
Using Smart A* Algorithm to Solve TSP Navigation Problem

Hatem F. Halaoui
Computer Science

Haigazian University
Beirut, Lebanon

Email: hhalaoui@haigazian.edu.lb

Abstract—Navigation queries are very common among
travelers. Moreover, traveling to multiple destinations in one
trip is very common as well. The Traveling Salesman Problem
(TSP) is one of the most famous multi-destination path
problems. Solving TSP efficiently with real-time factors
(traffic, distance, real-time delays) is very useful for multiple
navigation queries. Google maps, Yahoo maps, and many
others are examples of such online navigation applications.
Calculating the best driving path between multiple addresses is
subject to many factors including distance, road situation, road
traffic, speed limitations and others. This paper presents the
use of smart heuristic functions, intelligent algorithm A*,
traditional graph algorithms like Hamilton circuit, as well as
efficient data structures in finding an efficient cycle path
between multiple addresses.

Keywords— Traveling Salesman Problem; Intelligent
Navigation Algorithms; Smart Navigation; Hamilton circuit; A*
Algorithm.

I. INTRODUCTION

Traveling between places (destinations) is a common
task for many people like tourists, sales people, and others.
Most of these would like to visit multiple destinations in one
trip. This paper proposes a solution for such queries.

This section introduces the main topics behind the
proposed approach: the Travelling Salesman Problem
(TSP), Spatial Databases (presented as the main data
warehouse of our approach), Geographical Information
Systems (GIS), and heuristics. We also present an overview
of the adopted approach.

A. Traveling Salesman Problem (TSP)

The Travelling Salesman Problem (TSP) [11], which
was defined in the 1800s by the Irish mathematician W. R.
Hamilton and by the British mathematician T. Kirkman,
describes a salesman who needs to travel between a certain
numbers of cities. The order in which the cities are to be
visited is not important, as long as they are all visited in one
trip which ends back at the start city. Cities are connected to
each other by roads, railways, airplane paths, or any other
means of transportation. Each one of the links between the
cities has one or more weights that could represent distance,
time, or cost. The main problem is to find the shortest path
starting at a source, traveling to all needed destinations, and
ending at the source. The TSP is typical of a large class of
"hard" optimization problems that have intrigued
mathematicians and computer scientists for years.

An optimal solution for the TSP with high number of
vertices using traditional algorithms is very time consuming
and does not match with real-time problems. Traditional
algorithms work well when the number of vertices in low,
below 10, so they are better used after decreasing the
number of map (graph) vertices. For this reason, our
approach will adopt a solution that uses heuristics to
decrease the number of graph vertices.

B. Spatial Databases

Spatial databases are the main data warehouses used by
Geographical Information Systems. Spatial databases are
databases used to store information about geography such as
geometry, positions, coordinates, and others [4] [9]. Also,
they might include operations to be applied on such data.

C. Geographical Information Systems and Driving Path
Applications

A Geographic Information System (GIS) is a collection
of computer hardware and software for capturing,
managing, analyzing, and displaying all forms of
geographical information [6] [7]. Finding the Directions
(driving/walking) path is one of the most asked queries in
GIS applications. The most important factors that influence
the response to such queries include: distance, road
situation, road traffic, speed limitations, and others.

D. Heuristic

As an adjective, heuristic pertains to the process of
gaining knowledge by making anintelligent guess rather
than by following some pre-established formula [2] [3].
Most of what people do in their daily lives involves
heuristic solutions. In map problems, when moving from
one point to another to reach a certain destination, there are
two options. In the first option, the algorithm tries all
possible paths from all possible neighbours (next address on
the way to destination). It keeps doing this until the
destination is reached. Finally, it chooses the best path
among all possibilities. In the second option, at each
location, the algorithm chooses the next move using some
smart evaluation function (called the heuristic function).

E. Navigating Using Heuristic Functions and Hamilton
Circuit

This paper addresses the issue of navigating to multiple
destinations in any order. The main problem is to find the
fastest path starting at a given source and passing over all
given destinations, in any order. The importance of the
proposed approach is that existing solutions, such as Google

46Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Maps [8], let users select the order of destinations rather
than suggesting the fastest path. Moreover, calculating the
fastest path using the traditional mathematical algorithms
like Hamilton path [1] has a high time complexity for real-
time large graphs representing real cities. As a result, the
use heuristic algorithms like A*, substantially minimize the
graph size and hence minimize the Hamilton algorithm
running time for such navigation real-time solutions. The
Hamilton circuit definition, algorithm, and examples are
presented in Section II.

