
A new nD Temporal Geodata Management Approach using GML

Martin Hoppen, Michael Schluse, Juergen Rossmann

Institute for Man-Machine Interaction
RWTH Aachen University

Aachen, Germany
Email: {hoppen,schluse,rossmann}@mmi.rwth-aachen.de

Christoph Averdung

CPA Geo-Information
Siegburg, Germany

Email: averdung@supportgis.de

Abstract—Geodata represents the state of a real world phe-
nomenon at some point in time. Multiple, differently interpreted
reference times can be associated to the same datum yielding an
n-time-dimensional (nD) problem. This reference time, however,
is often ignored, reduced or managed ”manually” on application
level. We propose a new approach for nD temporal geodata
management encapsulating and hiding this complexity. The
Geography Markup Language (GML) and a transactional Web
Feature Service (WFS-T) are used for standard compliant data
exchange. Its feasibility is proven by a reference implementation
and applications. Thus, the main achievement of this paper is the
presentation of a new nD temporal data management approach
using time point representation and its application to GML-based
forestry applications.

Keywords–Geodata Management; Temporal Data Management;
Temporal Databases; GML; WFS-T.

I. INTRODUCTION

In geodata, the concept of time is pervasive. Geodata
represents the state of a real world phenomenon at one or
more points in time. Orthogonally, the data itself may be
captured, manually revised, or updated at different times.
There may also be some point in time where the geodata
becomes effective, i.e., valid in a formal sense. Finally, when
incorporating geodata into simulation models, simulation time
can be considered, as well. These different interpretations of
time values are called time dimensions [1].

Thus, when dealing with geodata, its time references can
only be omitted in the simplest cases. An appropriate tem-
poral geodata management is therefore advisable. However,
managing temporal references may be a complex, tedious and
error-prone task – in particular when performed ”manually”
on application level. Instead, one should prefer a transparent
data management layer, encapsulating and hiding this com-
plexity. Another advantage of such an application-independent
approach is that the same management layer can be reused for
different applications. Regarding the aforementioned diversity
of time dimensions, the underlying temporal modeling concept
should furthermore be sufficiently universal.

In previous publications, we presented the fundamentals
for using temporal data management in 3D simulation ap-
plications [2]. Subsequently, we mentioned the idea of an
n-time-dimensional versioning concept for geodata [3]. In
this paper, we introduce a detailed mathematical specification
of this concept and demonstrate its feasibility by means of
a reference implementation on geodatabase and on client
application level. Furthermore, we show how this higher-order

temporal metadata is marshaled into a GML representation
for data exchange – in particular based on WFS-T. Finally,
the approach is used as a basis for distributed parallel data
management.

The rest of the paper is structured as follows. In Section II,
we give an overview of the state of the art. In the following sec-
tion (Section III), the new concept for nD-versioning is intro-
duced. Its realization in a geodatabase system and integration
into a 3D simulation system is presented in Sections IV–V. The
approach is applied to a distributed parallel data management
scenario in Section VI presenting a corresponding application
in Section VII. We conclude the paper in Section VIII.

II. STATE OF THE ART

A. Temporal Databases

As described in [4][5], in general, a temporal database
is any database containing some temporal information. This
can be explicitly modeled within the scope of the application
schema, e.g., a date field ”start of employment” for an em-
ployee’s record. Here, application programs have to manage
temporal data on their own, which can be a complex task for
sophisticated scenarios. To cope with this complexity, different
concepts have been developed generalizing the problem.

Furthermore, a time value must be interpreted. Such inter-
pretations are called time dimensions [1]. The time associated
with an event can represent its occurrence in the real world.
This time dimension is called valid time, the corresponding
database is called a valid time database. When time values
refer to the point in time when the values were stored in
the database, it is called transaction time, the corresponding
database transaction time database. A database combining
both time dimensions is a bitemporal database. Besides these
two most common time dimensions there can be more inter-
pretations.

