
Automatic Classification of Points-of-Interest for Land-use Analysis

Filipe Rodrigues, Francisco C. Pereira, Ana Alves
Centre for Informatics and Systems of the University of Coimbra

University of Coimbra
Coimbra, Portugal

{fmpr,camara,ana}@dei.uc.pt

Shan Jiang, Joseph Ferreira
Department of Urban Studies and Planning

Massachusetts Institute of Technology
Boston, U.S.A.

{shanjang,jf}@mit.edu

Abstract—This paper describes a methodology for automatic
classification of places according to the North American Indus-
try Classification System. This taxonomy is applied in many
areas, particularly in Urban Planning. The typical approach is
to manually classify places/Points-of-Interest that are collected
with field surveys. Given the financial costs of the task some
semi-automatic approaches have been taken before, but they
are still based on field surveys and official census. In this paper,
we apply machine learning to fully automatize the classification
of Points-of-Interest collected from online sources. We compare
the adequacy of several algorithms to the task, using both flat
and hierarchical approaches, and validate the results in the
Urban Planning context.

Keywords-machine learning; space analysis; points-of-interest;
urban planning; GIS.

I. INTRODUCTION

A Point-of-Interest (or POI for short) is a specific point
location that a considerable group of people find useful or
interesting. POIs can be used in navigation systems, char-
acterization of places, context-aware systems, city dynamics
analysis, geo-referencing of texts, etc.

Despite its usefulness, the production of POIs is scattered
across a myriad of different websites, systems and devices,
thus making it extremely difficult to obtain an exhaustive
database of such wealthy information. There are hundreds, if
not thousands, of POI directories in the Web like Yahoo.com,
Manta.com and YellowPages.com, each one using its own
taxonomy of categories or tags. It is therefore essential to
unify these different sources by mapping them to a common
taxonomy, otherwise their application as a whole becomes
impractical.

In this paper, we propose the use of machine learning
techniques to automatically classify POIs from different
sources to a standard taxonomy such as the North American
Industry Classification System (NAICS) used in the U.S.,
Canada and Mexico, or the International Standard Industrial
Classification (ISIC) used in the United Nations. Doing so
is essential to allow a proper analysis of the POI data,
especially when coming from different sources. A good
example is the land-use analysis, which is a crucial task
in Urban Planning. If the POIs do not share a common
taxonomy we are not be able to determine, for instance,
how many POIs of universities exist in a given area, since

a POI source might classify them as “schools” and the
other as “higher education”. Although our approach would
be similarly applicable to other classification standards,
in this paper we are only interested in classifying POIs
according to the North American Industry Classification
System (NAICS).

The NAICS is the standard used by Federal statistical
agencies in classifying business establishments for the pur-
pose of collecting, analyzing, and publishing statistical data
related to the U.S. business economy [1]. The NAICS was
adopted in 1997 to replace the old Standard Industrial Clas-
sification (SIC) system. It is a two to six-digit hierarchical
classification code system, offering five levels of detail.
Each digit in the code is part of a series of progressively
narrower categories, and more digits in the code signify
greater classification detail. The first two digits designate
the economic sector, the third digit designates the sub-sector,
the fourth digit designates the industry group, the fifth digit
designates the NAICS industry, and the sixth digit designates
the national industry. A complete and valid NAICS code
contains six digits [2]. Figure 1 shows part of the NAICS
hierarchy.

Figure 1. Example of the NAICS hierarchy

After comparing several classification methods, we apply
the results to the urban modeling task of estimating employ-
ment size at a disaggregated level. This task is traditionally
made at a coarser level (Traffic Analysis Zone, Census Tract
or Block Group level) than what could be now possible.

To the authors best knowledge, there is no previous work
that automatically classifies POIs into the NAICS taxonomy.
This is our main contribution.

The rest of this paper is organized as follows. Section
II presents previous related studies. Section III explains
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our data analysis and modeling methodology, from data
preparation to model generation and validation. Section
IV shows the obtained results. In Section V we describe
an application of this methodology to the field of Urban
Planning. We finish the paper with some conclusions and
further work.

II. STATE OF THE ART

The applications of machine learning algorithms in classi-
fication tasks are vast and cover diverse areas that range from
Speech Recognition to Medicine, including forecasting in
Economics and Environmental Engineering or Road Traffic
Prediction. On the other hand, in Urban Planning, land-
use/land-cover information has long been recognized as a
very important material [3]. However, as Fresco [4] claimed,
accurate data on actual land-use cannot be easily found
at both global/continental and national/regional scales. In
order to cope with these problems, automatic approaches
to classify land-use are being developed using different
techniques usually based on machine learning algorithms.