The paper is organized as follows: Section II presents
some related work, including widely used applications.
Section III presents the main solution of this paper. Section
IV discusses our results and, finally, Section V presents
conclusions and future work.

II. BACKGROUND AND RELATED WORK

This section presents the relevant background, including
definitions, notations, and algorithms, used in the proposed
approach. Some terms used, such as graph, vertex, edge and
others assume prior knowledge of these data structures.

A. Artificial Intelligent Heuristic Algorithm A*

A* [2] is an Artificial Intelligent graph algorithm
proposed by Pearl. The main goal of A* is to find a cheap
cost (time) graph path between two vertices in a graph using
a heuristic function. The goal of the heuristic function is to
minimize the selection list at each step. In the graph
example, finding the shortest path from a node to another
has to be done by getting all possible paths and choosing the
best, which is very expensive when having a huge number
of nodes. On the other hand, using an evaluation function
(heuristic) to minimize the problem choices according to an
intelligent criterion would be much faster. In case of A*
algorithm, the heuristic function H (S, D) is defined as
follows:

Input: a source vertex S and a destination D.
Task: evaluate S based on the destination D using the
following heuristic function:
Distance_So_Far + Stright_Line_Distance (S, D)
where:
Distance_So_Far = Distance traveled so far to reach vertex
S.
Stright_Line_Distance (S, D) = Straight line distance from
source S to destination D calculated by using their
coordinates.

A* Algorithm
A*(Graph, Source, Destination)
Task: takes a Graph (Vertices and Edges), Source and
Destination (Vertices) and returns the Best path solution
(stack of vertices) from Source to Destination.

 If Source = Destination then return solution (stack)
 Else expand all neighbours Ni of Source
 Mark Source as Unvisited
 For each Neighbour Ni

o Get Vi = H(Ni, Destination)
o Add all (Ni, Vi) to the Fringe (list of all

expanded Vertices)
o From the Fringe, Choose an Unvisited

Vertex V with Least Vi
o If no more Unvisited return Failure
o Else Apply A*(V, Destination)

The time complexity of A* is O(n2) [2].

Figure 1 is an example of the A* algorithm behavior to
find a path starting from “Arad” to “Bucharest”, cities in
Romania [2]. First of all, start at Arad and go to the next
neighbor with the best heuristic function (Sibiu). Second,
explore all neighbors of Sibiu for the best heuristic function.
The algorithm continues choosing the best next step (with
the least value of the heuristic function) until it reaches
Bucharest. All vertices with values (heuristic function) are
kept in the fringe in order to be considered at each step.

Figure 1. Calculating the path from Arad to Bucharest

B. Graph Definitions and Notations

This sub-section presents the graph definitions and
algorithms used in the proposed approach. The time-
complexities of these algorithms is briefly stated.

Definition 1. Graph G (V,E): where V is the set of
vertices and E is the set of edges. Figure 2 illustrates a graph
with vertices: 2,3,5,8,9, and 11 and edges: (5,11), (11,2),
(11,9), (7,11), (8,9), (3,8).

Figure 2. A sample graph

Definition 2. Complete graph: a graph without loops or
multiple edges and every vertex is connected to every other
vertex. See Figure 3.

Figure 3. A complete graph

47Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Definition 3. Hamilton circuit [1]: A path in the graph
that passes over all vertices once and gets back to the source
node where it started. Only the source vertex is visited
twice. See Figure 4.

Figure 4. Hamilton Circuit

Definition 4. All permutations: It represents how many
ways there are to arrange n different objects out of k objects.
The mathematical formula is:

nPk= n (n-1) (n-2)… (n-k+1).

Example: How many ways can 4 students from a group
of 15 be lined up for a photograph? Answer: There
are 15P4 possible permutations of 4 students from a group of
15.

15P4= 15. 14. 13. 12 = 32760.