When using valid time, for each operation (read or write)
the user has to supplement the point in real time corresponding
to the event. This also allows to specify future or past events
leading to so-called proactive or retroactive updates. When
using transaction time, however, timestamps for writing oper-
ations are automatically derived from the database’s system
clock; proactive or retroactive updates are impossible. For
reading operations omitting to specify a transaction time, the
current (i.e., last written) value is returned. This can also be
specified as a transaction time of cur (current). For other points
in time, the corresponding historic value is returned.

110Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

When updating a data item in a temporal database, its
previous state (i.e., version) is not lost. Rather, a new version
with the new value is inserted and the previous version is
closed becoming a so-called history version. Thus, every data
item is represented by a set of n>0 versions. The state of
a temporal database at a certain point in time (or a tuple
thereof) is called a snapshot. Likewise, non-temporal databases
are called snapshot databases.

A usual approach is to store start as well as end timestamps
for each version and time dimension. While every version
must have start timestamps, end times are only set to close
a version. Deleting a data item is only performed logically by
closing its current version. Inserting a new data item creates an
initial version. Following this standard approach, in bitemporal
databases, an update even creates two new versions. By updat-
ing a data item, its current version is closed concerning valid
time by setting an end timestamp. The timestamp’s update
itself however leads to a new version regarding transaction
time but still holding the previous value of the data item. The
second version is created with the actual new value and current
timestamps.

In relational databases, this concept can be implemented
by adding start and end timestamp attributes for each time
dimension to every relation. This has the drawback of re-
dundancy as changing a single attribute value of a tuple
creates a new version duplicating all other attribute values.
This can, for example, be reduced by dividing the relation into
subrelations. In object-oriented or object-relational databases, a
common approach is attribute-based versioning. Here, usually,
an attribute version is stored as a tuple of start and end time for
each time dimension and the corresponding value. Thus, for
each of an object’s attributes, a list of such tuples is stored. In
addition, the object itself maintains so-called lifespan temporal
attributes for each time dimension. They represent its overall
lifetime from creation to deletion.

Following [6], the aforementioned approach of storing start
as well as end times for each version is called an interval
representation. In contrast, storing only start times is called
a time point representation. Here, subsequent versions’ start
times close preceding versions. Consequently, each version has
a certain scope comprising those points in time the version’s
value is ”visible.”

An extensive overview of existing spatio-temporal database
models is given in [7]. While about 2/3 of the systems
are bitemporal, in contrast to the proposed approach, none
provides three (or more) time dimensions. Furthermore, only
about 1/3 of the proposed models have been implemented
and about 1/3 lack a formal representation. Other, more
recent approaches like [8] do integrate more dimensions (scale)
but reduce time to one dimension. Finally, a very recent
publication [9] presents a substantial online bibliography on
various aspects of temporal GIS, which has yet to be examined.

B. Temporal Data Management Standards

The International Organization for Standardization (ISO)
norm 19100 [10] series of geographic information standards
in combination with the specifications of the Open Geospatial
Consortium (OGC) [11] provide the basis for designing the
structure of time-related geospatial data. For a standard-based

design of geospatial data structures with a focus on database-
driven data management, the following ISO standards are
important:
• ISO 19119: Geographic information - Services
• ISO 19109: ... - Rules for application schema
• ISO 19107: ... - Spatial schema
• ISO 19111: ... - Spatial referencing by coordinates
• ISO 19125: ... - Simple feature access
• ISO 19136: ... - Geography Markup Language (GML)
ISO 19108 adds specifications for the description of time-

related issues. This is the basis for extending the usually
3-dimensional structure of geospatial reference systems by
temporal properties. For that purpose, ISO 19108 provides
rules for the schema design of time as an absolute (point of
time, duration) or a chronological (before, after, in-between)
specification of time.

The geospatial data’s reference time can be modeled in
different ways, depending on the technical requirements of
the given task. It can either be part of the data’s schema
itself (explicit modeling) or it can be a built-in property
of the applications system architecture (implicit modeling).
In both cases, ideally, the specifications of ISO 19108 are
taken into account yielding an implementation that considers
international standards.

