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Abstract—This article presents a practical study of the use of 
LIDAR (Light Detection and Ranging) data processing to 
transform point clouds into a three-dimensional city model 
compatible with CAD (Computer-Aided Design) graphic 
design systems. The article describes the methodology followed 
while concentrating on an increase in automation and 
reviewing the algorithms used. This case study demonstrates 
the importance of the LIDAR technology for 3D city modelling 
and notes several applications that may arise, especially in the 
context of urban and regional planning. 

Keywords—LIDAR; classification; reconstruction; 3D 
modelling; 3D city 

I.  INTRODUCTION 

The airborne LIDAR system is a data capture method 
that can be used as an alternative or complement to 
photogrammetry. It also constitutes an effective tool for 
creating Digital Terrain Models (DTM) and Digital Surface 
Models (DSM) in urban areas. Although it is a technique 
that has yet to mature, LIDAR has advantages in certain 
situations when compared to aerial photogrammetry [1]. 
Example LIDAR applications include the following: urban 
areas, strip mines and landfills, snowy areas, dunes, 
marshes, wetlands, forests and areas with dense vegetation, 
waterways and water resources, the control and monitoring 
of coastal erosion and monitoring and managing natural 
disasters. Additionally, the LIDAR system is better suited to 
automating the detection of buildings than the current 
technique of extracting buildings from photogrammetry [2]. 
The demand for using LIDAR in these fields comes partially 
from the development of algorithms used to classify LIDAR 
point clouds. The scenarios that pose the greatest problems 
are complex urban landscapes, irregular building shapes 
(e.g., buildings with several floors, patios, stairs or squares) 
and discontinuities in the field (break-lines). In this sense, 
the proposed classification algorithms [3] can be sorted 
using one of the following methods: 

A. According to the Data Structure 

There are many algorithms that work with the raw point 
cloud [4-5], whereas other authors [6-9] resample the point 
cloud based on a mesh with the aim of classifying data in a 
more optimal and efficient way. 

B. According to the Neighbourhood 

Point to Point [10-11] is a method in which two points 
are compared to each other, and the discriminant function is 
based on the position of both points. If the obtained result is 
greater than a certain threshold, then one of the points is 
assumed to belong to a particular class. The greatest 
drawback to this method is that only one point is classified 
during each iteration. 

Point to Points [4, 12-13] is a method in which the 
points neighbouring the point of interest are used to solve 
the discriminant function, and only one point is classified 
during each iteration. 

Points to Points [5-7, 9] is a method in which several 
points are used to solve the discriminant function, and more 
than one point is sorted during each iteration. 

C. According to the Initial Hypothesis 

To use this method, neighbouring points must be 
adapted to a given parametric surface. 

According to the hypothesis of the slope [10-11], where 
the slope or height difference is measured between two 
points. If the slope exceeds a certain threshold, then the 
highest point is sorted into a particular class. In [9], the 
initial hypothesis is a horizontal plane against which the 
differences in height are related. In [4-5, 7-9, 13], the 
discriminant function of the initial hypothesis is a 
parametric surface, which will act as a reference to establish 
the height differences among points. 

D. According to the Calculation Method 

One-step methods [10-11], in which the classification 
problem is solved linearly without requiring iteration, result 
in reductions in both computation time and dedicated 
memory. 

Iterative methods [4-7, 9, 13], in which a nonlinear, and 
therefore iterative, approach is used, yield better results but 
consume more computational resources. 

E. According to the Modification of the Point 

Point Removal methods [4-5, 10-11, 13] remove points 
lying outside of the dominant function of the original cloud 
(irregular clouds). 

