
Towards Identifying the Best New Connection in a Spatial Network:

Optimising the Performance of Hole Discovery

Femke Reitsma

The Department of Geography,

The University of Canterbury,

Christchurch,

New Zealand

femke.reitsma@canterbury.ac.nz

Tony Dale, William Pearse

BlueFern Supercomputing and Services Facility,

The Univesrity of Canterbury,

Christchurch,

New Zealand

tony.dale@canterbury.ac.nz

Abstract—Networks are used to represent phenomena such that

we can measure their structure. Spatial networks are a special

class of networks that reflect the embedding space within which

the network is contained, incorporating the property of spatial

autocorrelation and its impact on network measures. These

measures of spatial network structure have thus far largely focused

on the structure of the network, as opposed to the absence of that

structure. This paper builds on past work in identifying an aspect

of the absence of structure, that of identifying holes or chordless

cycles in a network. It is the first step in identifying the best new

connection to make in the network, identifying where the absence

of structure is having the most significant impact. This paper

presents the implementation of optimisations in discovering

network holes.

Keywords-network; spatial network; chordless cycle; hole.

I. INTRODUCTION

Networks (or graphs) are used widely to model and

analyse features in the world that either appear network like,

such as infrastructure and river networks [1][2], or that we

can model as a network, such as the relationships among

groups of people in a social network [3]. Identifying the

best new connection to create in a spatial network for the

purposes of increasing the connectivity of that network has

many relevant geographic applications. For example,

identifying the best place to put a new cycle path that

maximally increases the overall connectivity of the network,

or identifying the best new connection in a power supply

network that reduces the potential for power outages. Part

of the process of identifying the best new connection is to

first determine where the gaps in connectivity are and to

recognise which would be the best gap to fill.

This paper presents the optimised implementation of a

part of the process of identifying the best new connection in

a spatial network. It improves past research that has

developed the methodology but which was limited to very

small networks due to an inefficient algorithm

implementation [4]. This paper does not explore the

application context where the discovered holes could be

prioritized for developing a new connection across them, as

this is the scope of future work.

The paper begins by reviewing some of the background

literature on spatial networks, which is followed by a

description of how holes in a network are discovered,

presenting search optimisation methods in Section 2.

Efficient methods for storing the input and output of the

search method are described in Sections 3 and 4

respectively. And in Section 5, performance optimisations

are discussed, followed by concluding comments in Section

6.

II. BACKGROUND

Work on spatial networks has developed in many

different fields, including transportation engineering,

hydrology and social geography. Research has repeatedly

found that spatial networks have properties that are distinct

from other kinds of networks due to spatial autocorrelation.

Consequently they require unique measures [6][7]. For

example, Ravasz and Barabasi [7] have found that scale-free

patterns that are found in a large range of networks, such as

the world wide web, do not exist in geographic networks,

such as internet routers and power grid structures.

Barthélemy [6] thoroughly reviews measures for spatial

networks, all of which focus on local and global measures

that characterise a network, such as the work by Cardillo et

al. [8], who describe the structural properties of urban street

networks. Little thought has thus far been given to the

absence of that structure, which is the focus of this paper,

other than comparing the measures of network structure

when new links or nodes are added or removed. For

example, Buhl et al. [9] consider the robustness of street

networks, measuring the robustness of a network by

studying how it becomes fragmented as an increasing

number of nodes are removed, where the impact on street

network reliability varies whether nodes of high degree or

low degree are removed.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

An algorithm for identifying one kind of lacking

structure, namely holes, or chordless cycles, has been

developed by Chandrasekharan, Lakshmanan and Medidi

[5]. We build upon this early work and present an

alternative implementation and the details of simple steps to

optimize the performance of the algorithm presented below.

III. DETECTING HOLES

A hole in a network is mathematically defined as a

chordless cycle. A chordless cycle is a cycle in a graph, a

path such that the first node is connected to the last node,

which includes at least four nodes with no chord connecting

those nodes. A minimum size can also be defined, such that

it is composed of more than four nodes.

