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Abstract—A huge amount of trajectory data can be derived 

from GPS equipped devices and location based services. 

However, the trajectory data are low-sampled (i.e., have a low 

and irregular sampling rate). In this paper, the problem of 

Personalized Route/Trajectory Reconstruction is reviewed 

when low-sampling data are considered or user criteria are 

incorporated in the reconstruction. Research work in route 

planning systems and the most used routing algorithms are 

also analyzed in order to suggest research directions that 

include the level of personalization or uncertainty management 

as a way to predict/complete a low-sampling trajectory. 

Keywords-Personalized Route Planning Systems; Location-

Based Services; Trajectory Reconstruction; Uncertainty. 

I.  INTRODUCTION 

Being able to choose the most convenient route to travel 
from one place to another is a desirable possibility when 
planning activities. For example, tourists usually ask for the 
best routes for visiting attractive places. Fields such as 
logistic, traffic control, and advertising also demand 
solutions in this regard in order to meet a variety of 
requirements, such as quality of road, cost of fuel, route 
availability, and user preferences, among others [1][2][3]. 
Several authors have recently been focused on the 
incorporation of user preferences and multi-criteria decision 
making aspects in light of the route personalization [3]. 
Other approaches have used GPS data representing historical 
movements of users based on individual [5] or collective 
behavior [6]. The resulting routes are usually closer to the 
typical ones actually followed by users than those suggested 
by route planners as optimal (the shortest and fastest) [7][8]. 

According to the literature reviewed, the terms Route 
Finding Problem and Path Finding Problem are used 
interchangeably. Other term related to the Route Finding 
Problem (RFP) is Routing (or Route) Planning Systems 
(RPS). The request for a route to travel from one place to 
another in the RFP is considered the pair for finding a 
trajectory between low-sampled points. Therefore, the 
reviewed research works are analyzed in relation to the RFP, 
paying special attention to those taking into account user 
criteria or low-sampling-rate data (i.e., when the time 
interval between consecutive GPS points of some trajectories 
is higher than a given threshold) [1]. When low-sampling-
rate data is present, the reconstruction of trajectories may be 
needed, i.e., the description of the movement of the object 
between the two points where no data points are available to 
know where the object is while travelling.  

The rest of this paper is organized as follows: Section II 
describes routing planning systems; Section III describes 
personalization, i.e., incorporation of user preference criteria 
as a way to deal with the trajectory reconstruction problem; 
Section IV addresses the reconstruction of trajectories under 
low-sampling-rate data, and Section V concludes the paper 
and proposes future work. 

II. ROUTING PLANNING SYSTEMS 

RPS are commonly recognized as decision support 
systems [9][10]. These systems sometimes are referred to as 
geo-related decision support tools [10]. In Table I, some 
variations of the term referring to RPS are presented. 
Conventional solutions to RFP are limited because the 
routing is based on just one dimension (criterion): the cost 
[11][12][13]. Many definitions include, explicitly or 
implicitly, the notion of personalization, suggesting that user 
interaction is required. Recent researches have been carried 
out to improve these models through their personalization 
and the incorporation of multi-criteria decision making 
including preference models [3][4].  

TABLE I.  COMMON TERMS REFERRING TO ROUTING PLANNING 

SYSTEMS. 

Author Term Comment 

[4] 

Routing 

systems 

Routing systems aim to help users on 

finding the optimal path to their 
destination regarding travel distance, 

travel time, among other criteria. 

[10] 

Personalized 

user-centric 
route finding 

A personalized user-centric route 

finding application incorporates user 
preferences and the environmental 

features around a user. User preferences 

and environmental features are the key 
elements to assess a route. 

[3] 

Personalized 

route 

planning 

systems 

A personalized route planning system 

provides a route based on minimizing a 

combination of user defined criteria 

such as travel distance, travel time, the 

number of traffic lights, and road types. 

