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Abstract—This paper presents a new geographically 
weighted regression analysis tool, based upon a modified 
version of a General Regression Neural Network (GRNN). 
The new Geographic General Regression Neural Network 
(GGRNN) tool allows for local variations in the regression 
analysis. The algorithm of the GRNN has been extended to 
allow for both globally independent variables and local 
variables, restricted to a given spatial kernel. This mimics 
the results of Geographically Weighted Regression (GWR) 
analysis in a given geographical space. The GGRNN tool 
allows the user to load geographic data from the Shapefile 
into the underlying neural networks data structure. The 
spatial kernel can be either a fixed radius or adaptive, by 
using a given number of neighboring regions. The Holdout 
Method has been used to compare the fitness of a given 
model. An application of the tool has been presented using 
the benchmark working-age deaths in the Tokyo 
metropolitan area, Japan. Standardized residual maps 
produced by the GGRNN tool have been compared with 
those produced by the GWR4 tool for validation. The tool 
has been developed in the .Net C# programming language 
using the DotSpatial open source library. The tool is valuable 
because it allows the user to investigate the influence of 
spatially non-stationary processes in the regression analysis. 
The tool can also be used for prediction or interpolation 
purposes for a range of environmental, socioeconomic and 
public health applications. 
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I. INTRODUCTION 

The GGRNN tool is part of a Spatial Decision Support 
System (SEREN-SDSS) developed by the 
Geoenvironmental Research Centre of Cardiff University. 
SEREN-SDSS has been designed and developed for 
geoenergy and geoenvironmental applications. It 
facilitates the decision making process by combining 
several Multicriteria Decision Analysis (MCDA) and 
Artificial Neural Network (ANN) techniques [1]. The 
GGRNN tool utilises and extends the capabilities of 
GRNN in order to facilitate local spatial variations in 
regression analyses. 

GRNN was first presented by Spetch [2]. GRNN are 
powerful function approximations, capable of modelling 
linear and non-linear relationships in data despite being 
very simple in their structure and operation [3]. 

GRNNs have been considered in this research because 
unlike some of the other type of ANNs, GRNNs do not 
operate as a “black box”. Rather, they predict the values at 
an unknown location on the basis of its proximity to 
known location in terms of the selected independent 

variables. Additionally, because of its structure, it is easier 
to incorporate spatial parameters as one of the 
independent variables to support local variation in the 
regression analysis. 

The paper is organised as follows. Section II covers 
the structure, empirical formulation and algorithmic 
details of the training of the GRNN. Section III describes 
the nature, operation and different variations of GWR 
analysis. Section IV presents the GGRNN introduced in 
this research. Section V highlights the development and 
operation of the GGRNN tool used here to carry out the 
GGRNN analysis. Section VI covers the validation of the 
proposed GGRNN tool. Results obtained using the 
proposed GGRNN tool, are provided in Section VII 
together with a comparison of its results against the 
GWR4 tool. Section VIII summarizes conclusions and 
future work. 

II. GENERAL REGRESSION NEURAL NETWORKS 

GRNNs have the capability to predict, interpolate and 
undertake regression analysis. It is a useful tool when the 
relationship between dependant and independent variables 
is unknown and complex. It supports both linear and non-
linear relationships. 

GRNNs have been used in a number of applications. 
For example, a GRNN has been used to predict rainwater 
runoff in two small sub-catchments of Tiber River Basin 
in Italy using rainfall and soil moisture information at 
different soil depths [4]. The GRNN prediction was found 
to be satisfactory in relation to the actual runoff, with 
coefficient of determination, R2, equal to 0.87 [4]. 

Similarly, three different types of neural networks 
have been used to predict and classify the per-capita 
Ecological Footprint (EF) of 140 nations [5]. These neural 
networks are Multi-layer Perceptron Neural Networks 
(MLPs), Probabilistic Neural Networks (PNNs) and 
GRNNs. The results reveal that neural networks 
outperform traditional statistical methods used for this 
application [5]. 