Point Replacement methods [6-7, 9] replace the height of 
a point with a different height determined by interpolation. 
This type of approach is commonly used in uniform clouds. 
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The classification of LIDAR points in urban areas is 
conducted using automatic building extraction algorithms. 
Currently, the goal of total and automatic building 
classification has not been met, mainly due to the 
complexity of the urban scene [14]. Automatic building 
extraction can be conducted either using only LIDAR data 
or using LIDAR data supplemented with orthoimages. 
Studies have been conducted that combined both strategies, 
using the LIDAR data to classify buildings, and the images 
to identify and differentiate between vegetation areas and 
buildings [2, 15]. This strategy, however, has lacked 
horizontal accuracy in the detected buildings, especially 
along their edges [16]. As discussed in [17], it is difficult to 
extract a straight line accurately using only LIDAR data 
because the data resolution directly influences the quality of 
the geometric extraction [18]. To solve this problem, [19] 
used a methodology to extract buildings from LIDAR point 
clouds using the Hough´s Transformation [20]. Other 
authors [14, 21-24] have used integration techniques to 
incorporate both LIDAR data and images into the building 
extraction process. This strategy lends greater horizontal 
accuracy to the building detection. In particular, [21] 
applied a pixel-based classification strategy using a 
Normalised Digital Surface Model (NDSM) is used as an 
additional channel of aerial images, while [23] used aerial 
images and the point cloud to extract straight lines around 
the buildings by analysing the angle of the dominant line. 

In this paper, a case study is presented that demonstrates 
the creation of a 3D city model from a LIDAR point cloud, 
with an emphasis on increased quality and automation. 
Following this brief introduction to LIDAR point 
classification algorithms and building extraction, the next 
section details the proposed LIDAR data processing 
methodology with special emphasis placed on the employed 
point classification algorithm and the building extraction. A 
practical case study focused on the town of Villalba 
(Madrid) is subsequently discussed, and finally, the most 
relevant conclusions and future perspectives are presented. 

II. FROM POINT CLOUDS TO 3D CITY MODELS 

To generate a DTM or DSM, extract buildings or model 
a 3D city, it is necessary to have a good classification of 
LIDAR data. This classification can take the form of either a 
simple discrimination between terrain points and non-terrain 
points or a more sophisticated discrimination of vegetation, 
buildings and invalid points. Points collected on flat 
surfaces are regularly distributed, and the differences in 
elevation between neighbouring points are smooth, linear 
and continuous. By contrast, the points obtained in rough 
terrain, wooded or urban areas, where there are several 
surface changes, have greater differences in elevation 
between neighbouring points and significant discontinuities 
in the data. Additionally, LIDAR data return a specific 
pattern depending on a surface's physical characteristics and 
materials. On metallic objects and glass, where the surfaces 
and reflections are small, the points usually appear in 
isolated groups. On roads and smooth surfaces, where the 
points are uniformly spaced and the differences in elevation 

between neighbouring points are small (less than 0.2 m), 
only a return echo is generated. 

Depending on the type of roof, building surfaces are 
commonly smooth and regular, and they produce a single 
return (echo). Additionally, elevation differences between 
neighbouring point clouds will be considerable. In areas of 
vegetation, multiple echoes are commonly generated, and 
the resulting zone is characterised by an irregular 
distribution of points. There are also elevation differences 
between the clouds of neighbouring points. In water areas, 
the mirror-like surface behaviour reflects echoes away from 
the sensor, and there will be no collected information in 
these areas. Therefore, according to the number of returns 
(or echoes), an area that includes an echo can be classified 
as a ground surface, the roof of a building, or the top cover 
area of dense vegetation; similarly, if there are multiple 
echoes, the area can be classified as medium to high 
vegetation or a building edge. Finally, if there is no return, 
then the given area has a specular behaviour (e.g., water). 

The following table (Table I) lists the possible LIDAR 
data point classifications. 

TABLE I.  DIFFERENT LIDAR DATA POINT CLASSIFICATIONS 

Classes Of Points In Lidar Data 
Wrong information 

Low (Blunders) 

Ground 

Road 

Vegetation High Medium Low 

Building 

A. Point Cloud Classification 

After considering all of the approaches mentioned in the 
introduction, it was decided that the methodology proposed 
in [12] be used for LIDAR data classification. This 
methodology is an automatic process requiring the user to 
only input critical parameters for data point classification. 
Additionally, this process is iterative and begins with an 
initial surface generated from a randomly chosen set of 
points. This set of points is triangulated and constituted as a 
reference surface (TIN - Triangulated Irregular Network). 
Subsequently, new points will be added only if they satisfy 
the established thresholds. The densification parameters of 
the TIN, the distance to the faces of the TIN and the vertices 
angles are derived from LIDAR data based on a simple 
statistical analysis using the minimum, median and 
maximum values of histograms. 