A common approach to infer land-use/land-cover is to
use satellite imagery. However, while these approaches have
already proven to get good results, they are more suited to
land-cover inference, which is considered somehow different
from land-use by many authors. Campbell [5], for example,
considers land-cover to be concrete whereas land-use is
abstract. That is, land-cover can be mapped directly from
images, while land-use requires land-cover and additional
information on how the land is used. Danoedoro [6] tries to
improve land-use classification via satellite imagery by com-
bining spectral classification, image segmentation and visual
interpretation. Although he showed that satellite imagery
could be used for generating socio-economic function of
land-use at 83.63% accuracy, he is the first to recognize that
applying such techniques to highly populated areas would
be problematic.

Li et al. [7] use data mining techniques to discover
knowledge from GIS databases and remote sensing image
data that could be used for land-use classification. Using
the C5.0 algorithm they get an accuracy of 89% in land-use
classification.

An alternative to satellite imagery is the POI data. Using
a large commercial POI database, Santos and Moreira [8]
create and classify location contexts using decision trees.
They identify clusters by means of a density-based clustering
algorithm, which allow them to define areas (or regions)
through the application of a concave hull algorithm they
developed to the POIs within each cluster. Finally, making
use of the C5.0 algorithm, they classify a given location
according to such characteristics as the number of POIs in a
cluster, the size of the area of the cluster and the categories
of the POIs within the cluster.

In order to use POI data for the classification of places
and land-use analysis, POI classification is an essential task.

Griffin et al. [9] use decision trees to classify GPS-derived
POIs. However, they refer to POIs as “personal” locations
to a given individual (i.e., home, work, restaurant, etc.). The
main goal of their approach is then to automatically classify
trips. In their approach, they start by determining clusters of
trip-stops (i.e., stops that took more than 5 minutes) using
a density-based clustering algorithm (Dbscan). Then, they
make use of the C4.5 algorithm to classify the generated
clusters as being “home”, “work”, “restaurant”, etc., based
on the time of the day and the length of the stay. However,
no previous approaches have been made to classify POIs to
a classification system such as NAICS. The latter is widely
used for industry classification and has already been used,
for instance, to classify Web Sites through machine learning
techniques [10].

Spatial analysis has long been a topic of interest for
researchers, who seek a comprehensive understanding on
how the city behaves in different perspectives and its impact
in the economy. Methods for analyzing spatial (and space-
time) data have already been well developed by statisticians
[11] and econometricians [12]. An interesting example is
provided by Currid et al. [13], who try to understand
the importance of agglomeration economies as a backbone
to urban and regional growth, by identifying clusters of
several “advanced” service sectors (professional, manage-
ment, media, finance, art and culture, engineering and high
technology) and comparing them in the top ten populous
metropolitan areas in the U.S.

III. APPROACH

In this section we describe our approach, particularly what
are the sources of our POI data, how we generate the training
data, what methods we use for classification and how we
perform validation.

A. POI Sources

Our data consists of a large set of POIs extracted from
Yahoo! through their public API, another set acquired from
Dun & Bradstreet (D&B) [14], a consultancy company
that specializes in commercial information and insight for
businesses, and a third one from InfoUSA.com provided by
the Harvard Center for Geographic Analysis (ESRI Business
Analyst Data). In the first data set (from Yahoo!), the
database is essentially built from user contributions. In the
other two the data acquisition process is semi-automatic
and involves integration of official and corporate databases,
statistical analysis and manual evaluation [14]. The POIs
from D&B and InfoUSA have a NAICS code assigned (2007
version), which is not present in Yahoo!. However, each POI
from Yahoo! is assigned, in average, roughly two arbitrary
categories from the Yahoo! categories set. These categories
are specified by the user, through a textfield and can be rather
disparate since Yahoo! forces no restrictions over them, thus
they can be seen as mere tags. Considering that every POI
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source provides either some categories or tags associated
with their POIs, we take advantage of this information to
classify them to the NAICS, where a single unifying code
is assigned to each POI.

Our dataset contains 156364 POIs from Yahoo!, 29402
from D&B and 196612 from InfoUSA for the greater
metropolitan area of Boston, Massachusetts. We also used
331118 POIs from Yahoo! and 16852 from D&B for the
New York city area to see how our previously trained model
would perform in a different city. We estimate that the
Yahoo!’s categories taxonomy has more than 1300 distinct
categories distributed along a 3-level hierarchy. On the other
hand, NAICS has a total of 2332 distinct codes distributed
along their 6-level hierarchy (1175 only in the sixth level).

