
Modeling and Querying Mobile Location Sensor Data
 

Iulian Sandu Popa 
PRISM Laboratory, University of Versailles 

45, avenue des Etats-Unis  
78035 Versailles, France 

Iulian.Sandu-Popa@prism.uvsq.fr 

Karine Zeitouni 
PRISM Laboratory, University of Versailles 

45, avenue des Etats-Unis  
78035 Versailles, France 

Karine.Zeitouni@prism.uvsq.fr
 

Abstract—Moving objects databases are an important 
research topic in recent years. A lot of work dealt with 
modeling, querying and indexing objects that move freely or 
in networks. However, a moving object – such as a vehicle - 
could report some measures related to its state or to its 
environment, which are sensed throughout his movement. 
Managing such data is of major interest for some applications 
such as analyzing driving behavior or reconstructing the 
circum-stances of an accident in road safety, or identifying, by 
means of a vibration sensor, the defects along a railway in 
maintenance. However, this management is not covered by the 
existing approaches. In this paper, we propose a new data 
model and a language to handle mobile location sensor data. 
To this end, we introduce the concept of spatial profile of a 
measure to capture the measure variability in space, along 
with specific operations that permit to analyze the data. We 
also describe their implementation using object-relational 
paradigm. 

Keywords-spatiotemporal databases; modeling; moving 
objects; query language; sensor data flows 

I.  INTRODUCTION 

Integrating mobile technology and positioning devices 
has led to producing large amounts of moving object data 
every day. A wide range of applications like traffic 
management, location-based services (LBS), relies on these 
data. Besides, a moving object (MO) can easily be equipped 
with sensor devices that report on its state or on its 
environment.  The generated mobile sensor data are 
meaningful for many applications such as reconstructing the 
circumstances of an accident in road safety, identifying 
defects from vibration sensors along a railway in 
maintenance, or analyzing the exposure to hazard (e.g., 
pollutant) along a trip. As an example, in the field of road 
safety, the observation of natural driving behavior (on 
normal route for usual journeys) tends to replace the tests on 
simulators or those limited to dedicated circuits. Known as 
"naturalistic driving", these studies are based on data 
collected on a large scale and over a significant period of 
time [12].  

However, studies reported in the literature have limited 
the volume of data and the possibilities of their exploitation. 
As emphasized in a report [12] on a naturalistic driving 
campaign by the administration of U.S. Highway Safety, a 
large-scale database would be very useful to researchers and 
engineers to study the driving behavior and contribute to 
improving the vehicle equipment and road planning. The 

challenge of a large-scale study is the management of a 
large mass of spatio-temporal data. A database system that 
supports this type of data and efficient querying is needed. 
We aim to study and develop such a database management 
system. This subject is closely related to the field of moving 
objects databases (MOD). However, the moving object, e.g., 
a vehicle, is associated with additional measures (speed, 
acceleration, steering wheel angle, etc.) recorded throughout 
his trip. These measures are variable in space and in time.  

For the type of applications we address, the measures are 
more important than the mere spatio-temporal location. 
However, most work on mobile object databases consider 
only the location of the moving object and cannot be 
generalized to measures ranging along a spatio-temporal 
trajectory. Moreover, although these values initially 
correspond to a temporal data stream, their variation is more 
dependent on their location in the network than time. For 
example, the variation of speed is usually constrained by the 
geometry of the road and the speed limit. Also, the temporal 
analysis of different trajectory data is irrelevant because on 
one hand they are asynchronous and on the other hand, this 
comparison makes sense only if these paths overlap in 
space. Therefore, we must capture the spatial variability of 
these measures and allow its manipulation through the data 
model and the query language.  

To our knowledge, there is no such proposal in the 
related work. Nevertheless, among the works on MOD, the 
one proposed in [7] provides a solid basis for modeling and 
querying MOs. The idea of representing the temporal 
variation of the location or scalar values in a continuous 
way permits a good abstraction of moving objects. We 
extend this approach to capture the continuous spatial 
variation of scalars. The extension of the existing algebra 
consists in a new set of types and several classes of 
operations. The types capture the variation in space of any 
measure, which includes mobile sensor data as a particular 
case. New operations are needed to operate on the measures.  

This paper provides the following contributions. First, 
we present a new concept of "space variant measure” and 
show its usefulness in the context of a naturalistic driving 
study. Second, we create a data model as an extension of the 
model proposed by Güting et al. [6]. Finally, we extend the 
existing query language with new classes of operations that 
are necessary in this novel application context. Besides the 
aforementioned application, the proposed model is 
interesting for other applications that generate and/or 
operate geo-localized data streams. This is the case of rail, 
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air or sea transportation. The measures can be observed or 
calculated and can be related to a trajectory of an object or a 
location. Thus, the proposed model permits to reason about 
the speed of a MO, on the legal speed or inclination of a 
road or on the adherence at each location of the road 
depending on the weather. Also, it allows to model the fine 
data on the mobility (where, when and at what speed) of 
vehicles, freight, or persons and it meets the needs of 
management applications for fleets or road traffic, logistics 
and design of mobile networks. 

The rest of this paper is organized as follows: we 
summarize the related work in Section II. Section III 
describes the proposed model. It presents the new types and 
the corresponding operations, and demonstrates its 
usefulness by expressing some query examples. Section IV 
discusses several aspects of the implementation. Finally, 
Section V concludes and offers directions for future work. 