Hence, the permutation of n objects out of n objects
(how many different ways to arrange n objects) will be =

n!.

C. Related Work: Multi-Destinations Using Google Maps

This subsection presents two existing solutions: Google
maps [8], and a previous work A*Multiple [10].

(1) Google Maps

Google Maps [8] is a Web-based service that provides
detailed information about geographical regions and sites
around the world. In addition to conventional road
maps, Google Maps offers aerial and satellite views of many
places. Figure 5 shows an example a driving directions
query using Google Maps [8]. The query is to get driving
directions, over multiple destinations in Rome: Termini
station, Vatican City, Coliseum, and Basilica di San Pietro.
It also offers real-time traffic information. However, Google
Maps [8] does not suggest any order of visiting these sites.
The user has to provide Google Maps with the order and the
user has to perform multiple trials and look for the best
sequence of destinations to be visited. In order to make it a
cycle, the user has to provide a path from the last destination
to the source (Termini station).

Figure 5. A multi-destination Path by Google Maps where order is
chosen by the user

(2) A*Multiple

The main idea behind A*Multiple [10] is to find the best
path (shortest in time) to visit multiple destinations in one
tour. The algorithm uses a heuristic function to find the next
destination.

Algorithm 1. A*Multiple (Source, Destinations)

Task: find an efficient path from source passing over all
members in the destinations array.
Returns: 2 lists, namely

1) VSL: Vertices Solution List which is an ordered
list vertices that the path follows in the trip.

2) PSL: Path Solution List, which is the list of paths
to take each time to each destination (vertex) from
a vertex in the VSL list to another in the same list.

Pseudo code
If the Destination is Empty return “done”.
For all Vertices Vi in Destinations

Di=H(source, Vi)
Get the Vs with the Minimum Di
Remove Vs from Destinations
Add Vs to the Vertices Solution List VSL
Add A*Traffic (Source, Vs) to the Path Solution List PSL

If A*Traffic fails return Failure.
A*Multiple (Vs, Destinations).

How does A*Multiple Work?

Next, we present the execution of A*Multiple. To
present the proposed approach better, we consider the
following problem: suppose the user is at Termini station,
Rome and wants to visit the following destinations in Rome:
Vatican City, Coliseum and Basilica di San Pietro. If the
only priority is time, it means that one can visit them in any
order with efficient time. In this case, one has to choose the
next destination (at each step) in a smart way.

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

After creating the Time-Weighted graph (subset of the
vertices shown in black in Figure 6) over the map of Rome
(from Google Maps), the A*Multiple will return the
following:
VSL: Termini station, Vatican City, Coliseum, and Basilica
di San Pietro.
PSL: Path1, Path2, Path3.
where VSL is the ordered list of destinations to be visited,
PSL is the list of paths from each destination in VSL to the
next one, Path1 is Termini station-Vatican City, Path2 is
Vatican City- Coliseum, and Path3 is Coliseum, - Basilica
di San Pietro. Figure 6 shows these solutions in different
colors: orange (Path1), blue (Path2) and pink (Path3). It also
gives an estimated time for each path according to current
(at time of calculation) traffic situation. However this is not
a cycle.

Figure 6. Paths for Multiple destinations (Termini, Vatican City,
Coliseum, Basilica di San Pietro)

III. PROPOSED APPROACH: A* HAMILTON
CIRCUIT

This section presents the approach to navigate a multi-
destination path starting and ending from/to a certain source.
The main idea behind this approach is the following:

 Given: graph G representing the map, destination
list L repressing the destinations, and source S the
start point.

 Create a new virtual complete graph G1 with
vertices V1=L+S and edges E1={(ai,bi),..} where
edge (ai,bi) is a path calculated using A*
algorithm.