Given its nature, the growth of the Yahoo! database (or
any other user-content platform) is considerably faster than
D&B and InfoUSA, and the POI categorization follows
less strict guidelines, which in some cases, as mentioned
before, may become subjective. This dynamic nature of
these internet POI sources, together with the fact that they
are publicly available to anyone and usually cover entire
countries, make them extremely attractive. Our hypothesis
is that there is considerable coherence between Yahoo!
categories and NAICS codes, such that a model can be
learned that automatically classifies incoming Yahoo! POIs.

B. POI Matching and Data Preparation

In order to generate training data for the machine learning
algorithms we use a POI Matching algorithm, which com-
pares POIs according to their name, Web Site and distance.
It makes use of the JaroWinklerTFIDF algorithm [15] to
identify close names, ignoring misspelling errors and some
abbreviations. We set the similarity thresholds to high values
in order to get only high confidence matches. By manually
validating a random subset of the POI matches identified (6
sets of 50 random POIs assigned to 6 volunteers), we con-
cluded that the percentage of correct similarities identified
was above 98% (σ = 1.79). Differently to validations later
mentioned in this paper, this is an extremely objective one,
not demanding external participants or a very large sample1.

After matching Yahoo! POIs to D&B and InfoUSA, we
built two different geographic databases, where each POI
contains a set of categories from Yahoo! and a NAICS
classification provided by D&B and InfoUSA respectively.
From this point on, we shall refer to the initial dataset, which
results from POI matches between Yahoo! and D&B, as
dataset A, and to the dataset resultant from the POI matching
between Yahoo! and InfoUSA as dataset B. The later is
six times larger than the former, due to larger coverage of
InfoUSA in Boston.

1Using the central limit theorem, the standard error of the mean should be
near 0.73. Assuming an underestimation bias for n=6 of 5% (by the [16]),
accuracy keeps very high, yielding a 95% confidence interval of [96.5%,
98.7%]

Table I shows some statistic details of both datasets used.

Table I
SOME STATISTICS OF DATASETS A AND B

Dataset A B
NAICS source D&B InfoUSA
Total POIs 7289 44634
Distinct NAICS 504 689
Distinct Yahoo! categories 802 1109
Distinct Yahoo! category combinations 569 1002
Category combinations that appear only once 136 92
Categories that appear only once 181 107
NAICS that appear only once 115 96

The dataset A contains 7289 POIs for Boston and Cam-
bridge and 2415 for New York. In comparison with the
original databases, these are much smaller sets due to a
very conservative POI matching approach (string similarity
of at least 80%, max distance of 80 meters). However
the POI quantities are high enough to build statistically
valid models. We performed a detailed analysis of this data
and identified 569 different category combinations, which
included only 802 distinct categories from the full set (of
over 1300). From D&B, our data covers 504 distinct six-
digit NAICS codes. However, the 2007 NAICS taxonomy
has a total of 1175 six-level categories, meaning that our
sample data only covers some of the most common NAICS
codes, which only represents about 43% of the total number
of the NAICS categories. Nevertheless, the remaining ones
are more exotic in our context and hence less significant for
posterior analyses.

Further analyses on the coherence between NAICS and
Yahoo! showed that only in 80,2% of the POIs in dataset
A the correspondent NAICS was consistent with the most
common one for that given set of categories, which means
that about one fifth of the POIs are incoherent with the rest
of the sample. This fact highlights the problem of allowing
users to add arbitrary categories to their POIs without
restrictions. For different NAICS levels, particularly for two-
digit and four-digit NAICS, the same analyses showed, as
expected, a higher level of coherency. For the two and four-
digit NAICS, 87,1% and 83,4% of the POIs, respectively.
Therefore, by having the same set of Yahoo! categories
mapping to different NAICS codes in different occasions,
it is not expectable that we obtain a perfect model that
correctly classifies all test cases. In order to understand
the impact of these inconsistencies in the results, we also
modified the POI dataset so that the NAICS code of a
given POI would match the NAICS codes of the other POIs
with the same category set, assigning to each POI the most
common NAICS code for that given category set in the
dataset. The results of this separate experiment are also
presented in Section IV.

Tables II and III show, respectively, the five most common
NAICS and Yahoo! categories we identified in dataset A.

Regarding dataset B, we identified 689 distinct NAICS
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Table II
MOST COMMON NAICS IN THE DATASET A

NAICS code Description Occurrences
423730 Warm Air Heating and Air-

Conditioning Equipment and Supplies
Merchant Wholesalers

707

446130 Optical Goods Stores 200
314999 All Other Miscellaneous Textile Prod-

uct Mills
193

493120 Refrigerated Warehousing and Storage 136
332997 Industrial Pattern Manufacturing 123

Table III
MOST COMMON YAHOO! CATEGORIES IN THE DATASET A

Yahoo! category Occurrences
Salons 157
All Law Firms 129
Government 116
Trade Organizations 115
Architecture 86

codes and 1109 distinct categories of the more than 1300
that we found in Yahoo!. The latter are in larger number
than the ones from dataset A (only 802) and therefore dataset
B provides a better coverage of the source taxonomy. The
number of distinct category combinations almost doubled
when compared to dataset A, which leads to more diversity
in the training data and probably to more accurate classifiers.