II. RELATED WORK 

The management of MOD has received particular 
attention in the recent years due to the advances and the 
omnipresence of mobile and geo-location technologies, such 
as cellular phones or GPS. Many works focus on modeling 
and language. We mention the work undertaken in the 
project Chorochronos [7][11] and the approach of the 
Wolfson’s team [21]. Güting's book is a summary of 
progresses in this area [8]. Pelekis et al. summarize the data 
models for MOs in [17]. 

The target applications impact the model and the 
language in these proposals. We distinguish two types of 
applications. LBS applications rely on continuous or 
predictive queries, which are evaluated based on the current 
positions of MOs. The pioneers are [21] whose model 
MOST (Moving Objects Spatio-Temporal) describes 
databases with dynamic attributes that vary continuously 
over time. They also propose the so-called Future Temporal 
Logic to formulate predictive queries. 

The second type of applications concerns the analysis of 
complete spatio-temporal trajectories, using queries 
combining temporal and spatial intervals. The work of 
Güting [7] is an important reference point today. Various 
implementations exist, as in SECONDO [6] and STAU [14], 
then in HERMES-MDC [15]. STAU is the first 
implementation to be based on object-relational database 
extensibility by providing a spatio-temporal data cartridge 
for Oracle [13]. 

However, these studies do not take into account the 
specific behavior of MOs, such as vehicles moving on a 
road network or trains on a rail network. This aspect is 
essential for many applications, including those considered 
here. Indeed, given a network, a constrained trajectory can 
be represented by the relative positions on the network 
edges (i.e., the road segments). Once more, the most 
comprehensive proposal is the one in [6]. Although the non-
constrained (two-dimensional) model can be applied to the 
constrained trajectories, this is unwise for several reasons. 
The first is that the 2D model does not capture the 
relationship between the trajectory and the network space, 
while this information is essential for analysis. The second 

is that it limits the representation of the trajectory, estimated 
by linear interpolation between the reported positions, while 
the MO follows in fact the geometry of the network. In 
addition, the constrained model allows for dimensionality 
reduction by transforming the network in a 1D space by 
juxtaposing of all line segments [18]. This leads to better 
storage and query performance than with the free trajectory 
model. Finally, in the constrained model the trajectories can 
be easily described with a symbolic model as a sequence of 
traversed lines and time intervals, which is less detailed but 
more intelligible and more compact. 

In this paper, we focus on managing historical data of 
objects moving in networks. The most comprehensive 
proposal to model the historical MO is, in our view, the 
framework of Güting [6]. Indeed, this proposal covers the 
abstract modeling, language and implementation. Moreover, 
it explicitly models the constrained MOs and the relative 
position on the network. As discussed below, our proposal is 
based on this model and extends it with specific data for 
mobile sensors. Therefore, we summarize this model and 
list the used notations in the rest of this section. 

Güting et al. propose an algebra defined by a set of 
specific types (see Table 1) and a collection of operations on 
these types [6][7]. The types are: scalar types (BASE), 2D 
space types (SPATIAL), network space related types 
(GRAPH), scalar or spatial types varying in time 
(TEMPORAL). Examples of types are: real, point (2D 
position), gpoint (position on the network), gline (line on the 
network), moving(point) (2D position varying in time) and 
moving(gpoint) (network position varying in time). All the 
base types have the usual interpretation. For example, if we 
note with αA  the carrier set (definition domain) for the type 
α , then for the real type the carrier set is: { }⊥∪= RAreal , 
where { }⊥  is null (or undefined). The time is isomorphic to 
the real numbers. The range data types are disjoint intervals 
and are used to make projections or selections on the 
moving types. Spatial types describe entities in the 
Euclidean space, while for the GRAPH types the space is 
represented by a network space. 2D types mainly 
correspond to standard definitions [9]. 

TABLE I.  THE TYPES DEFINED IN [6][7] 

Set of types Type constructor 
         BASE→           int, real, string, bool 

              SPATIAL→                  point, points, line, region 

            GRAPH→  gpoint, gline 

        TIME→                    instant 

SPATIALBASE∪                                                                              

TEMPORALGRAPH →∪   

moving, intime 

    RANGETIMEBASE →∪   range 

 
GRAPH types depend on the underlying network. 

Basically, the proposed model defines a network as a set of 
routes and junctions between these routes. A location in the 
network is a relative position on a route. It is described by 
the identifier of the route, a real number giving the relative 
position and the side of the road. This is directly related to 
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the concept of linear referencing widely used in 
transportation applications and implemented in systems 
such as Oracle [13]. The types gpoint and gline are 
represented in this manner. Finally, from the BASE, 
SPATIAL and GRAPH types, they derive the corresponding 
temporal types, using the type constructor moving. The 
temporal types are functions or infinite sets of pairs (instant, 
value). Such an infinite representation conceivable in the 
abstract model cannot be implemented directly. In [6], a 
discrete representation is proposed for these types. We will 
discuss this aspect in more detail in Section IV of the paper. 

A collection of operations is defined on the above data 
types. To avoid the proliferation of operations, one operator 
applies to several types. A set of non-temporal operations is 
first defined. Then, a process called lifting allows generating 
the corresponding temporal operations. Thus, all operations 
on non-temporal types are extended to the temporal types. 
Finally, specific operations are added to manage the 
temporal types. In the context of constrained network 
trajectories [6], some new operations, such as distance, 
have been adapted for gpoint and gline types (e.g., distance 
by route). New classes of operations are also added to 
analyze the interaction between the network and the 2D 
space, as well as specific operations such as computing 
shortest paths in the network. One can refer to [6][7] for 
more detail. 

