chunk size
was selected to be 2,000 × 2,000 × 1 cells. The data was
stored without overlap. The history of array data was not
stored.

0

1

2

3

4

·104

Ti
m

e
(s

)

rasdaman 1 node
SciDB 1 node (sequential)
SciDB 1 node (parallel)
SciDB 4 nodes

Figure 5. The ingestion time of the CORINE data.

The data ingestion of CORINE followed the same pattern
as with KM10 (Figure 5). Between the DBMSs, the gap of
sequential input got smaller than with the KM10. Similarly,
the parallel and multi-node versions of SciDB performed
better. A reason for this may be that in rasdaman the data
was imported without using the scale function, because the
source argument of the function must fit into the server’s main

74Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

memory, and according to the documentation, only nearest
neighbour interpolation is supported for scaling. In SciDB, we
used the xgrid function for scaling.

In both tests related to counting, the DBMSs behaved
similarly: rasdaman handled smaller queries better, whereas
SciDB performed faster with larger areas. The main difference
that could be found was in the use of multiple processors
and nodes. For example, SciDB was almost seven times faster
regarding the largest area on one node regarding the query
that counted the number of cells filtered by area, timestamp
and attribute value (Figure 6). This correlates with the number
of processors; likewise, with four nodes, SciDB became over
three times faster than on one node.

104 105 106 107 108 109
10−2

10−1

100

101

102

Number of cells

Ti
m

e
(s

)

rasdaman 1 node
SciDB 1 node
SciDB 4 nodes

Figure 6. Counting the number of cells filtered by area, timestamp and
attribute value from the CORINE data.

The difference between the DBMSs became larger when
the complexity of the task grew. For example, SciDB was over
50 times faster in computing the changed cells between two
timestamps from the CORINE data (Figure 7) regarding the
largest query that rasdaman could manage.

101 102 103 104
10−1

100

101

102

103

Window edge length (px)

Ti
m

e
(s

)

rasdaman 1 node
SciDB 1 node
SciDB 4 nodes

Figure 7. Counting the changed cells between two timestamps from the
CORINE data.

IV. CONCLUSIONS, DISCUSSION, AND FUTURE WORK
In this paper, we addressed the assessment of Array

DBMSs. We proposed performing the assessment in two
consecutive steps: functional and non-functional steps. We
also proposed executing the assessment of functionality by
validating it against its documentation in an efficient manner,
which especially targets error-prone areas but also evaluates

the basic functionality. The used approach allows others to re-
evaluate the assessed systems and to expand it to other Array
DBMSs.

We also performed an initial trial of the approach on two
Array DBMSs, which showed that the DBMSs have achieved
a good level of functionality and performance. However,
they struggle keeping up their documentation regarding both
the languages and capabilities of their model. Inconsistency
between the documentation and the behaviour reduce the
usability and creditability of the systems.

The DBMSs are evolving at such fast pace that our ap-
proach will face the same challenge as the SS-DB benchmark:
it has not been updated to work with the latest DBMS versions.
A potential group of actors to keep the validation up to date are
the authors of the DBMSs themselves. However, that creates a
dilemma – will they be able to make an independent evaluation
that disregards their agenda? We doubt this, mainly because the
developers are already putting in effort to create unit tests and
moving towards continuous integration which should reveal the
problems that they have thought of.

If the authors of the Array DBMSs do not update the
benchmarks and the validation scripts after making changes to
the query languages or interfaces, our approach may require a
TPC-kind of actor with sufficient resources to take ownership
of the assessment. One candidate for this role is the Research
Data Alliance (RDA) because Array DBMSs are well suited
for research-focused data. However, the RDA (or any other
party taking responsibility) will need a user pool to define the
requirements to be evaluated and possibly even to develop test
cases that the DBMSs can aim at passing. The creation of
the test cases and the performance evaluation would be even
simpler if the languages and interfaces used by the DBMSs
become harmonised at some point.

ACKNOWLEDGEMENT
The paper is based on the research carried out in the

collaboration project ”Evaluation and demonstration of Array
DBMSs using national geospatial data”, part of the EU-
funded RDA EU3 project (grant agreement number 653194).
The IaaS used in the work was funded by the Academy
of Finland through ”Finnish Grid and Cloud Infrastruc-
ture” (urn:nbn:fi:research-infras-2016072533; grant number
283818).