C. Flat Classification

The “flat classification” task corresponds to directly as-
signing a NAICS code to a POI given its “bag” of Yahoo!
categories. It is “flat” because the inherent hierarchy of the
NAICS is not taken into account in the classification model.
Each NAICS code is simply seen as an isolated string “tag”
that is assigned to a POI.

We experimented various machine learning algorithms
for this particular classification task. Table IV provides a
brief description of the algorithms we tested. It is beyond
the scope of this paper to describe any of the algorithms
in detail. The interested reader is redirected to dedicated
literature (e.g., [17], [18]).

In our experiments we built classifiers for different NAICS
levels (i.e., NAICS categories with different granularities),
particularly two, four and six-digit NAICS codes. This
choice is typical in Urban Planning depending on the study
at hand (e.g., level 2 allows to analyze economic sectors,
while level 6 goes to the level of the establishment speci-
ficities).

For validation purposes we use ten-fold cross-validation
[17], [18]. We also performed validation with an external
test set (data from a another city, New York) to understand
the dependency of the generated models on the study area.

D. Hierarchical Classification

In this approach we take advantage of the hierarchical
structure of the NAICS, thus the overall classifier is itself

Table IV
BRIEF DESCRIPTION OF THE ALGORITHMS TESTED

Implementation Description
ID3 Unpruned decision tree based on the ID3 algorithm.
C4.5 Pruned or unpruned C4.5 decision tree.

C4.5graft Grafted C4.5 decision tree.
RandomForest Forest of random trees, i.e., trees with K randomly

chosen attributes at each node.
JRip Propositional rule learner, Repeated Incremental

Pruning to Produce Error Reduction (RIPPER), as
proposed by W. Cohen as an optimized version of
IREP.

IBk K-nearest neighbors classifier that can do distance
weighting.

IB1 1-nearest-neighbor classifier. Simplification of IBk.
K* K* is an instance-based classifier. The class of a

test instance is determined from the class of similar
training instances . It uses an entropy-based distance
function.

BayesNet Bayesian Network
NaiveBayes Naive Bayes model

a hierarchy of classifiers. In this hierarchy each classifier
decides what classifier to use next, narrowing down the
NAICS code possibilities on each step, until a final 6-digit
code (or 4-digit code, depending on the goal) is achieved.
Figure 2 depicts one possible hierarchy.

Figure 2. A possible hierarchy of classifiers

By looking at the hierarchy above, we can see that it has
3 levels (2, 4 and 6-digit NAICS). The first level always
consists of a single classifier that decides which NAICS
economic sector (2-digit code) the POI belongs to. Taking
the sector into account, the algorithm then decides which
classifier to use next at the second level. After that, the
same process repeats until a leaf node is achieved in the
tree structure of the hierarchy of classifiers. To provide an
example consider a POI that has the following NAICS code:
111110. According to Figure 2 the top-level classifier will
decide that it belongs to sector 11 (”Agriculture, Forestry,
Fishing and Hunting”) and the left-most level 2 classifier
will be used next. Then, this classifier will determine that
the 4-digit NAICS code of the POI is 1111 (”Oilseed and
Grain Farming”) and, based on this decision, the left-most
classifier in the third level of the figure will be used, and will
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supposedly classify the POI with the NAICS code 111110
(”Soybean Farming”). Of course along this top-down process
a mistake can be made by one classifier. In this case, the
error would propagate downwards and there would be no
way to recover from it, and hence the final NAICS code
would be wrong.

Our hypotheses is that by using a hierarchy of classi-
fiers, the classification task will be divided into several
classification models, each one less complex, more accurate
and dealing with a simpler problem. If we consider, for
example, the ID3 algorithm, the entropy values for the
different features will be computed according to a smaller
class subset, and therefore the selection of the next feature
to use (which is based on the entropy calculation) will
be different and the resulting tree will also be different.
Hopefully, the generated classifier will be more suited to
that particular classification (like deciding for a POI if it
belongs to the subcategory 531, 532, etc, knowing that it
belongs to the NAICS sector 53).

In our experiments we use three different hierarchies of
classifiers, two with 2 levels:
• NAICS 2 and NAICS 4
• NAICS 2 and NAICS 6

and other one with 3 levels:
• NAICS 2, NAICS 4 and NAICS 6
As we did for the flat classification, we also tried to

test different types of machine learning algorithms: bayesian
networks, tree-based learners, instance-based learners and
rule-based learners. Neural networks were not possible to
test due to their computational demands, both in processing
power and memory.