Besides, sensor data modeling was also considered from 
the angle of exchange formats [1]. This concerned static 
sensors. Recently, a draft has been initiated to exchange 
Moving Object Snapshots including velocity and 
acceleration parameters [16]. But, unlike SOS, it does not 
cover other measures. MauveDB [2] proposes model-based 
views in opposition to using raw data, in the context of 
environmental sensors. None of the previous work does 
capture the continuous variability in time and space of the 
moving sensor measures. 

III.  THE PROPOSED MODEL 

In this section, we present first a real application that has 
motivated our work (Section III-A). Then we introduce the 
new data types (Section III-B) and a collection of operations 
(Section III-C). A query scenario is used as an example 
throughout this paper (Section III-A and III-D). 

A. Motivation and Examples 

As indicated in the introduction, naturalistic driving 
studies have become popular in the last years. These studies 
are based essentially on data gathered in normal (natural) 
driving conditions. Such studies became economically 
possible thanks to the existing equipment in modern 
vehicles. Indeed, the large number of in-vehicle sensors is 
accessible via an interface (CAN bus) to which it is possible 
to connect an in-vehicle data logger. The CAN bus provides 
access to several measures including speed, acceleration, 
steering wheel angle, the action on the breaking or gas 
pedals, etc. The recording device can also receive data 
streams from other sources, such as a GPS sensor or radar 
(giving the distance to adjacent vehicles). This provides a 
comprehensive data source on natural driving on the road. 

The in-vehicle recorded data can provide valuable 
information on the use and utility of the driver assistance 
systems (ABS, ESP, etc.) and can highlight near-accident 
(near-crash) situations. Moreover, according to the principle 
of black boxes on airplanes, it will provide information prior 
to an accident. 

INRETS (French acronym for “National Institute for 
Research on Transport and Safety”) has developed a data 
logger (DIRCO) for naturalistic driving campaigns [3]. This 
is an on-board recording device connected to the vehicle’s 
CAN bus. It records measures such as: vehicle speed, speed 
of each wheel, longitudinal acceleration, odometer, steering 
wheel angle, brake pedal (0/1), ABS (0/1), etc. DIRCO 
offers the possibility of connecting other data sources as 
well, e.g., a GPS, an inertial station measuring the 3D 
acceleration and angle of the vehicle. DIRCO acquires each 
data stream as a time sequence. The data from a source are 
stored in a specific file and each record is a tuple: 
(ti,αi

1,αi
2,…,αi

n) where it  is the ith time instant and, αi
k is 

the i th value provided by the kth sensor. As a detail, DIRCO 
allows sampling rates at very high frequencies of up to 10 
ms cycles. The data flows from different sources are 
asynchronous. 

While it may function as a black box for vehicles in 
order to reconstruct the circumstances of an accident, 
DIRCO is primarily a research tool that can help analyzing 
the driving behavior, the vehicle safety and diagnose 
problems related to road infrastructure. Its 16GB of flash 
memory allows data acquisition, camera off, for several 
months. A simple scenario is to equip several vehicles such 
as buses or cars with DIRCO, retrieve and centralize these 
data and then analyze it in order to identify behavioral 
patterns of driving. 

This type of approach is also appropriate to the 
evaluation of recently emerged ADAS (Advanced Driver 
Assistance Systems). Whether the system is already well 
known as a GPS or speed control device, or it is an 
experimental system such as obstacle detection, all require 
an accurate and extensive assessment of their impact on 
driving. The European Commission is funding since 2008 
large-scale projects to evaluate mature technologies in the 
category of "intelligent transportation" systems. A particular 
aspect of these projects is the recourse to systematic 
collection of driving data with devices similar to DIRCO 
e.g., the project euroFOT [22]. Given this kind of 
application, one can easily understand the importance of 
developing a database adapted to the characteristics of these 
data, such as the data volume or the geo-localized and 
temporal data features. The different types of studied 
systems induce a large variability in the methods of analysis 
and often involve a high level of required detail (e.g., 
situations of near-accident). Some indicators can be 
calculated by using common database management systems, 
but sometimes at the cost of heavy programming and 
prohibitive computational time. In addition, no system 
seems at present able to manage speed profiles (or any other 
information) measured at different times and positions but 
on the same road. However, a large number of queries in 

224Copyright (c) IARIA, 2012.     ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services



this context need this kind of approach. The concept of 
(spatial) profile is introduced in Section III-B 

To illustrate the contribution of our model in this 
context, we refer throughout the paper to the following 
typical queries: 

Q1. What is the acceleration profile along a given route 
segment for a given trip? 

Q2. What is the difference between the vehicle’s speed 
profile and the speed limit along a road segment? 

Q3. How many times was the ABS enabled for a given 
trip? 

Q4. What are the trips where the practiced speed 
exceeds a specified speed profile (e.g., the speed limit) by a 
certain value and what is the difference? 

Q5. What is the ratio between speed and engine RPM 
for a given trip? 

Q6. What is the average profile of acceleration for all 
vehicles passing through a certain road section (e.g., 
curve)? 

Q7. Calculate the maximal speed profile of all vehicles 
passing through the indicated road section. 

Q8. Find the practiced speed profile (85th percentile of 
the passing vehicles) on a road before and after the 
installation of a speed camera. 