[11] 

Route 

guidance 

systems 

Route guidance systems refer to all the 

factors considered before and during a 

trip to choose or adjust a route. Route 
guidance systems are recognized as a 

fundamental component of intelligent 

transportation systems. 
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A brief schema review of the RFP in RPS is shown in 
Figure 1. The RPS are supported by Routing Planning 
Algorithms. When the personalization is included, 
incorporating preferences or decision strategies originates the 
concept of Personalized Routing Planning Systems. 

The classical algorithm for RFP based on the shortest 

path issue was proposed by Dijkstra [14] and it has been 

used widely to find the shortest path between an origin 

vertex and a destination vertex in a weighted graph, 

exploring the entire graph to determine the lowest cost route. 

Similarly, the A* algorithm (a modification of Dijkstra’s 

algorithm) finds the optimal path using an appropriate 

heuristic that defines which is the best node to be visited next 

(it avoids explore the entire graph) based in the lowest 

heuristic cost [15], e.g., some of the Minkowski metrics [16]. 

All of these early approaches are based on algorithms that 

use an edge cost, i.e., they performed a one-dimensional 

analysis. For this reason, these algorithms are inadequate or 

incomplete since users generally have different purposes and 

they do not share the same movement behavior, highlighting 

the need to personalize and allow the user to interact with 

RPS. 

III. PERSONALIZATION 

The technology-based definition of personalization 
provided by the Personalization Consortium (2005) is “the 
use of the technology and customer information to tailor 
electronic commerce interactions between a business and 
each individual customer”. An experiment conducted by 
Golledge [17] showed that the criteria used by humans to 
deal with path selection problems may be a complex task 
that covers a wide spectrum of choices. The routes were 
determined using criteria selection such as shortest distance 
and fewest turns. Variables such as orientation and the 
possibility of retracing the route (i.e., interchange the origin 
and the destination) were also studied to determine the 
change of the user route criteria selection when traveling in 
one direction or the other. To illustrate the above problem, 
two possible routes between an origin O and a destination D 
are shown in Figure 2. The route O-C-D is usually suggested 
by common RPS without considering the probability of a 
traffic jam or local restrictions for moving between streets.  

 
 

Figure 1.  Schema review of the RFP according to personalization in RPS. 

However, most users would select the route O-A-B-D 
even though path O-C-D has the minimum distance, because 
more points of interest (POI) can be found along it 
(supermarkets, parks, or gasoline stations). This is evidenced 
by Duckham and Kulik [18], showing how a simple path 
solution offers considerable advantages over shortest paths in 
terms of ease of description and execution. Several 
researchers have stated the importance of the personalization 
when solving routing planning tasks [3][5][9].  

The goal of personalization is the automatic adaptation of 
an information service in response to the implicit or explicit 
needs of a specific user [9]. That is, the automatic 
identification of  preferences from the user movement 
behavior history [7][8] or explicit requests of the user 
[3][10]. Also, Fischer [19] stated that personalization can be 
described by adaptable and adaptive methods, and 
Oppermann [20] gives the following definition to those 
terms: in adaptable systems the user controls the adaptation 
process whereas in adaptive systems the process is 
automatic, i.e., without user intervention. Nadi and Delavar 
[3] define adaptable and adaptive personalized route 
guidance systems in the context of RPS. Examples of 
adaptable [3][10] and adaptive [21][22] RPS can be widely 
found in the literature.  

In [13], static and dynamic systems, deterministic and 
stochastic systems, reactive and predictive systems, and 
centralized and decentralized systems are distinguished. In 
[11], descriptive and prescriptive guidance and static and 
dynamic guidance are reviewed. In [12], route guidance 
systems are classified as infrastructure-based and 
infrastructure-less systems. Infrastructure-based systems are 
based on two components: i) hardware devices deployed in 
streets/roads and ii) computer systems installed in moving 
objects (e.g., a GPS). Infrastructure-less systems require only 
the second component. Personalization can also be defined in 
terms of user route choice criteria.  