III. nD-VERSIONING

As motivated in Section I, besides valid and transaction
time (e.g., combined in a bitemporal database), even more time
dimensions can be thought of. One of these is the effectivity
of a change, i.e., the time it becomes effective or valid in a
formal sense. For example, in data acquisition for a forestry
application (compare Section VII), tree heights may be updated
over a longer period of time. Each height value is associated
with the appropriate valid timestamp (actual time of the
measurement) and transaction timestamp (time of the database
entry). The third timestamp represents the time a change
becomes effective, e.g., the beginning of the next inventory
period at the end of all measurements. This allows to decouple
the description of real world phenomena with valid time from
the effectivity of these values while modeling the more or less
technical information about data storage with transaction time.
While this three-time-dimensional scenario shall be used to
motivate and explain the following specification, our concept
can be generalized to arbitrary kinds and numbers of time
dimensions.

For this higher-order temporal database, a new concept
for evaluating time point representations was developed. As
mentioned above, in this case, historic versions are only
implicitly closed by other versions’ timestamps. We show
how this representation can be applied to all integrated time
dimensions at the same time.

A. One and Two Time Dimensions
To begin with, this approach can also be applied for one

or two time dimensions. In the former case, every update is
associated with a single (scalar) timestamp ti with associated
version vi. The interval [ti, tj), where tj>ti is the next
timestamp, defines vi’s scope (with tj=∞ if ti is the last
timestamp). A retroactive update (e.g., in case of a valid
time database) with timestamp tk, ti<tk<tj splits the existing
interval into [ti, tk) and [tk, tj).

111Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

In the bitemporal case (i.e., with the two time dimensions
transaction and valid time), an update is associated with a
timestamp tuple (tTi , t

V
i) for transaction time T and valid time

V . Here, the two-time-dimensional scope of the associated
version vi initially (without any other existing versions) is a
quarter-plane restricted by the two rays emerging from (tTi , t

V
i)

parallel to and in positive direction of the respective axis
(dotted area in Figure 1 left).

T

V

(tT
i,tV

i)

T

V

(tT
i,tV

i)

(tT
i+1,tV

i+1)

T

V

(tT
i,tV

i)

(tT
i+2,tV

i+2)

tT
j

(tT
i+1,tV

i+1)

Figure 1. Bitemporal example of the evaluation schema for the higher-order
temporal database.

Inserting a new version vi+1 with a timestamp tuple
(tTi+1, t

V
i+1) with tTi <tTi+1, t

V
i <tVi+1 (Figure 1 center) reduces

the scope of vi to two infinite ”tubes” while the new scope of
vi+1 is again defined by a quarter-plane rooted at (tTi+1, t

V
i+1).

Thus, value version vi+1 is only visible when considering
a reference time greater or equal in both timestamp compo-
nents. As transaction time does not allow retroactive updates,
tTi <tTi+1 must always be valid. However, valid time allows
for tVi >tVi+1. An example is shown in Figure 1 (right). A
new version vi+2 with timestamp tuple (tTi+2, t

V
i+2) is inserted

where tTi+1<tTi+2, t
V
i+1>tVi+2. While vi’s scope is similarly

restricted as in the previous example, vi+2’s scope stops
at vi+1’s. We call this behavior the ”Golden Rule”: The
expansion of a limiting ray stops at preexisting other scopes.
In the exemplary scenario, the expansion of the ray in V -
direction (V -ray) shall stop. This allows retroactive updates
with regard to valid time to ”slide in between” existing values.
That is, for any tT≥ tTi+2, the scope of vi+2 is between vi’s and
vi+1’s scopes. As a corollary, T -rays do not stop at existing
V -rays. In particular, this makes the scope of new versions
independent of their insertion’s order regarding valid time. In
Figure 1 (right), the order of the valid timestamp components
is irrelevant to the resulting partitioning along the V axis.
Figure 2 gives an example for an alternate insertion order.
The partitioning regarding valid time along any tTj >tTi+2 is
identical to the prior case.

T

V

(tT
i+2,tV

i)

(tT
i,tV

i+1)

(tT
i+1,tV

i+2)

tT
j

Figure 2. Inserting versions in an alternate order (i.e., different transaction
times) yields the same partitioning along a tTj >tTi+2.