Q9. What is the average profile of the fuel consumption 
on a road before and after the installation of a traffic 
calming device (e.g., a speed cushion)? 

Q10. What is the minimum and maximum profile of fuel 
consumption on a road, and what is its difference with the 
profile of the studied driver? 

Modeling temporal sequences is feasible by using 
functions over time [7], but it is not useful for the above 
type of analysis. Indeed, the measures from the trips are 
collected at different times and comparing these profiles 
makes sense only if they were measured in the same place. 
What matters is not the time at which the measure was 
recorded, but rather where it took place on the road. The 
concept of spatial profile of a measure (e.g., speed, 
acceleration) reflects the relationship between the measure 
and the space. However, this notion of profile is not defined 
and cannot be derived in the model of Güting or any other 
model. It is therefore necessary to extend the existing model 
with new data types. Moreover, the above queries demand 
specific operations on the measure profiles. These 
operations, which were not necessary in the context of 
analyzing only the MO trajectories, are of major importance 
in this context. 

B. Introduction of New Data Types 

Like the algebraic model in [6] described above, our 
model includes a spatio-temporal type to model the 
trajectory of the MO, and temporal types to model the data 
generated by sensors. A temporal type is a function of time 
to base types (e.g., real, int). It expresses the variability of 
sensor measures from the temporal point of view. 

However, the temporal view is not sufficient to model 
the data from mobile sensors, since the measures are often 
closely related to space. For completeness, the model should 
describe beside the evolution over time, the spatial evolution 

of the measures. To this end, we extend the model of [6]. 
We introduce a new concept describing the spatial profile of 
measures. The idea is to have a set of data types that allow 
modeling the evolution of a measure in space. This concept 
is divided into two categories: SVARIANT to describe the 
profile in a two-dimensional space, and GVARIANT for the 
profile along the network. SVARIANT (i.e., spatial variant) 
and GVARIANT (i.e., graph variant) represent two classes of 
data types. 

We associate to these two classes of data types two new 
type constructors called smoving and gmoving (see Table 2). 
The type constructor smoving stands for spatial moving and 
allows modeling the evolution of a measure in the 2D space, 
whereas gmoving describes the evolution of a measure in a 
network (graph) space. The type constructors smoving and 
gmoving apply to BASE data types, i.e., int, real, string, 
bool. Hence, SVARIANT contains data types such as 
smoving(int), smoving(real), and, similarly, the class 
GVARIANT regroups data types such as gmoving(real), 
gmoving(bool), etc. 

TABLE II.  NEW DATA TYPES 

Set of types Type constructor 

BASE →  SVARIANT smoving, inpoint 

BASE →  GVARIANT gmoving, ingpoint 

 
The definitions of these type constructors are given 

below using the notation of [7]: 
Definition 1: Given α  a BASE type having the carrier 

set αA , then the domain of definition for )(αsmoving  is 

defined as follows: { αα AAffA pointsmoving →= :)(  is a 

partial function and )( fΓ  is finite}, where { }⊥= \ββ AA  

and )( f Γ  denotes the set of maximal continuous 

components of the function f . 
Definition 2: Given α  a BASE type having the carrier 

set αA , then the domain of definition for )(αgmoving  is 

defined as follows: { αα AAffA gpointgmoving →= :)(  is a 

partial function and )( fΓ  is finite}, where { }⊥= \ββ AA  

and )( f Γ  denotes the set of maximal continuous 

components of the function f . 
Since this paper focuses on constrained movement, we 

only detail the second category of types in the sequel. These 
definitions state that a spatial profile of a measure is a 
partial function. Each value f  in the domain of 

)(αgmoving  is a function describing the evolution in the 
network (graph) space of a BASE value. The gmoving type 
constructor describes an infinite set of pairs (position, 
value), where the position is a gpoint. The inpoint and 
ingpoint type constructors represent a single pair (position, 
value). Figure 1 presents a spatial profile of a real measure 
on a given road. The x-axis represents the relative position 
on the road that can vary between 0 and 1.  
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The condition " )( fΓ  is finite" means that f  consists of 
only a finite number of continuous components. For 
example, the profile in Figure 1 has 3 continuous 
components. This condition is needed as a precondition to 
make the design implementable. It also ensures that 
projections of gmoving objects (e.g., on the spatial axis) 
have only a finite number of components. 

The spatial and the temporal profile of a measure 
represent two complementary views of a measure varying in 
space and in time. The temporal profile is useful to compare 
data from different sensors (on the same vehicle) at the 
same time, e.g., Q5 in the query scenario in Section III-A. 
The spatial profile is useful to compare data from the same 
sensors on different vehicles at the same locations, e.g., Q6-
Q10 in the query scenario in Section III-A.  

Note that it is not practical to model the sensed values as 
a function on both time and space, since these two 
dimensions are not independent. Indeed, space is a function 
of time, which is captured in the spatio-temporal trajectory 
of the MO holding the sensors. At the same time, the spatial 
profile of a measure is necessary as motivated in Section III-
A and by the query scenario, yet there are no data types in 
the existing data models [6][7] for such profiles.  

Note also that the definition of spatial profiles imposes 
that for a given MO trajectory there is no overlapping 
between trajectory portions. This constraint is expected to 
hold in most cases. However, the self-overlapping 
trajectories have to be split into non-overlapping parts so 
that the associated sensor values fit the proposed model.  