 
 

 

 

Figure 2.  Problem of route finding in a road network. 
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A special issue of the personalization in RPS is the 

characterization and incorporation of several criteria, e.g., 
route length or travel time. Table II shows some of them 
classified as quantitative (they are measured from a map or 
any other source) and qualitative (they are no-numeric 
criteria that are ranked according to the impact on the user). 
Previous research [3][4][23] found that route selection 
criteria can be grouped into four general criteria: speed (time, 
distance), safeness, simplicity, and attractiveness (POIs-
based scenic path):  

A. Speed: Distance 

Distance is normally considered the most important 
criterion for route choosing. Even without route planning 
systems, the path with the shortest distance is intuitively 
chosen with a minimum previous knowledge of the RN 
structure (however, the presence of known POIs may 
lengthen the road trip. See attractiveness). 

B. Speed: Time 

Time is a variable that depends of several factors such as 
length (time is directly proportional to the length of road), 
average speed (higher in main avenues than in small streets), 
quality of roads, and weather conditions (e.g. when it rains, 
travel time is higher due to traffic conditions derived from it) 
or quality of traffic as described in [4]. 

C. Safeness 

It groups a series of criteria based on characteristics (bike 
lane availability, area safeness, night lighting, traffic level), 
possibilities (lack of busy intersections, public transport, and 
roundabouts), and features of the road (presence or lack of 
pavement, slope angle) [23]. 

D. Simplicity 

The simplest path is based on the idea that the turns 
imply reductions of velocity and unnecessary maneuvers. 
Thus, the path is “better” if it has fewer turns [4]. Moreover, 
the description of the path is easier when a simplest path 
approach is followed, as the explanation, depiction, 
understanding, memorizing, and/or execution of it [18], 
which is useful for users who are navigating through an 
unfamiliar geographic environment. 

TABLE II.  QUANTITATIVE AND QUALITATIVE CRITERIA OF RFP. 

Author Criteria Quantitative Qualitative 

[3][4] Distance, Travel Time x  

[4][8][23] Traffic x  

[3][4][18] 
Costs of Turns/ 

Simplest Paths 
x  

[24][25] 
Number of Scenic 

Landscapes / POIs 
x  

[3] 

Number of Junctions, 
Travel Reliability, 

Directness, Road 

Width, Number of 
Stop Signs 

x  

[3] 
Quality of Road, Type 

of Road 
 x 

E. Attractiveness  

Variables such as distance, time, or turns are common 
route criteria for navigating a street network, but 
computation of the most scenic route is a special issue [26]. 
The scenic-path notion is defined from the touristic 
perspective. The main idea is to travel from A to B trying to 
visit as much touristic places as possible and minimizing 
route length at the same time. The cost is the number of 
touristic attractions between the two points (for instance, the 
streets with a considerable number of POIs have the lowest 
cost). A modification of the cost is required before the 
execution of a shortest path algorithm if the goal is to find a 
route that traverses as much POIs as possible and, at the 
same time, the shortest route between two POIs. 

Figure 3 exhibits a section of Guarne, a small town in 
Colombia, with a route between two points using the shortest 
path algorithm. Figure 3(a) shows the minimum distance 
between point A and B. Figure 3(b) shows the route with the 
minimum travel time between point A and point B. Figure 
3(c) shows the route between the two points using the 
simplest path approach. The turns in the path are less in the 
latter, even though the whole path may be longer. Figure 3(d) 
shows the route using the scenic path approach: the route is 
draw along the street nearest to the town river where touristic 
attractions are present (restaurants, beach games, etc.). 

Figure 3 shows how a path may vary when different 
criteria are considered. Users not always choose the shortest 
route. This set of exercises provides evidence that route 
selection is a process that requires support of decision 
strategies and preference models to back personalization. 

 
 

 

Figure 3.  Different route finding criteria from point A to point B. 

119Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services



IV. PERSONALIZED ROUTE FINDING BASED ON 

TRAJECTORIES 

The RFP reviewed here is the reconstruction of low-
sampling trajectories. To solve this problem, pattern-based 
and greedy searches approaches has been considered 
(Preference-based Greedy search, NaïVe Greedy search, 
Pattern+Greedy search) [27]. Pattern-based approaches allow 
offline processing of historical trajectory data to discover 
mining patterns and infer routing information [1], while 
greedy search approaches make optimal local choices at 
every decision stage, providing a dynamic/online 
recommendation on the best immediate location to be visited 
[27]. Most of these procedures deal with a general 
mining/prediction problem over historical trajectories 
[6][8][27][28]. In the reviewed works, the personalization is 
based on the trajectory history data of a particular user. 