For the hierarchical approaches we also perform ten-
fold cross-validation, but the data splitting between train-
ing/testing is more prone to biased results than with standard
flat classification. As in normal ten-fold cross-validation, we
also start by leaving 10% of the data out for test and use
the remaining 90% for training, repeating this process ten
times. However, each classifier in a given level only receives
the part of those 90% of training data that respects to it.
For instance, a level two classifier for deciding which sub-
category of the NAICS sector 53 a given POI belongs to
would only be trained with POIs that belong to that NAICS
sector. Hence, the only classifier that receives all the training
data (90%) would be the top-level classifier (i.e., the one
that decides which NAICS sector a POI belong to). After
the training phase, the hierarchy is tested with the 10% of
the data left out. This process is repeated ten times, and the
average accuracy over the ten iterations is determined.

IV. RESULTS

Table V shows the accuracies obtained using different
machine learning algorithms in a “flat” setting for different
NAICS levels (two, four and six-digit codes) for dataset A.

We can see that the tree-based (e.g., ID3, RandomForest) and
instance-based learning approaches (e.g., IBk, K*) are the
ones that perform better in this classification task, especially
the latter. Notice that at the sixth-level only 80,2% of the
NAICS codes in the data were assigned in a totally non-
ambiguous way. The most successful algorithm is IBk (with
k=1), which essentially finds the similar test case and assigns
the same NAICS code. The difference in accuracy between
tree-based and instance based approaches is too small to con-
clude which one outperforms the other, however we could
expect that instance based models bring better results since
the distribution of the different Yahoo! categories is rela-
tively even among examples of the same NAICS code (im-
plying no clear “dominance” of some categories over others).
Understandably, the Naive Bayes algorithm performs badly
because the assumption that different Yahoo! categories for
the same NAICS classification are independently distributed
is obviously false (e.g., “Doctors & Clinics, Laboratories,
Medical Laboratories” are correlated). Such assumption is
not fully necessary in Bayesian Networks, which actually
brings better results. Unfortunately, we could not find a
model search algorithm that performs in acceptable time
(less than 72 hours) and produces a more accurate model.
We used Simulated Annealing and Hill Climbing.

Table V
ACCURACIES OBTAINED BY DIFFERENT MACHINE LEARNING

ALGORITHMS WITH POIS FROM DATASET A FOR THE BOSTON AREA

Algorithm NAICS2(kappa) NAICS4(kappa) NAICS6(kappa)
ID3 85.495 (0.842) 77.955 (0.776) 74.015 (0.737)
C4.5 84.241 (0.828) 77.630 (0.772) 73.071 (0.727)
Random
Forest

86.174 (0.849) 79.298 (0.789) 74.753 (0.744)

JRip 81.334 (0.795) 74.340 (0.737) 69.264 (0.686)
IB1 82.736 (0.812) 74.266 (0.738) 68.644 (0.683)
IBk 86.646 (0.854) 79.475 (0.791) 75.343 (0.750)
K* 85.702 (0.844) 79.726 (0.794) 75.387 (0.751)
BayesNet 80.950 (0.790) 56.721 (0.554) 45.064 (0.438)
NaiveBayes 74.399 (0.715) 40.446 (0.382) 30.264 (0.283)

As expected, we obtained better results classifying POIs
with two-level NAICS codes than with the six-level NAICS
codes, since the noise due to ambiguous NAICS codes
assignments in the POI dataset is smaller (we now have
87.1% of non-ambiguous cases; see Section III-B).

In Table VI we can see the results obtained by changing
the POI dataset A so that the NAICS codes of POIs where
ambiguities arise are grouped together in the same “super-
category”, eliminating the inconsistencies.

Table VI
ACCURACIES OBTAINED BY DIFFERENT MACHINE LEARNING

ALGORITHMS USING A RE-CLASSIFIED VERSION OF DATASET A

Algorithm NAICS2 NAICS4 NAICS6
ID3 92.975 89.728 88.680
RandomForest 93.609 90.805 89.846
IBk 94.170 91.189 89.979
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By comparing the results in Table VI with the results in
Table V, we realize that the NAICS labeling inconsisten-
cies in the POI data have a major negative effect in the
performance of the machine learning algorithms, reducing
the accuracy in more than 16% in some cases for the six-
level NAICS codes. This also gives indications for future
versions of the NAICS, where some categories may become
aggregated according to these “super-categories”.