The presented model is an abstract model, which means 
that in general the domains or carrier sets of its data types 
are infinite sets. To be able to implement an abstract model, 
one must provide a corresponding discrete model, i.e., 
define finite representation for all the data types of the 
abstract model. This is done by the sliced representation 
introduced in [6]. Thus, a time dependent or spatial 
dependent value is represented as a sequence of slices (see 
Figure 4) such that within each slice the evolution of the 
value can be described by some “simple” function (e.g., 

TABLE III.             EXAMPLES OF OPERATIONS FOR THE NEW DATA TYPES 

Class Operation Signature 

Projection to 
Domain/Range 

trajectory glinegmoving →)(α  

rangevalues )()( αα rangegmoving →  

pos pointgingpoint →  

val α→ingpoint  

Interaction with 
Domain/Range 

atpos ingpointpointggmoving →×)(α  

atgline )()( αα movinggglinegmoving →×  

present 
oolbpointggmoving →×)(α  

oolbglinegmoving →×)(α  

at 
)()( ααα movingggmoving →×  

)()()( ααα movinggrangegmoving →×  

atmin )()( αα movingggmoving →  

atmax )()( αα movingggmoving →  

passes boolgmoving →× βα )(  

Basic Algebraic 
Operations 

sum, sub, 
mul, div 

)()()( ααα movingmovingmoving →×  

)()()( ααα gmovingmovingggmoving →×  

Calculations 

mean[avg], 
min, max 

realmoving →)(α  

realgmoving →)(α  

no_transitions 
intintmoving →)(  

ntiintgmoving →)(  

Aggregates 

min_agg, 
max_agg, 
sum_agg, 
avg_agg 

{ } )()( αα movingmoving →  
{ } )()( αα gmovinggmoving →  

percentile 
{ } )()( αα movingrealmoving →×  

{ } )()( αα gmovingrealgmoving →×  

count_agg  
{ } int)movingmoving ()( →α  

{ } nt)igmovinggmoving ()( →α  

 

 
Figure 1. Example of spatial profile of a real value. 
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linear functions or quadratic polynomials). More details on 
the sliced representation are given in Section IV of the 
paper. 

C. Introduction of New Operations 

As for the type system definition, we use the operations 
in the algebra of Güting et al. [6] as a starting point. By 
introducing new types, we have to (i) extend the existing 
operations and (ii) add new specific operations for the target 
application type. 

In order to extend the existing operations to the new 
types, we use a similar process with the temporal lifting, 
described in Section II. The temporal lifting permits 
generating from a non-temporal operation with the signature 

βααα →××× n...21 , the temporal equivalent operation 

having the signature )(... ''
2

'
1 βααα movingn →××× where 

{ })(,'
iii movingααα ∈ . Each of the arguments can become 

temporal, which makes the result temporal as well. We 
adopt this principle to generate the equivalent space variant 
operations. We propose a spatial lifting for the non-gvariant 
non-temporal operations. The operation induced by the 
spatial lifting is available for a signature 

)(... ''
2

'
1 βααα gmovingn →××× , where { })(,'

iii gmoving ααα ∈ . 
We have also defined new operations that apply to 

GVARIANT and TEMPORAL set of types, which are 
necessary in this context. Table 3 presents a non-exhaustive 
list of the new operations, i.e., extended from the existing 
ones or newly introduced. We describe in this section some 
operations. Other operations are explained with the example 
queries in the next section. There are five classes of 
operations. The first two classes correspond to the extension 
of existing operations (i.e., spatial lifting), while the last 
three classes are new types of operations. Moreover, the first 
four groups represent conventional operations, i.e., those 
who take as input one or more objects (values) in 
accordance with their signature and return an object (a 
value). The last class includes aggregate operations, i.e., that 
return a single result based on a group of objects (similar to 
aggregates in the relational model). 

The first class of operations comprises the projection in 
the network or value (range) domains. Thus, trajectory  
returns the network path of a trip. The operation 
rangevalues performs the projection in the range and 
returns one or several intervals of base values. Operations 
val and pos return respectively the value or the network 
position for an ingpoint type, which is defined as a pair 
(gpoint, value). The second class of operations concerns the 
interaction with the domain (network space) and range 
(values). They make selections or clippings according to 
criteria on one of the axes of variation (network space or 
values). Thus, present is a predicate that checks if the input 
object is defined at a given position in the network. Finally, 
the predicate passes allows one to check whether the 
moving value ever assumed one of the values given as a 
second argument. 

The third class of operations considers the basic 
algebraic operations ('+', '-', '.' and '/'), which we include in 
non-gvariant non-temporal collection of operations. 

Therefore, they become subject to temporal and spatial 
lifting. We use named functions, i.e., sum, sub, mul and 
div, as for all defined operations. These operations are 
useful for the analysis of sensor measures. For example, 
they can calculate the difference between the speed profiles 
of two MOs on the common part of their trajectories, or 
return the difference between the practiced speed and the 
speed limit on a route. These operations take as input two 
functions of the same type (GVARIANT or TEMPORAL) 
and calculate a result function of which the definition 
domain is the intersection of the input objects’ domains. For 
the division, the parts where the operation is not defined, are 
also eliminated from the domain of the result function. 

The fourth class of operation addresses the same 
categories of types, i.e., GVARIANT or TEMPORAL. The 
specified functions are: mean, min, max and 
no_transitions. Each of these operations takes as input a 
function of time or space and returns a value representing 
the aggregate of the input function. Their utility is to 
calculate an average or an extreme value for any measure, 
given a temporal or spatial interval. 