A. Route Planning based on GPS trajectories 

In [29], the problem of searching the k-Best Connected 
Trajectories (k-BCT) is addressed. A small set of locations 
(queried points) is given as an input to an incremental k-NN 
(K-Nearest Neighbor) based algorithm, which progressively 
retrieves trajectories nearest to each location, using best-first 
and depth-first k-NN algorithms. The quality of the 
connection between locations provided by the discovered 
trajectories is given by a similarity measure. A dataset of 
Beijing collected by the Microsoft GeoLife Project was used 
to analyze the efficiency of the KNN algorithm, showing a 
better search performance if the best-first k-NN algorithm is 
chosen. In [6], the problem of discovering the most popular 
route between two given locations using historical user 
trajectories is addressed. A Coherence Expanding Algorithm 
is proposed for mining users movements together with a 
popularity indicator. Then, an algorithm for searching the 
most popular route given two locations is applied. 
Considering 276 truck trajectories used in Athens and 
applying the proposed algorithm, the most popular routes 
were identified. Then, these findings were compared against 
those obtained with the shortest path approach. In [5], a 
Pattern-aware Personalized routing framework (PPT) is 
proposed using a two-step method to compute personalized 
routes. First, a set of frequent road segments is derived from 
a user historical trajectories database to construct a familiar 
RN followed by a specific user. Then, while a route is 
computed between a specific source and a destination, a 
second algorithm is proposed to discover the top-k 
personalized routes connecting some of the segments that a 
user has previously traveled. The algorithms were tested 
using a real trajectory dataset from one user in Kaohsiung, 
Taiwan. The algorithms derived the top-k personalized 
routes that approximate the real top-k personalized routes. In 
[8], smart driving directions are mined from taxi drivers’ 
experience. A routing algorithm is proposed to provide the 
fastest route from a given origin to a given destination. Thus, 
a time-dependent graph is built where nodes are recognized 
as landmarks, i.e., road segments traversed by a significant 
number of taxis and edges represent taxi routes between 
landmark roads. This demonstrates that about 16% of time 

can be saved with this method compared to speed-constraint 
and real time traffic-based methods. In [7], fast routes are 
mined from taxi traces and are customized for a particular 
driver behavior. A mobile device learns about the user 
driving behavior thanks to the user driving routes and finds 
the fastest route. This model outperforms the previous work 
[8]. In [27], the construction of a preferred route using 
location check-in data are done based in the popularity of a 
certain route and the preferences ranked by a set of users. 
The goal is to build a trajectory where the reconstruction 
meets the preferred locations to be visited by a group of 
persons using Gowalla check-in data and a Pattern+Greedy 
method (this combination of Pattern and Greedy route search 
outperforms both methods when used separately). Similarly, 
in [28], the top-k Trajectories are extracted from interesting 
regions with higher scores (attractiveness) mined from 
historical GPS trajectories. A framework for trajectory 
search called Pattern-Aware Trajectory Search (PATS) is 
developed, which includes an off-line pattern discovery 
module and an online pattern-aware trajectory search 
module. This framework only searches for the top-k maximal 
trajectories with higher scores according to the number of 
interesting regions and does not infer new routes. 