For the future purposes of the application of this method

to spatial data, the relationship between each node and its

spatial identifier can be stored in an external spatial data

file. The discovered holes can then be highlighted in the

spatial data by joining the appropriate tables.

A. Search method

To detect a chordless cycle a vertex v from the graph is

selected. This vertex and all outbound edges from this

vertex are considered a tree structure, with the root of the

tree being vertex v. A depth-first search (traversal) of this

tree structure is performed. When the search returns to the

vertex v we have discovered a cycle. This method can be

described by the following recursive algorithm:

dfs (graph, startVertex, currentVertex,

visitedVertices) {

 if(visitedVertices.contains(currentVertex)){

 if (currentVertex == start){

 // we have found a cycle! do something...

 }

 return;

 }

 visitedVertices.add(currentVertex);

 for each (outboundChildVertex from

 currentVertex){

dfs(graph, startVertex,outboundChildVertex,

 visitedVertices)

 }

 visitedVertices.remove(currentVertex);

}

Each cycle found must be checked for the following

conditions:

• The cycle contains at least four vertices.

• Any non-adjacent vertices in the cycle are not

connected by a single graph edge.

B. Search method optimisation

The disadvantage of the basic search method described in

earlier is that each vertex will be visited many times before

the search completes. This leads to very high computational

complexity. The computational complexity can be

significantly reduced by removing vertex v from the graph

after a depth-first search from vertex v has been completed.

If the depth-first search begins a vertex vn this optimization

can be implemented by instructing the search algorithm to

ignore any vertices vm where m < n.

In almost all instances, this significantly reduces the

number of edges that must be traversed to complete

subsequent searches. Removing vertex v from the graph

does not reduce the number of cycles found, because after

the search (beginning at vertex v) has been completed all

cycles beginning and ending at vertex v have been found.

Furthermore, all cycles beginning and ending at vertex v are

actually all cycles containing vertex v. This is due to the

nature of a cycle. Removing these vertices from the graph

also has the positive effect of removing duplicate cycles

from the search results, as all cycles beginning and ending at

a vertex actually contain that vertex.

IV. INPUT NETWORK FORMAT

A network can be expressed as an adjacency matrix,

which we use as the input structure for the method

presented. The matrices are read and written through plain

text files, with formatting based on the UCINET full matrix

format [10].

The basic format of a UCINET full matrix text file is a

two-line header, followed by the data. The data values must

be separated by at least one space and commas or other

punctuation symbols are not allowed. We have simplified

this for our purposes, where the first line in the file is the

number of columns, and therefore rows, in the matrix. The

remainder of the file must contain a number of 1 or 0

characters. The exact number depends on the size of the

matrix. The second and subsequent lines in the file

represent each node in the graph; and its connection via

edges to other nodes in the graph are indicated by a 1. For

example, Figure 1 is a 5 x 5 matrix in a simplified UCINET

matrix format:

 5

0 1 1 1 1

1 0 1 0 0

1 1 0 0 1

1 0 0 0 0

1 0 1 0 0

Figure 1. Sample matrix format

The corresponding graph for the matrix above is depicted

below in Figure 2.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 2. Network corresponding to simple adjacency matrix

The same matrix can also be represented in this compact

representation:

5

0111110100110011000010100

V. RECORDING SEARCH RESULTS

Consider the graph depicted in Figure 2 above. This

graph has 6 vertices and 7 directed edges. Whether the

edges are directed or not makes no difference to the

problem, however directed edges significantly simplify the

problem explanation.

This graph can be represented by the adjacency matrix

shown below in Figure 3. Rows and columns are labeled 0-5

for convenience. A value of 1 in an adjacency matrix

element indicates the presence of an edge. Row i in the

adjacency matrix depicts the outgoing edges from node i.