It would be expectable to obtain accuracies closer to 100%
for the results in Table VI. However, that does not happen
since 115 of the 514 NAICS codes covered by our dataset
A only occur once. Therefore, when we split the dataset to
perform the ten-fold cross-validation, a significative number
of the test cases will have NAICS codes that were not ob-
served during training, causing the algorithm to incorrectly
classify them.

Table VII shows the results we obtained by training the
machine learning approaches with dataset A from Boston
and Cambridge and testing them with New York POI data.
As we can see in the results, if we apply the generated
model to a different city, it still performs well, even though
the accuracy drops a small amount in some cases. This
is understandable since even the Yahoo! taxonomy differs
slightly from city to city.

Table VII
ACCURACIES OBTAINED BY DIFFERENT MACHINE LEARNING

ALGORITHMS USING POI DATA FROM BOSTON FOR TRAINING AND POI
DATA FROM NEW YORK FOR TESTING

Algorithm NAICS2 NAICS4 NAICS6
ID3 85.061 75.586 70.209
RandomForest 85.488 76.867 71.318
IBk 85.360 76.909 71.276

Table VIII shows the results obtained for the different
machine learning algorithms using dataset B. By analyzing
these results we can see that the classification accuracies
have significantly improved over dataset A, which shows
the importance of the training data size in the performance
of the machine learning algorithms.

Table VIII
ACCURACIES OBTAINED BY DIFFERENT MACHINE LEARNING

ALGORITHMS WITH POIS FROM DATASET B FOR THE BOSTON AREA

Algorithm NAICS2(kappa) NAICS4(kappa) NAICS6(kappa)
ID3 90.567 (0.897) 85.459 (0.852) 82.091 (0.819)
C4.5 90.113 (0.800) 85.085 (0.849) 81.831 (0.816)
RandomForest 90.758 (0.899) 85.710 (0.855) 82.436 (0.823)
JRip 85.748 (0.844) 80.998 (0.807) 78.495 (0.780)
IB1 87.224 (0.861) 81.495 (0.812) 76.826 (0.766)
IBk 91.024 (0.902) 85.974 (0.858) 82.553 (0.824)
K* 90.227 (0.893) 85.849 (0.856) 82.522 (0.824)
BayesNet 88.961 (0.880) 77.964 (0.776) 67.877 (0.675)
NaiveBayes 87.910 (0.868) 70.250 (0.696) 56.052 (0.554)

Finally Tables IX to XI show the results obtained using the
different hierarchical classification schemes for various types
of machine learning algorithms. There are some missing

results in the cases where the algorithm took over 72 hours
to run.

Table IX
COMPARISON BETWEEN THE RESULTS FOR DATASET B USING FLAT

CLASSIFICATION (4-DIGIT NAICS) AND HIERARCHICAL
CLASSIFICATION WITH 2 LEVELS (NAICS 2 AND 4)

Flat
classification

Hierarchical
classification

Algorithm accuracy Level1 acc. Level2 acc.
ID3 85.459 90.659 85.620
C4.5 85.085 90.172 84.901
RandomForest 85.710 90.959 85.969
JRip 80.998 85.806 80.440
IB1 81.495 87.637 81.126
IBk 85.974 91.080 86.097
K* 85.849 90.305 85.244
BayesNet 77.964 88.002 74.243
NaiveBayes 70.250 30.688 20.091

Table X
COMPARISON BETWEEN THE RESULTS FOR DATASET B USING FLAT

CLASSIFICATION (6-DIGIT NAICS) AND HIERARCHICAL
CLASSIFICATION WITH 2 LEVELS (NAICS 2 AND 6)

Flat
classification

Hierarchical
classification

Algorithm accuracy Level1 acc. Level2 acc.
ID3 82.091 90.659 82.100
C4.5 81.831 90.173 81.484
RandomForest 82.436 90.959 82.477
JRip 78.495 85.806 76.398
IB1 76.826 87.637 76.826
IBk 82.553 91.080 82.551
K* 82.522 90.305 81.661
BayesNet 67.877 89.059 69.336
NaiveBayes 56.052 88.002 59.885

Table XI
COMPARISON BETWEEN THE RESULTS FOR DATASET B USING FLAT

CLASSIFICATION (6-DIGIT NAICS) AND HIERARCHICAL
CLASSIFICATION WITH 3 LEVELS (NAICS 2, 4 AND 6)

Flat classi-
fication

Hierarchical
classification

Algorithm accuracy Level1
acc.

Level2
acc.

Level3
acc.