REFERENCES
[1] The HDF Group, “HDF group history,” https://support.hdfgroup.org/

about/history.html, [accessed: 2018-01-23].
[2] Unidata, “NetCDF,” http://www.unidata.ucar.edu/software/netcdf/,

Boulder, CO: UCAR/Unidata Program Center, [accessed: 2018-01-23].
[3] Paradigm4 Inc., “SciDB,” http://www.paradigm4.com, [accessed: 2018-

01-23].
[4] rasdaman GmbH, “rasdaman,” http://www.rasdaman.org, [accessed:

2018-01-23].
[5] CMCC Foundation, “Ophidia,” http://ophidia.cmcc.it, [accessed: 2018-

01-23].
[6] TileDB Inc., “TileDB,” http://tiledb.io, [accessed: 2018-01-23].
[7] A. Aiordăchioaie and P. Baumann, “PetaScope: An open-source imple-

mentation of the OGC WCS geo service standards suite,” in Scientific
and Statistical Database Management: 22nd International Conference,
SSDBM 2010, Heidelberg, Germany, June 30–July 2, 2010. Proceed-
ings, M. Gertz and B. Ludäscher, Eds. Springer Berlin Heidelberg,
2010, pp. 160–168.

[8] M. Appel, “scidb4geo,” http://github.com/appelmar/scidb4geo, [ac-
cessed: 2018-01-23].

75Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

https://support.hdfgroup.org/about/history.html
https://support.hdfgroup.org/about/history.html
http://www.unidata.ucar.edu/software/netcdf/
http://www.paradigm4.com
http://www.rasdaman.org
http://ophidia.cmcc.it
http://tiledb.io
http://github.com/appelmar/scidb4geo

[9] “PostGIS,” http://postgis.net, [accessed: 2018-01-23].
[10] Oracle Corporation, “Oracle Spatial and Graph,” http://www.oracle.

com/technetwork/database/options/spatialandgraph/, [accessed: 2018-
01-23].

[11] G. Merticariu, D. Misev, and P. Baumann, “Towards a general array
database benchmark: Measuring storage access,” in Big Data Bench-
marking: 6th International Workshop, WBDB 2015, Toronto, ON,
Canada, June 16-17, 2015 and 7th International Workshop, WBDB
2015, New Delhi, India, December 14-15, 2015, Revised Selected
Papers, T. Rabl, R. Nambiar, C. Baru, M. Bhandarkar, M. Poess, and
S. Pyne, Eds. Springer International Publishing, 2016, pp. 40–67.

[12] Y. Zhang, M. Kersten, M. Ivanova, and N. Nes, “SciQL: Bridging the
gap between science and relational DBMS,” in Proceedings of the 15th
Symposium on International Database Engineering & Applications, ser.
IDEAS ’11. New York, NY, USA: ACM, 2011, pp. 124–133.

[13] H. Liu, P. van Oosterom, C. Hu, and W. Wang, “Managing large multi-
dimensional array hydrologic datasets: A case study comparing NetCDF
and SciDB,” Procedia Engineering, vol. 154, no. Supplement C, 2016,
pp. 207–214, 12th International Conference on Hydroinformatics (HIC
2016) - Smart Water for the Future.

[14] TPC, “Active TPC benchmarks,” http://www.tpc.org/information/
benchmarks.asp, [accessed: 2018-01-23].

[15] P. Cudre-Mauroux et al., “SS-DB: A standard science DBMS bench-
mark,” in 4th Extremely Large Databases Conference October 6-7,
2010, 2010, [accessed: 2018-01-23].

[16] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of the 2nd International Conference
on Software Engineering, ser. ICSE ’76. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1976, pp. 592–605.

[17] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software
quality,” Rome Air Development Center, Air Force Systems Command,
Griffiss Airforce Base, New York 13441, Tech. Rep. RADC-TR-77-369,
November 1977.

[18] R. G. Dromey, “A model for software product quality,” IEEE Software,
vol. 13, no. 1, 1995, pp. 33–43.

[19] J. P. Miguel, D. Mauricio, and G. Rodriǵuez, “A review of software
quality models for the evaluation of software products,” International
Journal of Software Engineering & Applications (IJSEA), vol. 5, no. 6,
2014, pp. 31–53.