B. Three Time Dimensions
This evaluation schema can now be extended to the three

time dimensions as mentioned above: transaction time T ,

valid time V , and effectivity time E. This leads to three-
dimensional timestamps (tTi , t

V
i , t

E
i) for every version vi. The

resulting scope (to begin with, without interference of other
timestamps) is a ”cube” with infinite extent in direction of
each axis. The simplest case can be compared to the 2D case
in Figure 1 (center) and is shown in Figure 3: The scope
for timestamp (tTi , t

V
i , t

E
i) is reduced to (up to) three ”walls”

by a new version with timestamp tuple (tTi+1, t
V
i+1, t

E
i+1) if

tTi+1≥ tTi , t
V
i+1≥ tVi , t

E
i+1≥ tEi . Note that – as for the 2D case –

the actual scopes infinitely expand in (positive) axis directions.

Figure 3. Intersection of ith (orange) and (i+ 1)th (yellow) 3D time scope
for tTi+1≥ tTi , tVi+1≥ tVi , tEi+1≥ tEi .

For other constellations, again, the ”Golden Rule” resolves
ambiguities. In the 3D case, the rays emerging from a times-
tamp tuple in each axis direction have to be tested against
the orthogonal quarter-planes defined by the other two axes
of other timestamps. An example is given in Figure 4. The
V -ray of one timestamp (orange) is tested against the quarter-
plane defined by the T - and E-rays (T -E-quarter-plane) of a
second timestamp (yellow). To allow for retroactive updates
relative to the V -axis to ”slide in between” existing values as
in the two-time-dimensional case, the V -ray has to stop at the
T -E-quarter-plane.

Figure 4. Expansion in V -direction of one timestamp’s scope (orange) stops
at T -E-quarter-plane of other timestamp’s scope (yellow).

In general, the rule has to state whether a T -, V -, or E-ray
has to stop at the respective orthogonal V -E-, T -E-, or T -V -
quarter-planes. Like in the 2D case, a desired property is that
the partitioning shall be independent of the versions’ insertion
order, i.e., of their timestamps’ T component. Corresponding
to the partitioning of the vertical line at tTj in Figure 1 (right)
and Figure 2, this is the partitioning of a ”high enough”
intersecting V -E-plane, i.e., for a tTj greater than any occurring
tTi . An example is given in Figure 5. Compared to Figure 4,
the T component tTi of the ith timestamp (orange) is less
than that of tTi+1 (yellow). In each case, the respective V and
E components are identical. In both scenarios, however, the

112Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

final (i.e., with regard to T) partitioning along an intersecting
V -E-plane (depicted in purple in Figure 5) is equal. In the
first scenario (tTi >tTi+1, Figure 4), a V -ray must stop at a T -
E-quarter-plane. In the second (tTi <tTi+1), an E-ray must not
stop at a T -V -quarter-plane. Otherwise, the partitioning would
not be consistent.

Figure 5. Expansion of E-ray must not stop at T -V -quarter-plane to yield
the same partitioning on a V -E-plane (purple) as in Figure 4.

Figures 4 and 5 depict the case where tVi <tVi+1 and
tEi >tEi+1. For reasons of symmetry, the same arguments apply
to the case where tVi >tVi+1 and tEi <tEi+1. In fact, only the
indexes (i and i + 1) and thus the colors of the two scopes
(orange and yellow) need to be swapped.

The other distinct case is tVi <tVi+1 and tEi <tEi+1. For
tTi <tTi+1 this is already depicted in Figure 3. Here, all coordi-
nates of timestamp i (orange) are less than those of timestamp
i + 1 (yellow). To achieve the same partitioning on a V -
E-plane for tTi >tTi+1, T -rays must not stop at V -E-quarter-
planes. Figure 6 shows an example. The T -ray emitted from
the (i + 1)th timestamp (yellow) does not stop at the V -
E-quarter-plane defined by the ith timestamp (orange). The
dashed ovals mark the yellow scopes expansion reducing the
orange scope. Again, the same argument applies to tVi >tVi+1

and tEi >tEi+1 and can be depicted by switching colors (orange
and yellow) in Figures 5–6.

Figure 6. Expansion of a T -ray must not stop at V -E-quarter-planes to
yield the same partitioning on a V -E-plane (purple) as in Figure 3.