Another important characteristic is the typology of the 
area; in forest areas, there are different characteristics and 
morphologies than in urban areas. In forest areas, variations 
in the terrain will be more continuous, whereas in urban 
areas, a flat surface with occasional discontinuities will be 
the norm. During each iteration, a point will be added to the 
TIN reference surface if it satisfies the distance threshold 
and angle criteria. These thresholds are adaptive and update 
after each iteration. This iterative process continues until 
there are no more points to add (Fig. 1 and Fig. 2). 

The outline of the algorithm is as follows: 
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1) Establish the initial TIN parameters, distance 
thresholds (to the faces of the TIN) and angles (that are 
formed with the nodes). 

2) Select points that define the initial surface from a 
random sample. 

3) TIN iterative densification: 
a) Calculate the parameters used for each iteration 

from the points added to the TIN. 
b) Points are added to the TIN if they are within the 

threshold values set for distance and angle. 
4) Repeat until all points have been classified as a 

terrain or object. 
 

 
Figure 1.  Example of building the adaptive TIN model of Axelsson  

 
Figure 2.  Workflow of the point cloud classification 

B. Automatic Building Reconstruction 

The automatic detection of buildings has advanced in 
recent years, but the available algorithms are still not fully 
autonomous because they always require human operator 
intervention. For this reason, the fully automatic acquisition 

of vector models for cities is still a challenge. The ultimate 
goal is to represent all of the entities in a city using a three-
dimensional model while retaining the entities' physical 
characteristics of size and shape. Methods for extracting 
building models can be classified according to the input 
data: (i) reconstruction based on original data, without 
interpolation or generation of a regular grid [25]; (ii) 
reconstruction based on an interpolation of the original data 
[26]; (iii) reconstruction based on LIDAR data and image 
registration [21, 23]; or (iv) the direct extraction of 
parametric shapes such as planes, cylinders and spheres.  

In this study, as mentioned in the introduction, the 
reconstruction was exclusively based on the use of the point 
cloud data without using any images as support for the 
automatic reconstruction [27]. This method was chosen due 
to a lack of suitable and geo-referenced images of the case 
study area that could support the automatic reconstruction 
process. For this reason, the available images were only 
used for radiometric mapping and manual edge correction. 

There are many architectural objects that can be 
represented as flat shapes, cylinders and spheres, which 
allows the objects to be described using controllable 
parameters while also allowing them to be extracted using 
robust methods that detect groups in a parameter space. This 
study focuses on the extraction of planes, the most common 
elements in architectural construction. In the ideal case of a 
noise-free plane point cloud, all locally orthogonal surfaces 
should point in the same direction. Given a sufficiently 
reliable and discreet class, the plane extraction 
corresponding to the roofs of buildings was conducted using 
the Hough Transformation [20] extrapolated to a three-
dimensional context and consistent in the parameterisation 
of a set of points defined initially in LIDAR space (O'XYZ) 
to a parameter space (O'abd). 

Given a plane defined by the analytical equation Ax + 
By + Cz + D = 0, the equation can be transformed with 
reference to the z coordinate of the LIDAR point cloud as 
follows: 

  

Therefore, a Z plane in the LIDAR space can be defined 
as a point (a, b, d) in the parameter space: 

  

with a =- A / C, b =- B / C, d =- D / C, and where xyz 
are the coordinates of a point belonging to the LIDAR 
space, ab are the coordinates of the point in the parameter 
space, and d is the distance from the point to the Z plane. 

Although the classification process filters and optimises 
the building class, the number of points makes it impossible 
to undertake a raw parameterisation. Therefore, it was 
decided to use the robust estimator RANSAC (Random 
Sample Consensus) on a LIDAR point cloud in a three-
dimensional space to find the best existing plane. For this 
purpose, RANSAC selects three random points from the 
building class and calculates the parameters of the plane that 

C
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they constitute. It then detects all of the points of the 
LIDAR cloud belonging to the random plane using a certain 
threshold, usually the orthogonal distance to the plane. 
RANSAC repeats this process N times, each time 
comparing the resulting plane with the previously calculated 
one and keeping the plane that contains the most points. 
Ideally, the extracted plane will be obtained along with a list 
of possible out of plane points (outliers). 