The last class of operations concerns the aggregates. 
Aggregate operations return a single object result given a set 
of objects of the same type (see Figure 2). Unlike the 
previous class, these operations define aggregations of a 
group of objects. Some of these aggregates return an object 
of the same type as the input type, e.g., the average 
(avg_agg), the minimum (min_agg) and maximum profile 
(max_agg). The aggregate count_agg returns the number of 
profiles in the definition domain in the form of a 
moving(int) or gmoving(int) object. Finally, the function 
percentile computes the profile below which is found a 
certain percentage of profiles in the input set. The definition 
domain of the result function for an aggregate operation is 
the union of the domains of the aggregated functions. The 

 
Figure 2. Example of using max_agg (second graph) and min_agg (third 

graph) on two profiles (first graph). 
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usefulness of aggregate operations is shown in the queries 
Q6 to Q10. 

The proposed collection of operations is only a basis, 
however rich, of functionality. Other operations may be 
added to meet specific needs of some applications. Thanks 
to the advances in the extension capabilities of the existing 
DBMS, these types and operations can be easily integrated 
into the DBMS. Then, it becomes possible to use them 
through the standard SQL language. Besides, the problem of 
query optimization must be addressed. This is exactly the 
plan we followed to implement our data server for MOs 
with sensors.  

D. Query Examples 

The great interest of using the extension capabilities of a 
DBMS is to easily integrate new types and operations in the 
SQL standard interface. The query examples in this section 
are based on a relational schema with one table that contains 
information on vehicle trips as follows: 

vehicle_trip(mo_id:int, trip:moving(gpoint),  
g_speed:gmoving(real), t_speed:moving(real), 
g_acceleration:gmoving(real), t_acceleration:moving(real),  
g_RPM: gmoving(real), t_RPM: moving(real), 
g_odometer:gmoving(real), t_odometer:moving(real),  
g_ABS:gmoving(bool), t_ABS:moving(bool), 
g_breakSwitch:gmoving(real), t_breakSwitch: 
moving(real)) 

In addition to the spatio-temporal trajectory, i.e., the 
"trip", the table contains sensor data reporting the speed, 
acceleration, RPM, odometer, ABS and brake pedal state. 
These data are modeled by functions of space (prefixed with 
g_) and of time (prefixed with t_). The parameters are 
prefixed with the symbol "&" and could be either given by 
the user at runtime, or existing from previous calculations. 

Q1. What is the acceleration profile along a given route 
segment for a given trip? 
SELECT atgline(g_acceleration, &aGline) 
FROM vehicle_trip 
WHERE mo_id = &anID 

The operation atgline returns the acceleration profile 
restricted to the sub-space specified by the geometry aGline 
given as parameter. 

Q2. What is the difference between the vehicle’s speed 
profile and the speed limit along a road segment? 
SELECT sub(g_speed, &legalSpeed) 
FROM vehicle_trip 
WHERE inside(trajectory (&legalSpeed), 
  trajectory (g_speed))=1 

The difference between two functions describing 
measure profiles is calculated using the operation sub. An 
indexed predicate as inside could accelerate the query 
response time. This operation has two gline parameters and 
checks if the first is included in the second. To obtain the 
projection in space of a measure profile, we use the 
operation trajectory .  

Q3. How many times was the ABS enabled for a given 
trip? 

SELECT no_transitions(g_ABS)/2 
FROM vehicle_trip 
WHERE mo_id = &anID 

This query simply illustrates the use of no_transitions, 
which is applicable to discrete BASE types (e.g., bool, int) 
and returns the number of transitions for a given discrete 
function. 

Q4. What are the trips where the practiced speed 
exceeds a specified speed profile (e.g., the speed limit) by a 
certain value and what is the difference? 
SELECT mo_id, sub(g_speed,&legalSpeed) 
FROM vehicle_trip 
WHERE intersects(trajectory (&legalSpeed),  
 trajectory (g_speed))  =  1 AND  
 max(sub(g_speed,&legalSpeed)) > &threshold 

There are two new operations in this query. First, the 
predicate intersects is similar to inside, the only difference 
being that it only searches for an intersection between the 
two gline parameters and not for inclusion. Second, the 
operation max is an aggregate of a function. We use it to 
verify if the maximal value of the function given as 
parameter is above a certain threshold value. As in the 
previous query, the parameter for max is represented by the 
difference between the practiced and legal speed profiles. 

Q5. What is the ratio between speed and engine RPM 
for a given trip? 
SELECT div(t_speed, t_RPM) 
FROM vehicle_trip 
WHERE mo_id = &anID 

This query shows the usefulness of basic algebraic 
operations for comparing temporal profiles of the same MO. 
The profile obtained by dividing the vehicle speed to the 
engine RPM can be used to detect the behavior regarding 
the gear shifting of a driver. 

Q6. What is the average profile of acceleration for all 
vehicles passing through a certain road section (e.g., curve)? 
SELECT avg_agg(g_acceleration) 
FROM vehicle_trip 
WHERE inside(trajectory (&aCurve), trajectory (trip))=1 

We determine with this query the average acceleration 
profile of all vehicles passing through the indicated route 
section. The function avg_agg generates a new 
gmoving(real) object from the set of objects of the same 
type, passed as a parameter, i.e., all tuples of the table that 
match the predicate in the WHERE clause. 