Altogether, the Golden Rule for the three-time-dimensional
case states that
• T -rays must not stop at V -E-quarter-planes,
• V -rays must stop at T -E-quarter-planes, and
• E-rays must not stop at T -V -quarter-planes.
The constraints for the choice of these rules are
• partitioning on a ”high enough” V -E-plane shall be

independent from insertion order, i.e., transaction time T
and

• retroactive updates relative to the V -axis shall ”slide in
between” existing values.

IV. IMPLEMENTATION IN GEODATABASE

Our goal was to implement the time-related behavior of
a geospatial reference system independently of any manufac-
turer. This approach ensures the portability between differ-
ent database systems like Oracle or PostgreSQL, especially
when managing time-related geospatial data. For that purpose,
during the development of the presented nD temporal data
management system, a transformational layer was introduced
as an agent between application development and physical data
storage of geospatial data (Figure 7). This layer provides a
transformation between the temporal properties of the data
schema (independent of explicit or implicit modeling of time)
and its implementation, e.g., in terms of tables in an object-
relational database.

Database	 Layer	 (PostgreSQL,	 Oracle,	 ...)	

Transforma0onal	 Layer	

Applica0on	 Layer	

Service	 Layer	 (WFS-‐T)	

Figure 7. Layered architecture of the proposed approach.

On the application layer, GML is used to describe and
request geospatial time-related data within the proposed data
management system. A GML-encoded dataset combined with
a request (select, insert, update, delete) is transformed into
Structured Query Language (SQL) statements by the transfor-
mational layer.

The transformational layer is configured using an appli-
cation schema provided as an Extensible Markup Language
(XML) schema file (XML Schema Definition (XSD)) using
the specifications of ISO 19109. This schema defines the rules
for the automatic generation of SQL statements for the nD
data storage.

For OGC-compliant data retrieval and manipulation, a Web
Feature Service (WFS 2.0) was implemented as an interface to
the transformational layer. It accepts geospatial data (in terms
of GML 3.2.1) with multiple timestamps that is passed to the
nD data management system where a consistent handling of
the space-time-reference is ensured.

V. INTEGRATION INTO SIMULATION SYSTEM

As presented in [2], we supply our simulation system
clients with a shared simulation model. While the model
is managed by a central (geo)database, each client uses an
in-memory runtime simulation database to locally cache the
model for real-time access (Figure 8). This combination of
databases can be seen as a distributed database system that
uses change notifications for replication and synchronization
[12].

The simulation database itself is a snapshot database
(compare Subsection II-B). Thus, replication from the central
geodatabase must be performed with reference to a certain

113Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

timestamp tuple provided by the user or an application compo-
nent. To make the snapshot consistent, the entirety of replicate
copies must always represent the same timestamp tuple. Thus,
on changing the reference time, replication has to be updated.
A naive approach is to unload all objects and then reload
them with the new reference date. A more efficient approach
is to only reload data that changed in between the previous
and the new reference time. For this purpose, however, the
central geodatabase must be able to (quickly) provide a list
of all changes between two reference time tuples, e.g., by
maintaining a queryable global change log.

Figure 8 shows an example scenario for the bitemporal
case. The central geodatabase contains a simple forest model
comprising a Tree class with a height attribute. A snapshot
of the object a:Tree is replicated to the client using reference
time (tT=cur, tV =2012). By using transaction time tT=cur
(the default access mode for most users), the last written value
for valid time tV =2012 is replicated. Thus, the height of
a:Tree’s snapshot within the simulation database is 16.0m.

Geodatabase	

Sim.	 DB	

a	 :	 Tree	
felled = false

a	 :	 Tree	
felled = false

a	 :	 Tree	
height = 16.0m

a	 :	 Tree	
height

V

11:10 11:12 11:14

2008

2010

2014

h=15.0m

h=16.0m

h=21.0m

11:16

2012

ref	 2me:	 (tT=cur,	 tV=2012)	 11:18 T

Figure 8. Bitemporal example: Replicating a snapshot of a tree object from a
central geodatabase with reference time (tT=cur, tV =2012).