In particular, the algorithm needs the following three 
inputs: 

1) The point cloud classified into the building class 
2) A tolerance threshold according to t, which is the 

distance between the chosen plane and the rest of the points 
that takes into account the altimetric uncertainty associated 
with the LIDAR data. 

3) The maximum number of probable points belonging 
to a single plane, which is deduced from the point density 
and the general characteristics of the object to be extracted. 

Additionally, it is important to note that the number of 
RANSAC random combinations (N) can be considered an 
input parameter, or it can be calculated directly if a 
minimum probability of finding at least one set of 
observations is determined using the following equation: 

  

where the minimum number of combinations is 
determined based on the number of unknowns, U (U = 3 in 
our case), and ε is the expected percentage of gross errors 
for a specified probability (in this case 95%). The number of 
random combinations can then be found as: 

  

 
The following table (Table II) shows the necessary 

number of combinations to guarantee the correct solution 
under a certain probability and depending on the number of 
unknowns that we want to resolve [28]. 

 

TABLE II.  NUMBER OF COMBINATIONS (N) REQUIRED IN RANSAC 
PROCESS FOR A GIVEN PROBABILITY ( ) AND A NUMBER OF UNKNOWNS (U). 
HIGHLIGHTING SHOWS THE NUMBER OF COMBINATIONS SELECTED IN OUR 

CASE. 

N  =0.1 0.2 0.4 0.6 0.8 0.9 
U = 1 2 2 4 6 14 29 

2 2 3 7 18 74 299 
3 3 5 13 46 373 2995 
4 3 6 22 116 1871 29956 
5 4 8 38 292 9361 299572 
6 4 10 63 730 46807 2995731 
7 5 13 106 1827 234041 29957322 
8 6 17 177 4570 1170207 299573226 

 
For the RANSAC algorithm to be successfully applied 

in a three-dimensional context (the LIDAR point cloud), the 
set of those points considered in the plane extraction will be 
excluded from the original point cloud after each iteration. 

This process is repeated until the number of points extracted 
or unmodelled falls below a certain threshold. In this way, 
every point belongs to only a single plane, and therefore, a 
point contributes to only the adjustment of the plane to 
which it belongs. 

To obtain a plane extraction as accurately as possible, 
each RANSAC combination selected as a plane is iteratively 
adjusted through the use of a least squares calculation using 
all of the points belonging to the RANSAC selected 
combination. In this case, the least squares criterion is the 
orthogonal distance to the extracted plane. 

Considering that most of the building roofs will not be 
constituted by a single plane, it is necessary to determine the 
intersection lines among planes and, thereby, the entire 
structure of the building eaves. For this purpose, the 
equation for the intersection between two planes is used. 
Given two planes,:A1x+B1y+C1z=0and:A2x+B2y+C2z 
=0, their intersection may be defined by the line l. The 
direction vector of the line l is calculated using the cross 
product of the normal vectors of both planes: 

 
xA1,B1,C1)x(A2,B2,C2),              (5) 

 
where (A1, B1, C1) are the parameters of the normal 

vector to the plane  and (A2,B2,C2) are the parameters of 
the normal vector to the plane  

As the axis of the line l is not uniquely defined by the 
vector obtained in (5), it is necessary to obtain a point p0 = 
(x1, y1, z1) that belongs to both planes and thus to the line l. 
This point is achieved by restricting the value of one of the 
coordinates (e.g., z = 0) and solving the resulting system 
with two equations and two unknowns. 

 Finally, the volume of the building is generated through 
an orthogonal projection over the DTM of the different 
edges of the extracted planes. Unfortunately, this automatic 
process yielded no definitive results and the model suffered 
from errors. Therefore, each building was checked, and 
multiple errors were removed using manual tools.  

III. EXPERIMENTAL RESULTS: THE CASE STUDY OF 

VILLALBA 

The case study was conducted on the town of Collado 
Villalba in the Province of Madrid (Spain). The centre of the 
town of Collado Villalba contains a consolidated area with a 
density of 2062.57 inhabitants/km2. In this space, there are 
large areas with houses as well as areas with abundant 
vegetation. The project focused on an area of approximately 
2 km2 that contained gentle slopes, high vegetation and 
buildings of multiple dimensions and heights. This region 
yielded a cloud of approximately 4 million raw data points.  