GRNNs can also be utilised in finding the most useful 
set of variables that can be used in an analysis. For 
example, GRNNs have been used in [6] for the 
determination of the most appropriate variables to forecast 
chlorine in preventing the spread of waterborne diseases. 

A. Structure of GRNN 

GRNNs are very simple in their structure and have the 
following four layers of neurons: a) Input Layer, b) 
Pattern Layer, c) Summation Layer, d) Output Layer. 
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Figure 1 shows the general structure of a GRNN with 
these four layers, as originally suggested by [2]. A GRNN 
can approximate a function and estimate the value of a 
dependent variable from a set of independent variables. 

The Input Layer contains as many neurons as there are 
variables in the input dataset. The input data points are 
presented to the Input Layer which simply feeds them into 
the Pattern Layer. Each input data point is then stored in 
the Pattern Layer. The number of neurons in the Pattern 
Layer is equal to the total number of data points. The 
value of the dependent variable (Y) at the prediction point 
is calculated based on the difference between the values of 
independent variables at the prediction point and their 
respective values at other points at which the independent 
variables are known. The Summation Layer computes the 
numerator and denominator terms for Equation 1, by 
using the difference factor of the independent variables (at 
known and unknown location) and the dependent variable 
(at known location). The last layer is called the Output 
Layer where the value of function Ý � ���� is computed 
using (a). 

 
Figure 1. Structure of General Regression Neural Network [2] 

The mathematical formulation to implement GRNN is 
straightforward and similar to probability distribution 
function. The output function of the GRNN is given as 
[2]: 

Ý � ���� � ∑ �	 		������� ���⁄ �	�	�� 	
∑ 					������� ���⁄ �	�	��

 
(1) 

where Ý is the estimated value of the dependent variable 
at the unknown location, �	 is the value of dependent 
variable at known locations and �	 is a scalar term that 
accounts for the differences between the prediction point 
and the training sample for all  independent variables 
(dimensions) and is calculated as[2]: 

�	� �	 �� � �	���� � �	� (2) 
The distance between the prediction point and a 

training sample defines the influence of that training 
sample in the calculation of ���� (the dependent 
variable	Ý). If this distance is small, the term 

	������� ���⁄ �	increases and is exactly one for a 
difference of zero. A larger value of this term means the 
known value of dependent variable at this training sample 
will have more influence in the calculation of the 
dependant variable at the prediction point. If the distance 

is large, the value of the term	������� ���⁄ � decreases, 
tending to zero for very large distances. Such sample 
points will provide no contribution to the estimation of 
dependent variable at the prediction location. The 
predicted output is bounded between the maximum and 
minimum known values of the dependent variable [2]. 

B. Smoothing parameter sigma (�) 

The � parameter can have single or multiple values for 
different variables (dimensions) in an input dataset. If a 
single value is used, it is very important to standardise the 
independent variables so that they have a mean of zero 
and a standard deviation of one. Without standardisation 
of the independent variables, a single � value will cover 
different distances in each dimension and the value of �	� 
will not represent the actual difference between the 
training sample and the prediction point [2]. A smaller � 
value will result in a localised regression analysis, i.e., 
only the sample points that are very close to the prediction 
point in terms of their distances on different axis 
(domains) will contribute to the calculation of dependent 
variable. A larger � value results in a more globalised 
regression where almost the entire set of data samples 
contributes to the calculation of the dependent variable. In 
this latter case, results are very close to the mean value of 
the dependent variable for the entire set of sample points. 

C. Holdout Method for training of GRNN 

GRNNs require supervised training and the selection 
of the most suitable value for the smoothing parameter, �, 
is very important to obtain reliable results [2]. The 
Holdout Method is a useful and common method for the 
selection of � [2]. Figure 2 explains the Holdout method 
algorithm in a flow chart. 
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Figure 2. Flow chart of the Holdout Method for the selection of sigma 

In the Holdout Method, only one training sample is 
selected from the training set at a time and the value of Ý 
is predicted at this sample point using the rest of the 
samples [2]. The predicted value is compared with the 
actual value and the difference is used in the calculation 
of mean squared error [2]. 