Q7. Calculate the maximal speed profile of all vehicles 
passing through the indicated road section. 
SELECT max_agg(atgline(g_speed, &aRoad)) 
FROM vehicle_trip 
WHERE intersects(trajectory (g_speed), &aRoad) = 1 

First we find all the trips that intersect the given road. 
For these trips, we select by the function atgline the speed 
profile that corresponds to the road. Then we aggregate the 
resulted profiles in order to obtain the maximal profile, by 
using the aggregate max_agg. 

Q8. Find the speed profile actually practiced (85th 
percentile of the passing vehicles) on a road before and after 
the installation of a speed camera. 

228Copyright (c) IARIA, 2012.     ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services



SELECT percentile(atgline(g_speed,&aRoad),85) 
FROM vehicle_trip 
WHERE intersects(trajectory (g_speed),&aRoad) = 1 
AND inst(initial (trip)) < &instalationDate 

The query finds the speed profile (85th percentile) before 
installing a speed camera. A similar query should be posed 
to find the same profile after the installation of the camera. 
As for the query Q7, we filter the trips by retaining only 
those that intersect the given road, and that begin before the 
installation date of the camera. To do this we use the 
combination of functions inst and initial  that return the start 
date of a trip. Finally, we apply the percentile function on 
all selected profiles. The second parameter of this function 
is the nth percentile. 

As we can see from this section, the new data types and 
operations are needed to express these queries. This kind of 
queries cannot be supported by the existing models since the 
concept (the abstract data type) of spatial profile is not 
considered, nor the operations that allow handling spatial or 
temporal profiles of a measure. 

IV. IMPLEMENTATION 

In this section, we address some of the implementation 
issues of the presented model and language that we 
currently implement as an extension of a DBMS. The 
objective is to offer a general view regarding some 
implementation aspects, rather than a thorough, detailed 
presentation. Thus, Section IV-A presents the database 
system architecture. Section IV-B details the sliced 
representation of the abstract data types. Sections IV-C and 
IV-D deal with the optimization of the aggregate operations 
and the operators. 

A. Database System Architecture 

Currently, the support for spatio-temporal data in the 
existing DBMS is limited. However, most DBMS today 
offer possibilities for extensions to meet the needs of certain 
application domains. Rather than developing a prototype 
from scratch, we chose to implement the proposed model 
under such an existing system, i.e., the Oracle DBMS. Thus, 
all types are implemented as new object types in Oracle 11g. 
The operations are implemented in Java (Oracle DBMS 
integrates a Java Virtual Machine) and stored as a package 
in the database. These operations can be used in SQL 
queries along with the existing operations in the DBMS.  

Finally, some filtering operations, i.e., operations used to 
identify the MOs that verify a certain spatial, temporal or 
on-value predicate, are indexed in order to accelerate the 
query response time and to provide a system scalable with 
the dataset size (see Section IV-D). To this end, we have 
proposed PARINET, a novel partitioned index for in-
network trajectories [20]. We integrated the indexes by 
using the data cartridges in Oracle. The general architecture 
of the system is given in Figure 3. Notice that other DBMS 
systems that allow DBMS extensions can be used. 

B. Data Type Representation 

The model in [6][7] that we extended in Section III-B is 
an abstract model. A finite representation of this abstract 

model is needed in order to be able to implement it. For all 
moving types, the so-called sliced representation has been 
proposed in [6]. A moving object in the abstract model is a 
temporal partial function. The sliced representation 
represents the MO as a set of so-called temporal units or 
slices. Figure 4 shows a simple example of a temporal 
profile that is composed of four units.  

A temporal unit for a moving data type  is a time 
interval where values taken by an instance of  can be 
described by a “simple” function. The “simple” functions 
used for the representations are the linear function or 
quadratic polynomials. The motivation for this choice is a 
trade-off between the richness of the representation and the 
simplicity of the representation of the discrete type and of its 
operations. For example, a unit for a moving(real) object is 
represented as a tuple (a, b, c, t1, t2), where a, b, c are the 
coefficients of a quadratic polynomial and t1, t2 is the unit 
time interval. The moving value at a time instant t inside the 
unit time interval is computed as . More 
complex function for unit representation can be imagined 
but are not considered in this paper. Also, for the sake of 
simplicity we ignore that the unit intervals are left-closed 
and/or right-closed. For all gmoving types that we 
introduced in Section III-B, we adopt the sliced 
representation as proposed in [6]. This is straightforward as 
the sole difference is to replace the unit’s time interval, 
which is the support for temporal profiles, with a spatial 
interval, which is the support for spatial profiles. A spatial 
interval given a network space has the following elements: 
(rid, pos1, pos2), where rid is a road identifier and pos1, 
pos2 are relative positions on the road. For example, a 
gmoving(real) object will contain a set of units with the 
following attributes: (a, b, c, rid, pos1, pos2). To calculate a 
value for a given position, we first locate the corresponding 
unit, i.e., where the spatial interval includes the position, 

then we calculate the value as cposbposa +×+× 2 . 

 
Figure 4. Example of sliced representation of a temporal profile. 

 
Figure 3. Database System Architecture. 