 Find all Hamilton circuits in G1 starting and
ending at S

 Choose the shortest

The idea behind building the virtual graph is to
dramatically minimize the number of vertices of the graph
where Hamilton path algorithm is to be applied. In order to
present a formal pseudo-code algorithm of the proposed

approach, A*HamiltonCircuit, the following algorithms are
presented:

Algorithm 2. Hamilton circuit (G (V, E), S): Finds the
shortest Hamilton circuit (see Figure 4) in graph G starting
and ending at source S.
G: Graph with vertices V and Edges E.
S: Starting node SV
Returns L: Ordered List of vertices that form the Hamilton
Circuit starting and ending at S.
Algorithm:

1. List all permutations (LSPi) of n vertices.
2. Choose permutations that start with S.
3. Add S to the end of each LSPi: it becomes S,….,S

4. Choose the valid permutation from LSPi where i

(vi,vi+1) E
5. Choose the shortest

The time complexity of Algorithm 2 is as follows:
Step1: n! where n is the number of vertices
Step2: n!
Step3: (n-1)!
Step4: n2 * (n-1)!
Step5: n

The total time complexity is (n2+4) n! which is
exponential-time algorithm O(n!) and, hence, time
consuming for high values of n. Figure 7 shows one result
out of many (24 in this case) executions of the Hamilton
circuit algorithm starting from vertex v1 all the way back to
v1. Later, the shortest path is chosen.

Figure 7. Hamilton circuit starting and ending at v1

Algorithm 3. BuildA*Graph (G(V, E), L): Build a
complete virtual graph using the smart A* algorithm

G: graph with vertices V and edges E
L: List of destinations (L V)
Returns G1(V1, E1): a virtual complete graph with the list
of vertices V1 (equal to L) and set of virtual edges E1 where
each edge in E1 refer to a path (list of real edges from E)
computed using A*.

1. For each vertex Vi in L.
2. Using A*, find all paths from Vi to all other

destinations and then to E1.
3. Using these paths, build the Virtual Complete

Graph G1(V1,E1).

The time complexity of Algorithm 3 is as follows:
Step1: O (m*n2), where m is the number of vertices in the
destinations list L and n2 is A* time complexity.

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Step2: O (m2) (since G1 has m vertices and maximum of
m2 edges.

Step3 is constant.
As a result, the total time complexity will be O (n2) since

m will be considered a constant compared to n (<=10).

Figure 8 shows the actual graph. Figure 10 presents the
extraction (using BuildA*Graph) of the virtual graph. The
edges in Figure 9 are built using A*. Each one of the edges
represents a path with multiple vertices. Each of these paths
will be used as a single edge when applying the Hamilton
path algorithm on the virtual graph. For example, the path
from v1 to v5 is p1, the path from v5 to v2 is p2, and so on.
Figure 10 is an example of the virtual graph. For example,
the edge (v1, v5) with weight 45 in Figure 10 represents a
real path p1 in Figure 9 calculated using A* algorithm. The
weights of these edges are the weights of the calculated
path. Hence 45, the edge weight of (v1, v5) is the weight of
p1 calculated using A*. Note that, for simplicity of
examples, the graph in Figure 8 is used as un-directed
graph.

Figure 8. Initial actual graph

Looking at Figure 10, examples of paths starting from
v1 (using StartHamilton algorithm) are:

Path1= v1, v2, v3, v4, v5 with weight = 120 +124 +112+
135 = 491
Path2= v1, v3, v4, v5, v2 with weight = 114+ 112+
134+221= 581

There will be other 24 options. The option with the
lowest weight (shortest) will be chosen.

Figure 9. Paths calculated using A*

Figure 10. The complete virtual graph extracted from graph is figure 9

Algorithm 4. A*HamiltonCircuit (Graph G (V,E), L, S):
Finds the shortest path from a source passing all desired
destinations. It uses algorithms 2 and 3 to build a new
virtual graph and applies the Hamilton circuit algorithm on
it.

G: Graph with vertices V and Edges E
S: Start Vertex that belong to V#
L: List of destinations (L V)
1- G1(V1,E1) = BuildA*Graph (G, L)
2- HP = HamiltonCircuit (G1, S) (Find the shortest

Hamilton Circuit in G1 that start with SV1)

The time complexity of Algorithm 4 is as follows:
Step1: O (n2), where n is the number of vertices in the
destinations list
Step2: O (m!), finding all permutations (possible paths) of
m vertices out of m vertices.

The total time complexity will be in O (n2 + m!). If m is
a relatively small number (<= 10), its maximum time will be
around 3 seconds. Example: 10! = 3,628,800 steps (around 3
seconds to compute), then A*Hamilton will be acceptable.