III.  GEOGRAPHICALLY WEIGHTED REGRESSION 

(GWR) 

Geographically weighted regression (GWR) models 
can be used to understand and analyse spatially varying 
relationships between dependent and independent 
variables [7]. A conventional GWR regression model is 
represented by the following equation [7]: 

�	 	� 	�  !�"	 , #	��!,	 	$	%		!
 (3) 

where Yi, Xk,i and εi are the dependent variable, kth 
independent variable, and the error term at location i(u, v) 
respectively.  ! is locally varying coefficient at the ith 
location. Another variation of GWR model is where some 
of the independent are treated as global while others are 
restricted to vary locally. In such models a user given 
spatial kernel defines the area in which the local variables 
are analysed. Such models are called semi-parametric or 
mixed GWR are normally represented by [7]: 

�	 	� 	� 	 !	�"	 , #	�	�!,	 	$	%		!
			$				� 	&' 	(',	 	$	%		'

    (4) 

where (',	  is the )*+ independent variable that is treated 
globally and has a fixed coefficient &' . 

GWR or mixed GWR functions can be applied using 
Gaussian, Poisson, and logistic regression models. The 
models give better regression results and enhanced 
understanding of the relationship between different 
parameters, whether global or local [7].  

IV.  GEOGRAPHICAL GENERAL REGRESSION 

NEURAL NETWORK (GGRNN) 

The GGRNN presented in this study extends the basic 
GRNN model described earlier in Section 2. This 
extension of the original GRNN algorithm allows for local 
variation in the relationship between different parameters. 
The influence of local and global variables are computed 
separately and then summed together. The difference is in 
the calculation of the term D (Distance) if spatial distance 
is used as independent variable as explained earlier. Also 
for the locally independent variables, the influence is 
calculated only within the given neighbourhood in 
contrast to the global variables for which the locations are 
involved. 

In order to define the neighbourhood for local 
variations, two different techniques are used: 

A. Fixed spatial kernel 

In this technique, a user defined spatial kernel, e.g., 
15km, is used to select the neighbouring geographical 
regions (features). These features are used for the 
computation of the influence of the local dependent 
variables only. The influence of global variables is 

calculated in the normal manner from the entire study 
area. 

B. Spatially adaptive kernel 

If the spatially adaptive kernel technique is used, the 
user selects the number of neighbouring areas to define 
the kernel, within which the influence of the local 
parameters is calculated. Since the geometries of the 
administrative boundaries (e.g. districts) are asymmetric, a 
fixed number of neighbouring areas will result in a 
varying spatial kernel, hence the naming of this technique.  

C. Spatial distance as independent variable 

The use of an appropriate neighbourhood size is 
important for the model to fit the data properly. Different 
iterations and comparison of the standardised error can 
help in the identification of the appropriate neighbourhood 
size. However, if it is not clear what type and size of 
kernel is to be used, the GGRNN tool also provides a 
mechanism to use spatial distance between different areas 
as one of the independent variables for the prediction of 
the dependent variable. As discussed earlier in Section 2, 
the neighbouring areas of the prediction location will have 
a greater influence in the calculation of the dependent 
variable. The distance between two geographical features 
(areas) is calculated using (5) based on the centroids of 
either feature [7]: 

�,-.*	.' � /��	 ��0�� $ ��	 � �0�� (5) 

V. GGRNN TOOL 

The GGRNN tool has been developed in the .Net C# 
programming language using the DotSpatial open source 
library. Figure 3 shows the user interface of the GRNN 
based prediction tool. 