α
α

ctbta +×+× 2
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C. Handling Aggregation Functions 

Unlike the functions on one or two profiles, aggregate 
functions operate on a set containing a (possibly) large 
number of profiles. This can lead to a fragmentation of the 
result profile in a large number of small units and a 
degradation of the query performance. Consider the 
example in Figure 5. The first graphic shows two profiles 
with their decomposition into units and the second one 
represent the maximum aggregate of these profiles. Notice 
that the units of the two profiles do not have the same 
spatial distribution. The units’ space intervals of the two 
profiles overlap partially. This is common because the unit 
slicing is unique to each profile and depends on the 
variability of the observed measure at the observation time. 
Therefore, the result of an operation on a set of profiles is 
another profile that contains more units that the initial 
profiles. This process of fragmentation of the result is not 
disturbing when the calculation is done only on two profiles. 
However, in the case of the aggregation it can significantly 
slow down the computation time. 

To accelerate the aggregate operations, we propose a 
regular temporal or spatial slicing of profiles, independent 
of the initial slicing. This method offers a compromise 
between efficiency and the quality of the results. Thus, for 
aggregates on gmoving types for example, we uniformly 
divide the space, beginning with the start point of each road 
in intervals of a given length, e.g., 10 meters. Smaller 
intervals will produce higher quality results but at a cost of a 
slower performance, and vice versa. 

Figure 6 presents an example of using uniform slicing 
for computing aggregates on two spatial profiles. The first 
graphic shows the profile decomposition by regular intervals 
(represented by the vertical dotted lines). For each interval, 
we compute or extrapolate first the values on the end limits 
of the interval. Thus, for the first profile (in red) we find the 
values 1

1v  and 1
2v  the first interval, 1

2v  and 1
3v  for the second 

interval, and 1
3v  and 1

4v  for the third interval. From these 
values computed for all profiles, we apply the corresponding 
scalar aggregate function (e.g., the aggregate max for 

max_agg) in order to generate the values of the resulting 
profile on the same limits of the intervals. 

Overall, this approach to implement the aggregate 
functions produces approximate results, but in return it 
offers a good optimization of this costly type of operation. 
The analysis of the result quality depending on the 
granularity of slicing is left for future work. 

D. Operators 

In the field of spatio-temporal databases, the indexing 
techniques that permit processing efficiently the spatial, 
temporal and on-value queries are complementary to 
modeling the moving objects. Our prototype uses PARINET 
[20] for querying trajectories. A discussion on the indexing 
methods is out of the scope of this paper. Instead, we 
present in this section the mechanism through which the 
indexes are linked to the algebra, i.e., object types and 
operations. This mechanism is based on the operators. 

Operators are a subset of the algebra operations, mostly 
predicates such as present or passes, that benefit of an 
index based evaluation in addition to the basic function 
implementation. The functional implementation is used 
when the operator is invoked in the select list of a SELECT 
command or in the ORDER BY and GROUP BY clauses. 
However, when the operator appears in the condition of a 
WHERE clause, the DBMS optimizer chooses between the 
indexed implementation and the functional implementation, 
taking into account the selectivity and the cost when 
generating the query execution plan. 

The operators that we implement are spatial, temporal 
and on-value predicates, or predicates that combine two of 
the three possible dimensions (i.e., spatio-temporal, on-
value spatial and on-value temporal). For example, to select 
only the profiles that spatially intersect a given network 
region, one will use the present operator. In the same way, 
the passes operator is used to select only the objects for 
which a certain measure assumes a given value (e.g., 
acceleration is above 10m/s2). Finally, the two-dimensional 
predicates verify that the conditions in each dimension are 

 

 
Figure 5. Example of fragmentation after using the max_agg (second 

graphic) on two profiles (first graphic). 

 

 
Figure 6. Example of calculating the max_agg (first graphic) and min_agg 

(second graphic) on the two profiles of Figure 5 using a regular slicing. 
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simultaneous verified. For example, a spatio-temporal 
operator ensures that the trajectory of a MO intersects (or is 
included) a (in) spatial network region at a given time 
interval. Similar reasoning can be applied for the rest of the 
operators. 

V. CONCLUSION AND FUTURE WORK 

The use of sensors embedded in vehicles leads to new 
applications, which give rise to new research problems. In 
this paper, we addressed the problem of modeling and 
querying mobile sensor data. In this context, the existing 
work in moving objects databases is limited. A DBMS 
capable of managing in a unified manner the moving object 
data and the (embedded) moving sensor data is needed for 
these applications. 

The contribution of this paper is to propose a model for 
such a DBMS by extending an existing framework for MOs. 
We first analyzed the limitations of modeling mobile sensor 
data. Indeed, existing models can represent the data flows 
from a temporal point of view. We have shown that these 
measures are equally dependent of the object’s position and 
a representation relative to the space is needed. Therefore, 
we have extended the existing type system with functions 
that describe the evolution of measures in space. We have 
also proposed a collection of operations in view of the 
enhanced system. We introduced the concept of spatial 
lifting inspired by the idea of the existing temporal lifting. 
We have redefined all the temporal operations and changed 
the semantics of some of them for the new data types. 
Finally, we proposed a collection of operations appropriated 
for analyzing moving sensor data. An illustration of use of 
the DBMS is given by query examples involving the new 
defined types and operations. The current prototype includes 
a partial implementation of the algebra as a data cartridge in 
Oracle DBMS. 

This work is part of a Ph.D thesis. Further details could 
be found in the report [19]. As future work, we intend study 
proper indexing techniques for the new types. Although this 
is a similar to the query optimization problem in MOD, the 
distribution of sensor values may lead to specific 
optimizations in our system. We also investigate the 
problem of mining such databases [10]. Finally, adapting 
the data resolution to the application needs (some 
applications need data of all sensing points whereas others 
need just a summary) raises new challenges 
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