[20] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner, “Software
quality models: Purposes, usage scenarios and requirements,” in 2009
ICSE Workshop on Software Quality, 2009, pp. 9–14.

[21] “ISO/IEC 25010:2011. systems and software engineering – systems and
software quality requirements and evaluation (SQuaRE) – system and
software quality models,” International Organization for Standardiza-
tion, Geneva, CH, Standard, 2011.

[22] Project Jupyter, “The Jupyter Notebook,” http://jupyter.org, [accessed:
2018-01-23].

[23] M. Jackson, S. Crouch, and R. Baxter, Software Evaluation: Criteria-
based Assessment, https://www.software.ac.uk/sites/default/files/SSI-
SoftwareEvaluationCriteria.pdf, 2011, [accessed: 2018-01-23].

[24] M. Stonebraker et al., “Requirements for science data bases and SciDB,”
in CIDR 2009, 2009.

[25] Q. Xie, “The design of a high performance earth imagery and raster data
management and processing platform,” ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, vol. XLI-B4, 2016, pp. 551–555.

[26] National Land Survey of Finland, “Korkeusmalli 10 m, 20.04.2017,”
http://kartat.kapsi.fi, [accessed: 2018-01-23].

[27] Finnish Environment Institute, “CORINE maanpeite 2012, 20
m, 30.9.2014,” http://www.syke.fi/fi-FI/Avoin tieto/Paikkatietoaineistot,
[accessed: 2018-01-23].

[28] ——, “CORINE maanpeite 2006, 25 m, 15.6.2010,” http://www.syke.
fi/fi-FI/Avoin tieto/Paikkatietoaineistot, [accessed: 2018-01-23].

[29] ——, “CORINE maanpeite 2000, 25 m, 11.5.2010,” http://www.syke.
fi/fi-FI/Avoin tieto/Paikkatietoaineistot, [accessed: 2018-01-23].

[30] D. Misev, M. Rusu, and P. Baumann, “A semantic resolver for coordi-
nate reference systems,” in Web and Wireless Geographical Information
Systems: 11th International Symposium, W2GIS 2012, Naples, Italy,

April 12-13, 2012. Proceedings, S. Di Martino, A. Peron, and T. Tezuka,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 47–56.

[31] The Apache Software Foundation, “Apache Tomcat,” http://tomcat.
apache.org, [accessed: 2018-01-23].

[32] The PostgreSQL Global Development Group, “PostgreSQL,” http://
www.postgresql.org, [accessed: 2018-01-23].

[33] SQLite Development Team, “SQLite,” http://www.sqlite.org, [accessed:
2018-01-23].

[34] CSC – IT Center for Science Ltd., “Pouta user guide,” https://research.
csc.fi/pouta-user-guide, [accessed: 2018-01-23].

[35] “iPerf,” https://iperf.fr, [accessed: 2018-01-23].
[36] Paradigm4 Inc., “shim,” http://github.com/Paradigm4/shim, [accessed:

2018-01-23].

76Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

http://postgis.net
http://www.oracle.com/technetwork/database/options/spatialandgraph/
http://www.oracle.com/technetwork/database/options/spatialandgraph/
http://www.tpc.org/information/benchmarks.asp
http://www.tpc.org/information/benchmarks.asp
http://jupyter.org
http://kartat.kapsi.fi
http://www.syke.fi/fi-FI/Avoin_tieto/Paikkatietoaineistot
http://www.syke.fi/fi-FI/Avoin_tieto/Paikkatietoaineistot
http://www.syke.fi/fi-FI/Avoin_tieto/Paikkatietoaineistot
http://www.syke.fi/fi-FI/Avoin_tieto/Paikkatietoaineistot
http://www.syke.fi/fi-FI/Avoin_tieto/Paikkatietoaineistot
http://tomcat.apache.org
http://tomcat.apache.org
http://www.postgresql.org
http://www.postgresql.org
http://www.sqlite.org
https://research.csc.fi/pouta-user-guide
https://research.csc.fi/pouta-user-guide
https://iperf.fr
http://github.com/Paradigm4/shim

	Introduction
	Previous work

	The assessment method
	The criteria for comparison
	Benchmarking

	Evaluation case
	Software and hardware used in validation
	Functional comparison
	Performance evaluation
	The KM10 benchmark
	The CORINE benchmark

	Conclusions, discussion, and future work
	References