 

 
Figure 3. GUI of GGRNN based prediction and regression analysis tool 

The user first selects the GIS layer (Shapefile) 
containing the indicators. The user identifies the 
dependent, global and local independent variables, and 
loads the data into the GRNN tool. The user can select 
whether or not to use spatial distance in the analysis. 
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Figure 4. GRNN sigma tuning and prediction tool

Once the data is incorporated in the neural network, a 
tuning wizard is launched helping the user to select best 
sigma (�) parameters for the analysis. The tuning wizard 
utilises the Holdout Method for the calculation of the Root 
Mean Square Error (RMSE). 

The user can give upper and lower bounds for the 
sigma parameters and a step (interval) to calculate the 
RMSE using the Holdout method. The system plots the 
RMSE values against the corresponding sigma spread 
factors as shown in Figure 4. 

Either the actual, scaled or normalised data values can 
be used for the calculation of RMSE for a given set of �	
values. The user can assign the same � parameters for all 
the independent variables if the data is normalised or 
scaled. However, if the original data values of the 
independent variables are used for the estimation of the 
dependent variable, then it is important to assign the 
sigma values with care. This is important as some of the 
variables may have a different spread and range of data 
values as compare to the others and using a similar sigma 
value can adversely affect the results. 

Adopting spatial parameters in the regression analysis 
in GRNN is similar to the Geographically Weighted 
Regression (GWR) suggested by [7]. If spatial parameters 
are included in the analysis then the tool provides two 
different methods to identify a specific number of 
neighbouring geographical features to be used for the 
prediction analysis. These two methods are a) Fixed 
Spatial Kernel and b) Adaptive Spatial Kernel. 

If an Adaptive Spatial Kernel is selected, only a given 
number (N) of neighbouring geographical features are 
selected for the analysis. The system first calculates the 
distance of each geographical feature from the prediction 
point. Then only N closest neighbours are selected and 
used in the process. However, if a fixed spatial kernel is 
used then all neighbouring geographical features found 
within the spatial kernel are selected. 

In either case the smoothing parameter, sigma (�), 
used for each independent variable computes the influence 
of each neighbouring area on the calculation of the 
independent variable at the prediction point. If a sigma 
parameter is assigned to the spatial dimension, then 
features closer to the prediction point will have a greater 
influence on this calculation. Large values of sigma 
parameters cause the prediction to tend to the mean value 
of the dependent variable in the entire study area of the 
given neighbourhood. 

Once a set of sigma parameters has been selected with 
an acceptable RMSE value, the user can select to use them 
for the actual prediction at an unknown location. If spatial 
parameters were not used in the analysis, only the 
independent variables need to be provided by the user at 
the unknown location, where prediction is to be made for 
the dependent variable. If however, spatial parameters 
were used, then the user must also provide the X and Y 
coordinated of the centroid of the geographical feature, for 
which the dependent variable is to be predicted. 

VI.  VALIDATION  

An application of the GGRNN tool is presented to 
compare its results with those produced by the GWR tool. 
A semi-parametric GWR model application has been 
presented to analyse the relationships between the 
working-age mortality and socio-economic conditions in 
Tokyo metropolitan area, Japan [8]. The same dataset is 
used in this research for two reasons: 
a. The dataset is known to have local spatial variations 

found in parts of the study area, as explained in [8]. 
b. The standardised error resulting in the application of 

GWR and the GGRNN tool can be mapped, analysed 
and compared for benchmarking purpose. 

The Tokyo mortality data covers the 262 municipality 
zones of the Tokyo Metropolitan area, Japan. The older 
age population and rate of house-ownership are used by 
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[8] as the global independent variables, whereas the other 
two variables are controlled locally in the regression 
analysis. The description of dependent and independent 
variables are given in Table 1 below. 

TABLE 1. TOKYO MORTALITY DATASET 

Variable Description Relationship 

Working age 
mortality rate 

Standard mortality 
rates for the 25–64 
age group 

Dependent 
Variable 

Older 
population 

Proportion of elderly 
people (aged over 64) 
within each zone 

Independent 
(Global) 

Own houses Rate of house-
ownership in each 
zone 

Independent 
(Global) 

Professional 
and technical 
workers 

Proportion of 
professional and 
technical workers in 
each zone. 

