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Abstract—Networks are used to represent phenomena such that 

we can measure their structure.  Spatial networks are a special 

class of networks that reflect the embedding space within which 

the network is contained, incorporating the property of spatial 

autocorrelation and its impact on network measures. These 

measures of spatial network structure have thus far largely focused 

on the structure of the network, as opposed to the absence of that 

structure.  This paper builds on past work in identifying an aspect 

of the absence of structure, that of identifying holes or chordless 

cycles in a network.  It is the first step in identifying the best new 

connection to make in the network, identifying where the absence 

of structure is having the most significant impact.  This paper 

presents the implementation of optimisations in discovering 

network holes. 
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I.  INTRODUCTION 

Networks (or graphs) are used widely to model and 

analyse features in the world that either appear network like, 

such as infrastructure and river networks [1][2], or that we 

can model as a network, such as the relationships among 

groups of people in a social network [3].  Identifying the 

best new connection to create in a spatial network for the 

purposes of increasing the connectivity of that network has 

many relevant geographic applications.  For example, 

identifying the best place to put a new cycle path that 

maximally increases the overall connectivity of the network, 

or identifying the best new connection in a power supply 

network that reduces the potential for power outages.  Part 

of the process of identifying the best new connection is to 

first determine where the gaps in connectivity are and to 

recognise which would be the best gap to fill. 

This paper presents the optimised implementation of a 

part of the process of identifying the best new connection in 

a spatial network.  It improves past research that has 

developed the methodology but which was limited to very 

small networks due to an inefficient algorithm 

implementation [4].  This paper does not explore the 

application context where the discovered holes could be 

prioritized for developing a new connection across them, as 

this is the scope of future work. 

The paper begins by reviewing some of the background 

literature on spatial networks, which is followed by a 

description of how holes in a network are discovered, 

presenting search optimisation methods in Section 2.  

Efficient methods for storing the input and output of the 

search method are described in Sections 3 and 4 

respectively.  And in Section 5, performance optimisations 

are discussed, followed by concluding comments in Section 

6. 
 

II. BACKGROUND 

Work on spatial networks has developed in many 

different fields, including transportation engineering, 

hydrology and social geography.  Research has repeatedly 

found that spatial networks have properties that are distinct 

from other kinds of networks due to spatial autocorrelation. 

Consequently they require unique measures [6][7].  For 

example, Ravasz and Barabasi [7] have found that scale-free 

patterns that are found in a large range of networks, such as 

the world wide web, do not exist in geographic networks, 

such as internet routers and power grid structures.   

Barthélemy [6] thoroughly reviews measures for spatial 

networks, all of which focus on local and global measures 

that characterise a network, such as the work by Cardillo et 

al. [8], who describe the structural properties of urban street 

networks.  Little thought has thus far been given to the 

absence of that structure, which is the focus of this paper, 

other than comparing the measures of network structure 

when new links or nodes are added or removed.  For 

example, Buhl et al. [9] consider the robustness of street 

networks, measuring the robustness of a network by 

studying how it becomes fragmented as an increasing 

number of nodes are removed, where the impact on street 

network reliability varies whether nodes of high degree or 

low degree are removed. 
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An algorithm for identifying one kind of lacking 

structure, namely holes, or chordless cycles, has been 

developed by Chandrasekharan, Lakshmanan and Medidi 

[5]. We build upon this early work and present an 

alternative implementation and the details of simple steps to 

optimize the performance of the algorithm presented below. 

 

III. DETECTING HOLES 

A hole in a network is mathematically defined as a 

chordless cycle.  A chordless cycle is a cycle in a graph, a 

path such that the first node is connected to the last node, 

which includes at least four nodes with no chord connecting 

those nodes.  A minimum size can also be defined, such that 

it is composed of more than four nodes. 

For the future purposes of the application of this method 

to spatial data, the relationship between each node and its 

spatial identifier can be stored in an external spatial data 

file.  The discovered holes can then be highlighted in the 

spatial data by joining the appropriate tables. 

 

 

A. Search method 

To detect a chordless cycle a vertex v from the graph is 

selected. This vertex and all outbound edges from this 

vertex are considered a tree structure, with the root of the 

tree being vertex v. A depth-first search (traversal) of this 

tree structure is performed. When the search returns to the 

vertex v we have discovered a cycle. This method can be 

described by the following recursive algorithm: 
 

dfs (graph, startVertex, currentVertex, 

visitedVertices) { 

   if(visitedVertices.contains(currentVertex)){ 

      if (currentVertex == start){ 

         // we have found a cycle! do something... 