Similarly, column j contains the incoming edges for node j.

 0 1 2 3 4 5

0 0 1 0 0 0 0

1 0 0 1 0 1 0

2 0 0 0 1 1 0

3 0 0 0 0 0 0

4 0 0 0 0 0 1

5 1 0 0 0 0 0

Figure 3. Input adjacency matrix

A simple back-stepping depth-first search beginning at

each node in this graph will reveal the presence of four

chordless cycles within this graph. These four cycles are:

0-1-4-5, 1-4-5-0, 4-5-0-1, 5-0-1-4

 It is immediately obvious that these four cycles are

actually one cycle. If, however, vertex 0 is removed from

the search space after the first cycle 0-1-4-5 is found (as

proposed in Section 2), the three following duplicate cycles

will not be discovered.

It is important, especially in the case of very large

networks, that the solution is stored in a compact format.

This can be done by storing the edges of each chordless

cycle in a second adjacency matrix. For every cycle found,

each edge in the cycle is stored in the adjacency matrix. Any

existing edge in this second adjacency matrix may be

overwritten. Following the discovery of the four chordless

noted above, they are stored in an adjacency matrix, which

contains only the edges from these chordless cycles:

0-1, 1-4, 4-5, 5-0

Despite the identification of the same chordless cycle

four times, there is no duplication of edges in the solution

adjacency matrix as they are overwritten (Figure 4).

 0 1 2 3 4 5

0 0 1 0 0 0 0

1 0 0 0 0 1 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 0 0 0 1

5 1 0 0 0 0 0

Figure 4. Solution adjaceny matrix with chordless cycles

To reconstruct the chordless cycles the original back-

stepping depth-first search is repeated on the graph depicted

by the solution adjacency matrix.

This method of storing chordless cycles has a number of

advantages. First, it requires a known storage capacity, in

contrast to other storage techniques such as flat-file format,

or linked-lists, which require non-deterministic storage

capacity. The storage capacity required is compact, where

duplicate cycles do not cause the required storage capacity

to „balloon‟. By comparing elements of the first and second

adjacency matrices the nodes that do (or do not) appear in

chordless cycles can easily be determined (Figure 5). Very

little computational effort is required to store data in the

matrix and retrieve it. The adjacency matrix containing

chordless cycles is typically sparse compared to the original

adjacency matrix, making retrieval of cycles relatively

effortless. The main disadvantages of storing chordless

cycles in this manner is that it may take a significant amount

of time to obtain a list of chordless cycles from the matrix

because the reconstruction algorithm is the same as the

algorithm used to find the cycles.

 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 1 0 0 0

2 0 0 0 1 1 0

3 0 0 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

Figure 5. Adjacency matrix delta contains edges: 1-2, 2-3, 2-4

5

0

1

3

4

2

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

VI. PERFORMANCE OPTIMIZATION

Initial performance testing was performed on an Apple

MacBook Pro with a 2.66 GHz Intel Core 2 Duo and 4 GB

of memory. The code was compiled using GCC 4.2. The

code was then further tested on an IBM p575 supercomputer

(now replaced). The code was run under AIX 5.3 on a node

with 16 1.9 GHz dual-core CPUs and 32 Gbytes of memory.

A. Compiler optimization

Before optimization, total execution time for a test matrix

of 146 nodes, where the maximum cycle length searched is

limited to 9 nodes, was 1 minute and 51 seconds. After

removing assertions (such as ensuring given matrix

coordinates were inside the bounds of the matrix) execution

time was reduced to 1 minute 17 seconds. Using the

compiler flags -funroll-loops -Os execution time was further

reduced to 48 seconds. Without rewriting any code the

program execution time was reduced to 43% of the original

execution time.

B. Code tuning

The „node_create‟ method allocates a block of memory

for a node structure, and the malloc function is known to be

time consuming. To reduce memory allocations, the

node_create function, which consumes 29% of execution

time, was removed from the code. This was done by

replacing the node structure with a single unsigned long data

type. After refactoring the total execution time for the test

matrix was reduced to 19 seconds.