Besides replicating data from the central geodatabase,
changes within a simulation client can also be synchronized
back. For that purpose, first, the local snapshot must be re-
freshed to represent the desired reference time for the change.
Subsequently, the change is applied locally and an update
transaction with the exact same time tuple is issued to the cen-
tral geodatabase. For the same reason, the simulation database
must be considered read-only when the snapshot represents
historic versions regarding transaction time (i.e., tT 6=cur).
Here, changes cannot not be resynchronized as transaction time
does not support retroactive updates.

An example for updating the previously replicated a:Tree
object is given in Figure 9.

Geodatabase	

Sim.	 DB	

a	 :	 Tree	
felled = false

a	 :	 Tree	
felled = false

a	 :	 Tree	
height = 18.3m

a	 :	 Tree	
height 18.3m

T

V

11:10 11:12 11:14

2008

2010

2014

h=15.0m

h=16.0m

h=21.0m

11:16

2012

ref	 2me:	 (tT=cur,	 tV=2012)	 11:18

h=18.3m

Figure 9. Bitemporal example: Updating a tree object’s height within the
central geodatabase for reference time (tT=cur, tV =2012) (transaction

executed at 11:18h).

The tree’s height actually measured 18.3m in 2012 so

it must be updated. While keeping the same reference time
(tT=cur, tV =2012), the new value is resynchronized to the
geodatabase. It is inserted with the chosen valid time tV =2012
and the system’s current time for transaction time – in this case
tT=11:18.

VI. DISTRIBUTED PARALLEL DATA MANAGEMENT

Based on the presented nD-versioning approach, a concept
for distributed parallel data management was developed. In
this scenario, the master copy of the considered geodata is
managed in a central temporal database while replicate copies
are distributed to several temporal working databases, on-
demand. The latter are distributed over remote sites, e.g., at
different contractors (or departments) of the main organization,
with limited or no direct connectivity to the central site.
A WFS-T (Figure 7) at the master site is used for data
exchange. Note, however, that these working databases are not
the simulation databases from Section V but rather additional
temporal geodatabases.

For data acquisition (check-out), depending on connectiv-
ity, a contractor either directly queries the WFS-T or delegates
his request to the organization. Given authorization, the data
is marshaled to a GML representation comprising all its
versions. In the GML representation, objects and properties
are associated with timestamps in terms of XML attributes.
To allow for XML validation, an extended schema specifying
these attributes is issued by the WFS-T. On remote site, the
GML data is unmarshaled (i.e., imported) into the working
database. Altogether, this allows remote sites to access the
full history of the acquired data – not only a snapshot. The
contractor can perform his tasks on the data within his working
database. To transmit his results back to the central site (check-
in), changes are tracked within the working database. They are
marshaled to a similar GML representation, which, however,
only contains the changed objects, as well as the associated
timestamps and their full history. This GML dataset is sent
to the WFS-T – as before, either directly or indirectly – for
check-in into the master database. Furthermore, the concept
can also be applied in a cascade. Here, the contractor itself
distributes the data once again to 2nd tier working databases
among his employees using a local WFS-T.

To allow different contractors to work in parallel on the
same data, it can be replicated multiple times. For that purpose,
it is marked with so-called process control objects within
the central database. In contrast to locking, this allows for
longterm processes to be performed in parallel without mutual
exclusive access. Process control objects also define the reason
for a check-out. Based on existing markers, further check-
out requests can be granted for non-exclusive processes. This
process-based approach allows for a flexible concurrency con-
trol within the distributed data management scenario. Due to
this optimistic approach, however, change conflicts may arise
when the same data item is changed by different contractors.
Using the temporal information, this can be detected on
check-in time by analyzing changes that occurred since the
contractor’s check-out by comparing the available full history
of the changed object. Additionally, besides temporal data,
metadata describing the job and the contractor is managed
allowing to determine responsibilities for changes. For that
purpose, before the actual check-in, a simulated check-in is
performed: The corresponding check-out is repeated to a local

114Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

helper database where the contractor’s changes are applied.
Here, conflicts can be detected and either be directly resolved
or referred to the contractor for resolution. When no conflicts
occur, the actual check-in is performed and the corresponding
process control marker is removed.