      } 

      return; 

   } 

   visitedVertices.add(currentVertex); 

   for each (outboundChildVertex from     

                            currentVertex){ 

dfs(graph, startVertex,outboundChildVertex,  

                     visitedVertices) 

   } 

   visitedVertices.remove(currentVertex); 

} 

 
Each cycle found must be checked for the following 

conditions: 

•  The cycle contains at least four vertices. 

• Any non-adjacent vertices in the cycle are not 

connected by a single graph edge. 

 

B.  Search method optimisation 

The disadvantage of the basic search method described in 

earlier is that each vertex will be visited many times before 

the search completes.  This leads to very high computational 

complexity.  The computational complexity can be 

significantly reduced by removing vertex v from the graph 

after a depth-first search from vertex v has been completed.  

If the depth-first search begins a vertex vn this optimization 

can be implemented by instructing the search algorithm to 

ignore any vertices vm where m < n. 

In almost all instances, this significantly reduces the 

number of edges that must be traversed to complete 

subsequent searches.  Removing vertex v from the graph 

does not reduce the number of cycles found, because after 

the search (beginning at vertex v) has been completed all 

cycles beginning and ending at vertex v have been found.  

Furthermore, all cycles beginning and ending at vertex v are 

actually all cycles containing vertex v.  This is due to the 

nature of a cycle.  Removing these vertices from the graph 

also has the positive effect of removing duplicate cycles 

from the search results, as all cycles beginning and ending at 

a vertex actually contain that vertex.  

 

IV. INPUT NETWORK FORMAT 

A network can be expressed as an adjacency matrix, 

which we use as the input structure for the method 

presented.  The matrices are read and written through plain 

text files, with formatting based on the UCINET full matrix 

format [10].   

The basic format of a UCINET full matrix text file is a 

two-line header, followed by the data.  The data values must 

be separated by at least one space and commas or other 

punctuation symbols are not allowed.  We have simplified 

this for our purposes, where the first line in the file is the 

number of columns, and therefore rows, in the matrix.  The 

remainder of the file must contain a number of 1 or 0 

characters. The exact number depends on the size of the 

matrix.  The second and subsequent lines in the file 

represent each node in the graph; and its connection via 

edges to other nodes in the graph are indicated by a 1.  For 

example, Figure 1 is a 5 x 5 matrix in a simplified UCINET 

matrix format: 

 

 
 5 

0 1 1 1 1 

1 0 1 0 0 

1 1 0 0 1 

1 0 0 0 0 

1 0 1 0 0 

 

Figure 1. Sample matrix format 

 
The corresponding graph for the matrix above is depicted 

below in Figure 2. 
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Figure 2. Network corresponding to simple adjacency matrix 

 

 

The same matrix can also be represented in this compact 

representation: 
 

5 

0111110100110011000010100 

 

V. RECORDING SEARCH RESULTS 

Consider the graph depicted in Figure 2 above. This   

graph has 6 vertices and 7 directed edges. Whether the 

edges are directed or not makes no difference to the 

problem, however directed edges significantly simplify the 

problem explanation. 

This graph can be represented by the adjacency matrix 

shown below in Figure 3. Rows and columns are labeled 0-5 

for convenience.  A value of 1 in an adjacency matrix 

element indicates the presence of an edge.  Row i in the 

adjacency matrix depicts the outgoing edges from node i.  

Similarly, column j contains the incoming edges for node j. 

 
  0 1 2 3 4 5 

0 0 1 0 0 0 0 

1 0 0 1 0 1 0 

2 0 0 0 1 1 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 1 

5 1 0 0 0 0 0 

 
Figure 3. Input adjacency matrix 

 

A simple back-stepping depth-first search beginning at 

each node in this graph will reveal the presence of four 

chordless cycles within this graph. These four cycles are: 
 

0-1-4-5, 1-4-5-0, 4-5-0-1, 5-0-1-4 

 

     It is immediately obvious that these four cycles are 

actually one cycle.  If, however, vertex 0 is removed from 

the search space after the first cycle 0-1-4-5 is found (as 

proposed in Section 2), the three following duplicate cycles 

will not be discovered.  

It is important, especially in the case of very large 

networks, that the solution is stored in a compact format. 