The code was then transferred to an IBM p575 computer

at the BlueFern facility [11] and compiled to optimize the

output and allow code profiling. Figure 6 shows that the dfs

routine, split into two calls by compiler optimization, now

account for the majority of CPU time consumed, and should

be our next target for tuning. The dfs code is currently

single-threading, and could benefit from a parallel

implementation such as one of those surveyed by Freeman

[12]. Future work will focus on tuning a parallel

implementation of the network code and especially of the

depth-first search routine.

VII. CONCLUSION AND FUTURE WORK

Using the methods described above, the performance of

the hole discovery algorithm has been significantly

improved, where this optimisation will enable the analysis

of much larger spatial networks. Given it remains

constrained by processing power, however, future work will

also consider parallelising the code. While we can clip

spatial networks to a manageable size within a GIS, there

will invariably be scenarios where it would be useful to

consider much larger networks that represent a larger

geographical system, such as the road network of California

which includes 1,965,206 nodes and 5,533,214 edges [13].

The next phase of this research is to apply this optimized

algorithm to urban cycle networks. Identifying holes in

urban cycle networks will aid in the determination of the

best new cycle path to make while considering factors such

as the origin and destinations of cyclists, existing flows, and

demographics.

ACKNOWLEDGMENT

The University of Canterbury‟s Summer Scholarship
Scheme is gratefully acknowledged.

REFERENCES

[1] Lammer, S., B. Gehlsen, and D. Helbing (2006). “Scaling laws in the
spatial structure of urban road networks”, Physica A 363(1) pp. 89-95

[2] Tarboton, D. G. (1996). “Fractal river networks, Horton‟s laws and
Tounaga cyclicity”. Journal of Hydrology 187: 105-117.

[3] Scellato, S., A. Noulas, R. Lambiotte, and C. Mascolo (2011).
“Socio-spatial Properties of Online Location-based Social Networks”.
Proceedings of ICWSM 11, 329-336 .

[4] Reitsma, F. and S. Engel (2004). “Searching for 2D Spatial Network
Holes”. Computational Science and its Applications -ICCSA 2004
Conference, Assisi, Italy, May 14 Ð 17 2004, Proceedings, Part II:
Lecture Notes in Computer Science 3044 Springer: pp. 1069-1078

[5] Chandrasekharan, N., V. S. Lakshmanan and M. Medidi (1993).
“Efficient Parallel Algorithms for Finding Chordless Cycles in
Graphs”. Parallel Processing Letters 3(2): 165-170.

[6] Barthélemy, M (2011). “Spatial Networks”. Physics Reports 499:1-
101.

[7] Ravasz, E. and A. Barabasi (2003). “Hierarchical Organization in
Complex Networks”. Physical Review E 67(026112).

[8] Cardillo, A., S. Scelllato, V. Latora, and S. Porta (2006). “Structural
properties of planar graphs of urban street patterns”. Physical Review
E, 73: 066107.

[9] Buhl, J., J. Gautrais, N. Reeves, R. V. Sole, S. Valverde, P. Kuntz,
and G. Theraulaz (2006). “Topological patterns in street networks of
self-organized urban settlements”. The European Physical Journal B,
49: 513-522.

[10] http://www.analytictech.com/networks/dataentry.htm last accessed
1/10/2011

[11] http://www.bluefern.canterbury.ac.nz last accessed 1/10/2011

[12] Freeman, J. (1991). “Parallel Algorithms for Depth-First Search”.
University of Pennsylvania Technical Report MS-CIS-91-71.

[13] http://snap.stanford.edu/data/ last accessed 1/10/2011

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

http://www.analytictech.com/networks/dataentry.htm
http://www.bluefern.canterbury.ac.nz/
http://snap.stanford.edu/data/