ID3 82.091 90.659 85.620 82.111
C4.5 81.831 90.172 84.901 81.341
Random Forest 82.436 90.959 85.969 82.398
JRip 78.495 85.806 80.440 76.889
IB1 76.826 87.637 81.126 76.826
IBk 82.553 91.080 86.097 82.539
K* 82.522 90.305 85.244 81.486
BayesNet 67.877 - - -
NaiveBayes 56.052 - - -

Our intuition was that hierarchical classification would
perform generally better than standard flat classification.
However, only in some algorithms the results improved.
Therefore, we will not argue that hierarchical classification
of POIs into the NAICS is always a better solution. In fact,
as shown before by comparing the datasets A and B, the
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quality and the dimensions of the dataset seems to have a
much bigger impact on the results than whether we apply
hierarchical or flat classification.

Another interesting fact in the results from the hierarchical
classification is that the accuracies vary considerably with
the hierarchy type used. For instance, when classifying POIs
with 6-digit NAICS codes, we can see that using a two-
level hierarchy the RandomForest algorithm improved over
the flat classification, while using a three-level hierarchy
it became worse (although the differences in accuracy are
small). One of the possible cause for this, is that the
hierarchy type used directly affects the number of training
instances at each node of the hierarchy tree, and depending
on the machine learning algorithm, the number of training
instances will have different impacts on the results.

V. AN APPLICATION IN URBAN PLANNING

In this section we describe a practical application of Ya-
hoo! POIs classified to the NAICS using a non-hierarchical
approach with the k-nearest neighbor classifier (see Section
III-C for more details).

In the field of Urban Planning, urban simulation models
have evolved significantly in the past several decades. For
instance, the travel demand modeling approach has been
evolveing from the traditional Four-Step Model (FSM) to
the Activity-Based Model (ABM) [19]. Consequently, re-
quirements for disaggregated data increase greatly, ranging
from population data, employment data, to travel survey
data. The employment data (on the travel destination side)
is usually obtained from proprietary sources, which adds an-
other layer of barriers to widely applying the Activity-Based
Modeling approach, let alone the expensive travel-survey
data acquisition. In order to study this issue, researchers are
trying to develop new methods of estimating disaggregated
employment size and location by category.

In our case, we intend to develop a set of new methods
and demonstrate their applications for estimating activities,
incorporating them into travel demand and urban simulation
models. This will be beneficial for cities that lack detailed
survey data for building Activity-Based Models but wish to
test the sensitivity of travel behavior to policy changes such
as Intelligent Transportation Systems (ITS) implementations
that are likely to alter activity patterns. An important step to
achieve these goals is to obtain a disaggregated employment
distribution by POIs of an area. For the case of Cambridge,
MA, we have official data at the Block Group (BG) level
(obtained from the U.S. Census Transportation Planning
Package 2000), which essentially describes the total size of
employees by economic sector at that spatial resolution. We
need to distribute these totals into Block or Parcel level.

For demonstration purposes we only use POIs from the
“Retail Trade” sector of the NAICS taxonomy, i.e., cate-
gories whose code starts by 44 or 45. Figures 3 and 4 show
the aggregated retail employment density at the Block Group

level and distribution of our POI data from Yahoo! at the
Census Block level for Cambridge, respectively.

Figure 3. Aggregated retail employment density at the Block Group level
(pl/sq km= employed people per square kilometer).

Figure 4. Cambridge retail POI distributions from Yahoo!

By using the business establishment survey data (from
InfoUSA, 2007), which is believed to be close to the
population, we are able to obtain a benchmark estimate
of employment size by category at the Census Block level
for the study areas. This will function as a ground truth to
test our algorithm. Notice however that the dates for each
of the databases are quite distinct (2000 for Census, 2007
for InfoUSA and 2010 for Yahoo!) therefore some error is
expected to happen.

We employ the local maximum likelihood estimation
(MLE) method as described below to derive the disaggre-
gated destination estimation at Block level.

1) We calculate the total number of POIs (destinations)
by category c in each Block b.
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2) We assume that the employment size at destination
d in Block Group g of category c is proportional to
some function f of its associated block area ad,c,g ,
which means the effective area of the destination d in
Block Group g of category c. The form of function
f will be explored based on the empirical data, and
we also allow the possibility that f(ad,c,g) = ad,c,g ,
which is the natural benchmark case. Mathematically,
assume that for employment category c, there are nc,g
destinations at Block Group g. For d = 1, 2, . . . , nc,g ,
let the random variable ed,c,g be the employment size
of category c at destination d in Block Group g.

3) We assume that ed,c,g(d = 1, 2, . . . , nc,g) are
i.i.d.(f(ad,c,g) · αc,g, σ

2
c,g), where αc,g is the employ-

ment size of category c per unit of effective area at
Block Group g; αc,g and σc,g are positive constants
independent of d. E(ed,c,g) = f(ad,c,g) · αc,g and
V ar(ed,c,g) = σ2

c,g . We then estimate αc,g by employ-
ing the maximum likelihood method locally at Block
Group g for employment category c. Thus we obtain
an estimate of employment size ed,c,g of category c at
destination d in Block Group g.