VII. APPLICATIONS

The research project Virtual Forest [13][14] is one of the
primary applications for the presented approach. One of the
core ideas of this project is a consistent, shared data model
and data management in the Virtual Forest database. Provided
to all stakeholders in this field, it facilitates the exploitation of
know-how and synergies. Furthermore, it supports the transfer
of industrial automation techniques to the forest industry. Note,
however, that the presented techniques are not restricted to this
context. Figure 10 shows one of the realized applications using
the presented approach. The user interface to set the reference
times (”Referenzdatum”) is shown in detail. It allows to set
transaction (”Systemzeit”), valid (”Stichtag”) and effectivity
time (”Gültig ab”). Transaction time can be set to current
(”jetzt”).

Figure 10. A forest inventory tool based on the presented approach - the
reference date for the local snapshot can be specified by the user.

For the Virtual Forest database, currently, the three afore-
mentioned time dimensions are utilized. Transaction time is
used to model the technical change history. It allows to
determine when forestal data was changed, thus, documenting
work processes. The second time dimension is valid time. In
particular for individual tree objects, it is used to directly model
the actual age. Id est, a tree’s ”birth” is modeled as a new tree
object inserted with the corresponding valid time. Any change
to its properties is equally updated, e.g., a height measured at
a certain point in time (see example in Section V). In stand
inventory, forests are not modeled as individual trees but in
terms of so-called stand units. A stand unit object combines a
surface geometry with aggregated properties like 75% spruce
with average age of 80y and average height of 30m. All
associated updates to this stand inventory data are typically
bound to a certain valuation date within the considered year,
e.g., October 1st. Thus, all updates use this date as valid
time, although the actual values are typically recorded over
a longer period of time around this date. Effectivity time is
used to model the point in time when new values shall become
the official representation of the forest. Updating huge forest

datasets using fieldwork or automated processes (as developed
in the Virtual Forest project) can take a longer period around
the valuation date. By using an effectivity time well after this
period (e.g., next New Year’s Day), no intermediate results are
visible to other users evaluating the currently effective data.

In the context of the Virtual Forest project, a GML applica-
tion schema called ForestGML was developed to consistently
model forest-related data. To add the necessary multiple times-
tamps on a per-attribute basis, standard GML or WFS concepts
like <wfs:FeatureCollection timeStamp="...">
do not suffice. Thus, to embed nD temporal reference infor-
mation and corresponding metadata into this (or any other)
application schema, it is extended by XML attributes. Fig-
ure 11 gives a simplified example of a stand unit object
including all its historical attribute versions for a check-
out process. The object itself is extended by the creation
timestamps (tT =2010-06-01, tV =2010-10-01 and tE=2011-
01-01). The object’s creation is described in the metadata
object referenced by meta_start_id. The tree species code
and area percentage attribute both were set during object
creation yielding the same reference time and metadata object.
However, the percentage value was changed at a later point in
time (tT =2014-06-01, tV =2014-10-01 and tE=2015-01-01) in
the context of another job described by metadata2.

Figure 11. Simplified example using the ForestGML application schema
extended by nD temporal information and metadata.

Finally, using the presented approach for distributed paral-
lel data management, inventory jobs can be distributed among
several contractors (or employees of one contractor). Processes
modeled using process control objects comprise inventory jobs,
geometry revisions, or annual automatic growth extrapolations.
Occurring change conflicts, e.g., due to inaccurately performed
jobs, can be resolved as described in Section VI.

VIII. CONCLUSION AND FUTURE WORK

All in all, we presented a novel approach to manage
temporal geodata with multiple time dimensions. In particular,
it exceeds the bitemporal scenario adding further flexibility in
temporal data modeling. Furthermore, we developed a new ap-
proach to use point representations for several time dimensions
by defining a ”Golden Rule” to resolve ambiguities. Based on

115Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

this nD-versioning, a flexible approach for distributed parallel
data management is presented. In the end, prototypical im-
plementations and the practical usage for forestry applications
already prove the feasibility of the approach.