B. Uncertainty in Trajectories 

When a trajectory is reconstructed, its uncertainty should 
be considered. Uncertainty from different sources is 
evidenced by Kuijpers and Moelans [30]: i) Accuracy of the 
GPS observation and ii) the uncertainty derived from low 
sampled points of a trajectory. Those are also referred as 
measurement and sampling errors [31]. Previous works 
[5][6][8][29] relied on high-sampled trajectories; however, 
the effectiveness of inferred routes is poor due to its 
inadequate management of low-sampling trajectories where 
uncertainty is reflected. The causes for low-sampling 
trajectories include the lack of users sharing their position or 
taking geo-tagged photos from every place and every second. 
This is due to the privacy concerns publishing personal 
location data to potentially untrustworthy service providers 
may pose [32]. Research works has been carried out to 
preserve publishing data of a moving object to a third party 
for data analysis purposes [33][34]. Privacy-preserving 
techniques has been studied based on false location [35], 
space transformations [36], or spatial cloaking [37]. 
However, those works are not aimed to reduce low-sampling 
directly. Instead, they provide privacy-preserving techniques 
to promote location, sharing information. 

The main features of the trajectories regarding to 
uncertainty are highlighted in [38]: 

1) Spatial Biases: The locations of data points in two 

trajectories are different, i.e., two similar trajectories can be 

depicted by means of different location data points. 

2) Temporal Biases: The occurrence time of two 

trajectories are different, i.e., two similar trajectories visiting 

the same POIs could be done in two different time periods. 

3) Silent Durations: The time periods when no data 

points are available to describe the movements of the users. 

120Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services



Relevant data are missing during silent durations. User 
movement criteria can fulfill partially those silent durations. 
For the best of our knowledge, the low-sampling-rate 
trajectory reconstruction problem has not considered the user 
preferences. We strongly believe this is a rich research area 
with application in several domains. For example, for 
location-based advertising, it might mean the possibility of 
advertising strategies based on data about routes followed by 
users from a POI A to a POI B.  

Several studies [27][39][40] infer routes from a sequence 
of POIs but a detailed route between two consecutive POIs is 
not specified. The underlying assumptions of these works are 
that the user movement is free. However, the infrastructure, 
e.g., buildings, may be considered to obtain a reduced overall 
uncertainty and inaccuracy in the data. In [2], a Route 
Inference framework based on Collective Knowledge 
(RICK) is developed. Given a set of locations and a time 
span, a two-step method is followed: first, a “routable graph” 
is built and, then, the top-k routes according to the route 
inference algorithm are constructed. Two real dataset are 
used: registers of Foursquare check-in application used in 
Manhattan and trajectories used in Beijing. The aim is to 
demonstrate the effectiveness and efficiency of RICK. In [1], 
the problem of reducing uncertainty for a given low-
sampling-rate trajectory is addressed. Historical data are used 
to discover popular routes as an estimation of low-sampling 
trajectories. A real trajectory dataset generated by taxis in 
Beijing in a period of three months is used to validate the 
effectiveness of their proposal and shows higher accuracy 
than the existing map matching [41]. 

V. CONCLUSIONS AND FUTURE WORK 

The trajectory reconstruction problem is still an open 
research issue, especially what is related to uncertainty due 
to low-sampling data and incorporation of user preferences. 
Simple linear interpolation, as a method of reconstruction, 
does not represent users real movement because they move 
according to a certain criteria such as time or the amount of 
touristic/scenic places. Indeed, the reconstruction of 
trajectories using user preferences is expressed as a need in 
recent research works [38][42]. As far as we know, there are 
no works that involve several criteria as a way to reconstruct 
low-sampling trajectories. This approach can be enhanced by 
the restriction of the movement in a RN [43] and methods to 
predict the location of moving objects in a RN [44]. 
Moreover, the current availability of GPS loggers gathered 
from mobile devices are useful in a variety of ways to make 
driving better [45], but effective usage of the huge amount of 
data is still a challenge [46]. Considering the different 
possibilities of user criteria reconstruction of trajectory and 
the huge amount of low-sampling data, data analysis tasks 
related to these possibilities of reconstruction can be 
conducted. Therefore, analytic results over reconstructed 
trajectories can vary if different criteria of reconstruction are 
used. For example, if a trajectory is reconstructed based on 
the criterion of minimize turns, the main avenues might be 
interesting for analysis tasks because those are the longest 
without deviations, but if the amount of POIs are used as a 

criterion of reconstruction, then the avenues nearest to tourist 
attractions might be the interesting ones. 
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