  
The LIDAR data used in this study were taken with the 

Leica ALS sensor 50_II (Table III). This sensor is an 
airborne laser scanner with a 95.8 kHz pulse rate (95800 
pulses per second), an opening angle of 45° and a capture 
height of approximately 1000 m from the ground. The data 
are generated in the LAS1.0 free format, with an average 
density of 1.9 points per square meter, with an initial 

mintU
min ))1(1(1P 

))1(1ln(

)P1ln(
)U,,P(N

U
min

min 
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vertical accuracy of 12 cm. An average overlap between 
transversal scan passes of 32.33% was determined. 

TABLE III.   TECHNICAL CHARACTERISTICS OF THE DATA COLLECTED 
WITH THE 50_II SN48 ALS SENSOR. 

Sensor 
ALS 50_II 

SN48 
Laser Pulse Rate Used  95800.00 Hz 
Scan FOV (half angle) 22.50 (Deg.) 
Point Density (average) 1.87 point/m2 

Estimated error Z 0.12 m 
Overlap  32.33% 

Terrain Elevation AMSL (minimum in survey area) 850 m 
Terrain Elevation AMSL (maximum in survey area) 1050 m 

Nominal Flying Height Above Minimum Terrain 
Elevation 

1000 m 

Nominal Flying Altitude  1850 m 
Assumed GPS Error 0.05 m 

 
The initial pre-processing tasks have been excluded from 

this article as they are outside of the article scope. The pre-
processing comprised the identification of overlapped areas 
between runs, their alignment and the subsequent removal 
of redundant information for those points belonging to 
adjacent runs. Additionally, all of the points with a weak 
signal or systematic failures, points below the terrain class, 
or noise points such as birds and moving objects were 
deleted. 

In this study, the data point classification was conducted 
using a bottom-up hierarchical strategy. This classification 
allowed an initial discretisation of the terrain points and 
non-terrain points and then focused on discerning non-
terrain points into the following entities: vegetation (low, 
medium and high) and buildings. Specifically, in the case 
study, we begin with an initial terrain points model 
composed of the lowest elevation points. An initial TIN is 
generated based on Delaunay triangulation, and this TIN 
allows us to establish the reference surface. The triangles in 
this initial model are mostly below the true ground surface. 
The routine then begins to analyse the model iteratively 
from the bottom up, adding new points as it progresses. 

Each added point makes the model of the soil surface 
closer to the true terrain. The parameters that during each 
iteration whether a point is added to the soil surface during 
each iteration are the angular parameter, consisting of the 
maximum angle between a candidate point and the nearest 
triangle vertices, and the distance parameter, which is the 
orthogonal distance between a candidate point and the 
closest triangular plane. These parameters are suitable for a 
terrain with smooth and continuous break lines. In the case 
study, these parameters were set as 6 degrees for the 
threshold angle and 1.4 m for the threshold distance. These 
parameters can be varied for adapting to other types of land 
if it is very abrupt. A total of 361,086 points were classified 
as terrain (Fig. 3), and the remaining non-terrain points were 
classified as either vegetation or building. 

 
Figure 3.  Results of the terrain points filtering process (right) and the 

validation with the orthophotograpy (left). 

Considering that the points of the roads and highways 
have been classified as area-points due to the similarity 
between their characteristics and the ground-points, the two 
categories must be differentiated. This is accomplished 
using the response intensity, which depends on the material 
surface [4]. The reflectivity value of each point is 
represented as gray levels from 0 to 255, where 0 
corresponds to no light incident on the sensor, and 255 is the 
maximum reflectivity. The average intensity of the reflected 
signal for a road corresponds to a gray level of 55.26, while 
the average for the ground is 148.13. In this case study, 
there was a double threshold of intensity values (40-100) 
that filtered out those points that belong to highways or 
roads. As a result, 185,430 points were classified as road 
(Fig. 4). 
 

 
Figure 4.  Classification of the road entity in black (right) and the 

validation with the orthophotography (left). 