As presented in [12], our approach for distributed database
synchronization with multiple clients relies on change notifi-
cations. This concept has to be extended for time dimensions
allowing retroactive or proactive updates. On the part of the
central (geo)database, notifications would need to comprise
the timestamp tuple corresponding to the notified change.
The component for distributed synchronization, in turn, would
need to consider these timestamps. The particular notification
handling strategy requires further research. Likewise, for the
multiple time dimension case, the efficient updating of local
replicate copies within a simulation database when changing
the considered reference time has to be analyzed.

ACKNOWLEDGMENT

Virtual Forest: This project is co-financed by the Eu-
ropean Union and the federal state of North Rhine-Westphalia,
European Regional Development Fund (ERDF). Europe -
Investing in our future.

REFERENCES

[1] “The Consensus Glossary of Temporal Database Concepts,” URL: http:
//people.cs.aau.dk/∼csj/Glossary/index.html [accessed: 2015-01-03].

[2] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig, “Database-
Driven Distributed 3D Simulation,” in Proceedings of the 2012 Winter
Simulation Conference, 2012, pp. 1–12.

[3] J. Rossmann, A. Bücken, and M. Hoppen, “Semantic World Modelling
and Data Management in a 4D Forest Simulation and Information
System,” ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop,
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, vol. XL-2/W2, 2013, pp. 65–72.

[4] R. Elmasri and S. B. Navathe, Database Systems: Models, Languages,
Design, And Application Programming, 6th ed. Prentice Hall Interna-
tional, 2010.

[5] T. Myrach, Temporale Datenbanken in betrieblichen Informationssyste-
men, 1st ed. Wiesbaden: Teubner Verlag, 2005.

[6] J. Clifford and A. U. Tansel, “On an algebra for historical relational
databases: two views,” ACM SIGMOD Record, vol. 14, no. 4, May
1985, pp. 247–265.

[7] N. Pelekis, B. Theodoulidis, I. Kopanakis, and Y. Theodoridis, “Lit-
erature Review of Spatio-temporal Database Models,” The Knowledge
Engineering Review, vol. 19, no. 3, Sep. 2004, pp. 235–274.

[8] P. van Oosterom and J. Stoter, “5D data modelling: full integration of
2D/3D space, time and scale dimensions,” in Proceedings of the 6th
international conference on Geographic information science. Zurich,
Switzerland: Springer-Verlag, Sep. 2010, pp. 310–324.

[9] W. Siabato, C. Claramunt, M. A. Manso-Callejo, and M. A. Bernabé-
Poveda, “Time Bliography: A Dynamic and Online Bibliography on
Temporal GIS,” Transactions in GIS, vol. 18, no. 6, Dec. 2014, pp.
799–816.

[10] ISO/TC 211 Geographic information/Geomatics, “ISO 19100,” URL:
http://www.isotc211.org [accessed: 2015-01-03].

[11] “Open Geospatial Consortium (OGC),” URL: http://www.
opengeospatial.org [accessed: 2015-01-03].

[12] M. Hoppen and J. Rossmann, “A Database Synchronization Approach
for 3D Simulation Systems,” in DBKDA 2014,The 6th International
Conference on Advances in Databases, Knowledge, and Data Applica-
tions, A. Schmidt, K. Nitta, and J. S. Iztok Savnik, Eds., Chamonix,
France, 2014, pp. 84–91.

[13] J. Rossmann, M. Schluse, and A. Bücken, “The virtual forest - Space-
and Robotics technology for the efficient and environmentally compati-
ble growth-planing and mobilization of wood resources,” FORMEC 08
- 41. Internationales Symposium, 2008, pp. 3 – 12.

[14] J. Rossmann, M. Schluse, R. Waspe, and R. Moshammer, “Simulation
in the Woods: From Remote Sensing based Data Acquisition and Pro-
cessing to Various Simulation Applications,” in Proceedings of the 2011
Winter Simulation Conference, S. Jain, R. R. Creasey, J. Himmelspach,
K. P. White, and M. Fu, Eds., 2011, pp. 984 – 996.

116Copyright (c) IARIA, 2015. ISBN: 978-1-61208-383-4

GEOProcessing 2015 : The Seventh International Conference on Advanced Geographic Information Systems, Applications, and Services