Independent 
(Local) 

Unemployment Rate of 
unemployment in each 
zone 

Independent 
(Local) 

VII.  COMPARISON OF RESULTS 

GWR version 4 has been used to analyse the 
Geographically Weighted Regression of working age 
mortality rates with socio economic conditions. A 
Gaussian Model has been used for the kernel analysis in 
both the GWR and GGRNN tools. The introduction of an 
offset and a local intercept variable in the GWR analysis 
is recommended [8].  Therefore, the two variables have 
been included in the GWR tool; however, the GGRNN 
tool doesn’t have a provision for this because of the 

structure of its underlying neural network. In both cases 
the independent variables are standardised. Both fixed and 
adaptive kernels have been used to run the model in 
GWR. The recommended fixed kernel for this dataset is 
15km and, for an adaptive kernel type, 50 neighbours are 
recommended [8]. In order to compare the results with 
those produced by the GGRNN tool, the most suitable 
sigma parameter is identified using the Holdout Method 
and RMSE. A sigma value of 0.4 was obtained for both 
adaptive and fixed spatial kernel techniques. Standardised 
residual maps are produced in ArcMap; the resultant maps 
obtained using the GWR tool, are shown in Figure 5 
below. 

Figure 5 shows the standardized residual maps 
produced by the GGRNN tool and GWR4 tool by using 
an adaptive kernel. The results show that the GGRNN tool 
has produced very similar results to the GWR4 tool using 
the adaptive kernel. A slight difference can be observed 
between the two results in the south-eastern part of the 
region which needs to be further investigated. A possible 
reason is the difference between the locally varying 
coefficient used in the GWR tool and the sigma parameter 
used in the GGRNN tool. 

In the second process, both the tools have been set to 
use a fixed spatial kernel of 15 km. The Holdout Method 
used in the GGRNN tool suggests that a network model 
with sigma parameter of 0.4 exhibits the best fit to the 
dataset. The results are shown in Figure 6. It can be seen 
that the two tools have again produced very similar results 
in the case of fixed spatial kernel. 

 
 
 

 
Figure 5. Standardised residual maps using adaptive Gaussian with 50 neighbours. Map A: GGRNN tool.  Sigma parameter: 0.4 (for all independent 

variables). Map B: GWR4 tool 
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Figure 6. Standardised residual maps using fixed kernel of 15kms. Map A: GGRNN tool.  Sigma parameter: 0.4 (for all independent variables). Map B: 

GWR4 tool

VIII.  CONCLUSIONS AND FUTURE WORK 

This paper presents a new regression analysis tool, 
based upon a modified version of the General Regression 
Neural Network (GRNN). The Geographical General 
Regression Neural Network (GGRNN) tool can be used to 
perform to Geographically Weighted Regression (GWR) 
analysis. It can be useful in understanding the underlying 
spatially varying relationships between dependent and 
independent variables and for prediction analysis. The 
GGRNN tool can be used in a number of environmental, 
socio-economic and public health applications. 

The tool provides options to select the independent 
variables as globally fixed or locally varying. The spatial 
kernel can either be assigned as a fixed radius or adaptive, 
i.e., by assigning a given number of neighbouring regions. 

The Holdout Method has been used to compare the 
fitness of a given model. The GGRNN tool allows the 
user to compare the fitness of different models by using 
the Holdout Method. The Holdout Method helps in 
selecting the most appropriate network parameters, 
essential for the working of a neural network. A validation 
of the tool has been carried out using the benchmark 
Tokyo mortality dataset and using the GWR4 tool. The 
validation results demonstrate that the GGRNN tool can 
be used with confidence to carry out geographically 
weighted regression analysis. 

In future work, the performance of the tool will be 
tested against the GWR tool. Also, it will be tested to 
assess its prediction of dependent variable at unknown 
locations for impact assessment. 
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