IV. RESULTS

In this section, we discuss the results of some sample
executions using our proposed approach.

A testing tool is developed where 120 samples using
6142 vertices were tested in 2 groups: Group 1 (between 10
and 15 destinations), Group 2 (less than 8 destinations).

Results shown in Table I where:
 Optimal solution represents the absolute best

solution.
 Good solution takes maximum of 20% more time

than the optimal solution.
 Bad solution takes more than 20% more time than

the optimal solution.

TABLE I. PERCENTAGES OF QUALITY OF SOLUTIONS

Number of Destinations
Optimal
solution

Good
Solution

Bad
Solution

Between 10 & 15 destinations
Over 6142 vertices

81.6 % 14.3% 4.1%

Less than 8 destinations
Over 6142 vertices

97.8% 2.1% 0.1%

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Comparing these results to the previous results (81%
average) [10] shows a very good progress. Note that
existing online solutions do not offer such options and
hence comparison with those solutions is not applicable.

V. CONCLUSION AND FUTURE WORK

The approach proposed in this paper offers a TSP
solution (full cycle path) with an order of destinations
claiming an efficient time. To find a solution the following
was done:

 Build a real graph G (V,E) that represents the map.
 Build a complete virtual graph G1 (V1, E1) where

V1 is the set of destinations and E1 is the set of
edges between these destinations. E1 represents a
paths intelligently calculated with the smart
algorithm A*[2].

 Calculate the shortest cycle path from the selected
source (vertex) using HamiltonCircuit Algorithm
(Algorithm 3).

The following are the two main concerns:
1. Knowing that HamiltonCircuit Algorithm’s time

complexity is exponential, its effect is null when
applied on a small number of destinations.

2. The weights of edges are not guaranteed to be the
best as A* does not guarantee that.

For future work, finding good heuristic functions is a
challenge. This is an open research question and highly
dependent on the geography of the surface in the query.

REFERENCES

[1] K. Ross and C. Wright, “Discrete Mathematics”. Prentice Hall,
Upper Saddle River, New Jersey, 2003.

[2] S. Russell and P. Norving, “Artificial Intelligence a Modern
Approach”. Prentice Hall, Upper Saddle River, New Jersey, 2003.

[3] J. Pearl, “Heuristics: Intelligent Search Strategies for computer
Problem Solving”. Addison Wesley, Reading, Massachusetts, 1984.

[4] H. Halaoui, “Smart Traffic Online System (STOS): Presenting Road
Networks with time-Weighted Graphs". IEEE International
Conference on Information Society (i-Society 2010) London, UK.
June 2010, pp. 349-356.

[5] Google Earth Blog Google Earth Data Size, Live Local, New
languages coming. Available:
http://whatis.techtarget.com/definition/Google-Maps. Retrieved:
September, 2015.

[6] H. Halaoui, “Smart Traffic Systems: Dynamic A*Traffic in GIS
Driving Paths Applications”. Proceeding of IEEE CSIE09, IEEE, Los
Angeles, USA. March, 2009, pp. 626-630.

[7] H. Halaoui,” Intelligent Traffic System: Road Networks with Time-
Weighted Graphs”. International Journal for Infonomics (IJI),
Volume 3, Issue 4, December 2010, pp. 350-359.

[8] Google Maps. Available: https:// Maps.google.com. Retrieved:
September, 2015.

[9] H. Halaoui, “Spatial and Spatio-Temporal Databases Modeling:
Approaches for Modeling and Indexing Spatial and Spatio-Temporal
Databases”. VDM Verlag, 2009.

[10] Hatem Halaoui, “SMART NAVIGATION: Using Artificial
Intelligent Heuristics in Navigating Multiple Destinations”.
Proceedings of SOTICS 2015 (The Fifth International Conference on
Social Media Technologies, Communication, and Informatics).
Barcelona, Spain. November, 2015.

[11] E. L. Lawler, J. K. Lenstra, A. H. G. Rinooy Kan, & D. B. Shmoys
(Eds.), “The traveling salesman problem” (pp. 145–180).
Chichester: John Wile, 1985.

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-617-0

GEOProcessing 2018 : The Tenth International Conference on Advanced Geographic Information Systems, Applications, and Services