This can be done by storing the edges of each chordless 

cycle in a second adjacency matrix.  For every cycle found, 

each edge in the cycle is stored in the adjacency matrix. Any 

existing edge in this second adjacency matrix may be 

overwritten.  Following the discovery of the four chordless 

noted above, they are stored in an adjacency matrix, which 

contains only the edges from these chordless cycles: 

 
0-1, 1-4, 4-5, 5-0 

 

Despite the identification of the same chordless cycle 

four times, there is no duplication of edges in the solution 

adjacency matrix as they are overwritten (Figure 4). 
 

  0 1 2 3 4 5 

0 0 1 0 0 0 0 

1 0 0 0 0 1 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 1 

5 1 0 0 0 0 0 

 

 

Figure 4. Solution adjaceny matrix with chordless cycles 

 

To reconstruct the chordless cycles the original back-

stepping depth-first search is repeated on the graph depicted 

by the solution adjacency matrix. 

This method of storing chordless cycles has a number of 

advantages.  First, it requires a known storage capacity, in 

contrast to other storage techniques such as flat-file format, 

or linked-lists, which require non-deterministic storage 

capacity.  The storage capacity required is compact, where 

duplicate cycles do not cause the required storage capacity 

to „balloon‟.  By comparing elements of the first and second 

adjacency matrices the nodes that do (or do not) appear in 

chordless cycles can easily be determined (Figure 5).  Very 

little computational effort is required to store data in the 

matrix and retrieve it.  The adjacency matrix containing 

chordless cycles is typically sparse compared to the original 

adjacency matrix, making retrieval of cycles relatively 

effortless.  The main disadvantages of storing chordless 

cycles in this manner is that it may take a significant amount 

of time to obtain a list of chordless cycles from the matrix 

because the reconstruction algorithm is the same as the 

algorithm used to find the cycles.  

 
  0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 0 1 0 0 0 

2 0 0 0 1 1 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

 
Figure 5. Adjacency matrix delta contains edges: 1-2, 2-3, 2-4 
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VI. PERFORMANCE OPTIMIZATION 

Initial performance testing was performed on an Apple 

MacBook Pro with a 2.66 GHz Intel Core 2 Duo and 4 GB 

of memory. The code was compiled using GCC 4.2.   The 

code was then further tested on an IBM p575 supercomputer 

(now replaced).  The code was run under AIX 5.3 on a node 

with 16 1.9 GHz dual-core CPUs and 32 Gbytes of memory. 

A. Compiler optimization 

Before optimization, total execution time for a test matrix 

of 146 nodes, where the maximum cycle length searched is 

limited to 9 nodes, was 1 minute and 51 seconds.  After 

removing assertions (such as ensuring given matrix 

coordinates were inside the bounds of the matrix) execution 

time was reduced to 1 minute 17 seconds.  Using the 

compiler flags -funroll-loops -Os execution time was further 

reduced to 48 seconds.  Without rewriting any code the 

program execution time was reduced to 43% of the original 

execution time.  

B. Code tuning 

The „node_create‟ method allocates a block of memory 

for a node structure, and the malloc function is known to be 

time consuming. To reduce memory allocations, the 

node_create function, which consumes 29% of execution 

time, was removed from the code. This was done by 

replacing the node structure with a single unsigned long data 

type.  After refactoring the total execution time for the test 

matrix was reduced to 19 seconds.   

The code was then transferred to an IBM p575 computer 

at the BlueFern facility [11] and compiled to optimize the 

output and allow code profiling.  Figure 6 shows that the dfs 

routine, split into two calls by compiler optimization, now 

account for the majority of CPU time consumed, and should 

be our next target for tuning.  The dfs code is currently 

single-threading, and could benefit from a parallel 

implementation such as one of those surveyed by Freeman 

[12]. Future work will focus on tuning a parallel 

implementation of the network code and especially of the 

depth-first search routine. 

 

 

VII. CONCLUSION AND FUTURE WORK 

Using the methods described above, the performance of 

the hole discovery algorithm has been significantly 

improved, where this optimisation will enable the analysis 

of much larger spatial networks.  Given it remains 

constrained by processing power, however, future work will 

also consider parallelising the code.   While we can clip 

spatial networks to a manageable size within a GIS, there 

will invariably be scenarios where it would be useful to 

consider much larger networks that represent a larger 

geographical system, such as the road network of California 

which includes 1,965,206 nodes and 5,533,214 edges [13].   

The next phase of this research is to apply this optimized 

algorithm to urban cycle networks.  Identifying holes in 

urban cycle networks will aid in the determination of the 

best new cycle path to make while considering factors such 

as the origin and destinations of cyclists, existing flows, and 

demographics. 
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