4) Finally, we sum up the employment size in category
c in Census Block b in Census Block Group g.

By employing the same local maximum likelihood method
described above and using the business establishment sur-
vey data (e.g., ESRI Business Analysis package), which
is believed to be close to the population POIs, we obtain
a benchmark estimate of employment size by category
at the Block level for the study area, E∗b,c,g . By using
the derived POI information (obtained from the machine
learning algorithm), we obtain an estimate of employment
size by category c at Block b for the study area, Êb,c,g .

Then the mean squared error (MSE), weighted mean
squared error (WMSE), and the relative weighted mean
squared error (RWMSE) can be calculated to evaluate the
goodness of fit of the model (see Equations 1, 2, 3, and 4).

MSE(Êb,c,g , E
∗
b,c,g) =

∑
b,c,g

(Êb,c,g − E∗b,c,g)2 (1)

WMSE(Êb,c,g , E
∗
b,c,g) =

∑
b,c,g

wb,c,g(Êb,c,g − E∗b,c,g)2 (2)

RWMSE(Êb,c,g , E
∗
b,c,g) =

∑
b,c,g

wb,c,g(Êb,c,g − E∗b,c,g)2∑
b,c,g

wb,c,g(Ēb,c,g − E∗
b,c,g

)2
(3)

Ēb,c,g =
w′b,g

∑
q
E∗q,c,g∑

q
w′q,g

(4)

Weights {wb,c,g} are normalized to reflect the proportion
of each Census Block in the whole map. In Equation 2, when
we take the weight wb,c,g = 1 for any subscripts b, c, and
g, the corresponding WMSE becomes MSE. In Equation 4,
w′b,g = area of Block b in Block Group g, and Ēb,c,g is the
estimated employment size in Block b of category c, using

the traditional disaggregation approach, assuming that the
employment is uniformly distributed across blocks in each
Block Group g.

If RWMSE is less than 1, it means that the quality of the
derived POIs is reliable, so is the new method; the smaller
the RWMSE, the more accurate is the method. If WMSE or
RWMSE equals to 0, it means that the derived POIs from
the Internet match exactly with the trusted proprietary POIs
(treated as the population POIs). However, if RWMSE is
greater than 1, it means that the derived POIs cannot well
reflect the distribution of the population POIs.

Figures 5 and 6 show the estimation results of the
disaggregated retail employment density at Block level in
Cambridge, MA, by using POIs from infoUSA and Yahoo!
respectively. By comparing the estimation results, we find
that the disaggregated employment estimations by using the
POIs captured from the Internet using Yahoo! and those
obtained from the proprietary source (infoUSA 2007) are
very close.

Figure 5. Disaggregated retail employment densities at the Block level,
in Cambridge, MA, by using POIs from infoUSA

Employing Equation 3, the disaggregated employment
estimation at the Block level using Yahoo! POI gives RMSE
= 0.312. The RMSE is significantly smaller than 1, which
means that using the extracted Yahoo! online POIs to
estimate the disaggregated employment sizes at the Block
level has reduced the mean squared error by around 69%
compared to the traditional average disaggregation approach.

VI. CONCLUSION

In this paper, we showed that it possible to classify POI
to the widely used NAICS system with several different
machine learning algorithms using only the categories or
tags that are commonly associated with them. We matched
two different POI databases (InfoUSA and Dun & Brad-
street) to Yahoo!, in order to build two reliable training
sets that have POIs with user provided bags of categories
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Figure 6. Disaggregated retail employment densities at the Block level,
in Cambridge, MA, by using POIs from Yahoo!

classified with NAICS codes. We tested several classification
algorithms and the results show that the best approaches for
this particular task are inductive based algorithms, namely
instance based and tree based learning. These allow for
an accuracy as high as 82% in the most complex task
(classification with 6-digit NAICS codes). We also tried to
perform classification in a hierarchical way, however the
results did not showed many improvements over the flat
approaches, leading us to the conclusion that the size of
the training set and its consistency/quality can have a larger
impact on the results than the classification algorithm itself
(except maybe for Bayesian approaches).

The classified POIs were applied to the urban modeling
task of employment size and location disaggregation from
Block Group level to Block level and the results show
encouraging quality. This strengthens the idea that well
classified POI data to a convenient taxonomy like the NAICS
is of great use and can have many distinct applications.

To the authors best knowledge, this is the only work that
proposes an automatic approach for classifying POIs to the
NAICS, and therefore a comparison with other works is not
possible. Thus, we contribute with a novel approach to this
important problem that has high impact in urban modeling
and space classification.
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