Subsequently, the non-terrain class was divided into the 
different types of vegetation entities. For that classification, 
a height threshold was used to classify a point into the 
following three possible types of vegetation: low vegetation 
(from 0.01 to 0.2 m), medium vegetation (from 0.2 to 3 m), 
and high vegetation (from 3 to 150 meters). In total, 50,543 
points were classified as low vegetation, 331,291 points as 
medium vegetation, and 746,932 points as high vegetation 
(Fig. 5). 

 

 
Figure 5.  Classification of the vegetation entity represented in three 

shades of green (right) and validation with the orthophoto (left).  
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In regards to the building classification, it should be 
mentioned that the area of study is an urban area in which 
there are residential buildings between 3 and 5 plants with 
heights ranging from 8 to 24 meters. For the initial building 
classification, the following two thresholds were set: the 
minimum area of the building and the tolerance in height. 
For the initial classification process of the building class, an 
initial threshold was set at 40 m2 for the building area and 
0.65 m for the minimum height. Additionally, any points 
classified as a building had to only have a single return 
(echo). As a result of this process, 402,055 points were 
classified as belonging to the building class. 

 

 
Figure 6.  Classification of the buildings in purple (right) and validation 

with orthophotography (left).  

As shown in Fig. 6, the established thresholds incorrectly 
classified the edges and the roofs of buildings as high 
vegetation. Therefore, manual intervention by the user was 
necessary to allow for a more accurate classification of the 
building class. 

Once all of the data points had been classified, the next 
step was to apply the reconstruction algorithms to the 
buildings. This task, performed automatically, yielded 
incomplete results and numerous errors. It was necessary to 
manually supervise the process via photo-interpretation 
using the orthophotos as well as via a CAD cleansing task 
that fixed the closure and connection between the different 
planes of certain buildings. The following figures (Fig. 7-
10) illustrate some of the common bug fixes that were 
required during the 3D building reconstruction. The data 
processing shown in this study case has been rather 
expensive in computational terms, i.e., data point 
classification needed 4 hours, reconstruction algorithms 
required 8 hours, and for CAD design 3 days were spent. 

 

 
Figure 7.  In this case, two buildings are defined instead of one. 

 
. 

 
Figure 8.  The correction of incoming or outgoing roofs 

 
Figure 9.  The correction of a building corner definition 

 
Figure 10.  Common errors in the automatic vectorisation of the building 

edges and their corrections. 

 
Fig. 11 presents the results of the building reconstruction 

after the photo interpretation and CAD debug phases. 
 

 
Figure 11.  3D CAD model of the buildings: detailed perspective view (left) 

and overview on the ground (right) 

IV. CONCLUDING REMARKS AND FUTURE PERSPECTIVES 

This study presented the generation of a 3D city model 
from LIDAR data taken over the urban centre of the city of 
Collado Villalba, Madrid (Spain). To obtain DTM and DSM 
of sufficient quality, it is crucial to utilise efficient 
algorithms that automatically classify the raw data points. 
Working with efficient algorithms is also critical for 
automatic building reconstruction and model triangulation. 
A classification methodology that operates according to the 
geometric features and proprieties of the data points has 
been presented alongside a robust strategy for extracting the 
roof planes of buildings. Although significant levels of 
automation have been attained, it is still necessary to 
manually correct certain errors relating to building 
vectorisation. The automatic vectorisation was ultimately 
successful and able to distinguish close buildings, although 
the time spent correcting model errors was very high and 
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necessitates the further development of more efficient 
algorithms. Regardless of its shortcomings, a 3D city model 
was created that allows a multitude of applications in the 
field of urbanism and planning. In conclusion, the use of 
LIDAR data to create three-dimensional models of urban 
areas is valid provided that a sufficient point density (greater 
than 2 points/m2) is utilised and the model is produced 
under the supervision of an operator capable of manually 
correcting any errors that arise. 

In relation to the future perspectives, there is two 
relevant issues to be considered: (i) the quality of the 
building reconstruction process, which could be solved 
through the evaluation of different TIN interpolation 
methods, such as the inverse distance weighting (IDW), 
spline or Kriging algorithms; (ii) the accuracy assessment of 
final DEM and final building reconstruction by the use of 
Geomatics techniques (terrestrial laser scanner) as ground 
truth for evaluation purposes. 
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