
One Click Focusing: An SQL-based Fast Loop Road Extraction Method for Mobile
Map Services

Daisuke Yamamoto
Nagoya Institute of Technology

Gokiso-cho, Showa-ku,
Nagoya, Aichi, Japan
daisuke@nitech.ac.jp

Hiroki Itoh
Nagoya Institute of Technology

Gokiso-cho, Showa-ku,
Nagoya, Aichi, Japan

hito@moss.elcom.nitech.ac.jp

Naohisa Takahashi
Nagoya Institute of Technology

Gokiso-cho, Showa-ku,
Nagoya, Aichi, Japan
naohisa@nitech.ac.jp

Abstract—This paper proposes a method for the fast loop
roads extraction for mobile Web map services and applications.
Since the existing loop road extraction method has drawbacks
such as those related to the processing speed and interactivity, it
has been difficult to apply the method to real-time applications
such as mobile Web map services directly. Therefore, this
paper proposes a fast extraction method that involves acquiring
information on all loop roads with high efficiency in advance
and storing the information in a database and querying those
with SQL statements. The proposed method is 51.0 times
faster than the previous method, and for expanded loop road
extraction, it is 16.4-25.3 times faster than the previous method.
Further, when used to build a loop road database, the proposed
method, which involves the use of a tabulation method, is 3.86
times faster than the conventional method. We have developed
the Web API function in order to acquire loop roads easily from
other Web services. For the application of the proposed method,
we have developed the One Click Focusing function that can
modify the size, position, and scale of the focus automatically
in fisheye-view maps.

Keywords-fisheye views, focus+glue+context,Web map service

I. I NTRODUCTION

Advanced Web map services, such as Google Maps, have
become available in recent years. Smart phones equipped
with GPS sensors, such as iPhones, have also become
increasingly popular, which means that anyone can access
mobile Web map services. Web map services allow users
to determine their current position, but they also enable
the sharing of content mapped with positions in many
applications, such as location-based SNS (Social Network
Services) [1] and pedestrian navigation systems [2].

Many applications are based on existing Web map ser-
vices, such as location mapping systems based on points
(latitude and longitude) and navigation systems based on
lines (road networks), but few services are based on poly-
gons, such as areas and city blocks.

However, it is important that mobile web map services
include surfaces, such as areas and city blocks, as well as
points and lines. For example, let us consider a situation
where a user wants to find certain areas using mobile maps.
A user must adjust the scale and position of the map

to visualize the whole area in the display, after scrolling
through the map. However, this operation is slightly too
complex in a mobile environment. Therefore, there is a user
need for target area adjustments that use simple one-click or
one-touch operations on mobile maps. Some map databases
are based on polygon data for areas and structures, such as
the National Land Numerical Information download service
[3] and U.S. Census Bureau Tiger/Line [4], so we aimed to
develop a method for automatically adjusting maps using
these polygons. In general, humans create polygons, but
polygon data is not available for all areas and structures.
Therefore, we must automatically extract these polygons
from road databases.

Our study was focused on a loop road. A loop road is
the smallest road network, which surrounds a target point
on a road network map, as shown in Figure 1. The area
surrounded by a loop road is a city block. Many areas consist
of some city blocks, including shopping centers, universities
and parks, so a city block is an important unit. Thus, if we
can handle city blocks easily on Web map services, more
area-based Web map applications will be made available.

The purpose of this study is to develop a fundamental
system to enable Web map services that can handle city
blocks easily. We propose a fast extraction method for loop
roads and expanded loop roads. Moreover, we developed a
“One Click Focusing” function on this method.

The following requirements had to be satisfied to imple-
ment the proposed system.

Requirement 1 The processing speed must be fast and
stable, in order to allow a serviceable response with
Web map services.

Requirement 2 Loop roads must be calculated from
existing road networks without human costs.

Requirement 3 A Web API must be defined in order to
implement the proposed system easily from other
Web services.

Requirement 4 Applications based on the proposed sys-
tem must be available.

Thus, the proposed system possesses the following char-
acteristics, in order to satisfy the requirements.

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Characteristic 1Loop roads extraction can be rapid and
stable by querying to a loop road database with
SQL statements. Since SQL is one of the fastest
technologies that involve searching massive data,
we believe that our approach is the best solution
for extracting loop roads. (Corresponding to Re-
quirement 1)

Characteristic 2The loop road database can be built
automatically from existing road databases effi-
ciently. (Corresponding to Requirement 2)

Characteristic 3The Web API can communicate with
clients and other Web servers. (Corresponding to
Requirement 3)

Characteristic 4We developed a One Click Focusing
function for fisheye view maps as an application of
the proposed system. (Corresponding to Require-
ment 4)

Our method will provide a fundamental technological
contribution to innovative and intelligent Web map services.

This paper has eight sections. Section II summarizes
existing loop road extraction methods. Section III describes a
fast method for extraction. Section IV presents the structure
of the proposed system. Section V contains the experimental
results. Section VI describes an application based on the
proposed system. Section VII contains related work. Section
VIII concludes this paper.

II. L OOPROAD EXTRACTION METHOD

We previously proposed a loop road algorithm [5] for
extracting loop roads and expanded loop roads. This section
summarizes existing methods and provides definitions of
a loop road and an expanded loop road. These methods
can extract loop roads and expanded loop roads with high
accuracy, but the processing speeds of these methods are
too slow for Web map service applications. Therefore, we
propose fast extraction methods in the next section.

A loop road is the smallest loop road network, which
surrounds a target position, as shown in Figure 1. A city
block is the area surrounded by a loop road. A level 1
expanded loop road is the loop road network that surrounds a
loop road. A level N expanded loop road is the road network
that surrounds a level N-1 expanded loop road.

A loop road is important for the following reasons. Some
areas, including parks, universities, and shopping centers,
generally consist of city blocks, so we can treat a city block
as a semantic unit that divides an area. Thus, a loop road
treats road networks as areas. Some parks and universities
contain several city blocks, so we need to address neigh-
boring city blocks as well as single city blocks. We can
process neighboring city blocks simultaneously by extracting
expanded loop roads.

Target Point

Loop Road

Expand Loop Road (Level 1)

Expand Loop Road (Level 2)

Figure 1. Sample of a loop road and expanded loop roads. The area
surrounded by a loop road is a city block.

Nearest
Link

C

City-Block

loop road

Figure 2. Example of a loop road.

A

B

P3

P1

P2

Figure 3. Selection of a loop road.

A. Method for Loop Road Extraction

We propose a loop road algorithm that extracts a loop
road surrounding point C. We initially remove orphan links
that do not form a loop road, such as straight roads.

First, we find the nearest link from point C then we
follow the link in a counterclockwise direction. When the
link connects to the tail of the first link, the path connecting
these links is a loop road. However, when the link comes to
a dead end, we follow a neighboring link using a depth-first
search algorithm, as shown in Figure 2.

Algorithm 1 finds the loop road algorithm in the coun-
terclockwise direction. Here,start.tail and start.head are
the front and tail nodes, respectively, of the nearest link
from point C. setVisitedLink(node1, node2)is a function
that sets avisited flagon the link that connects node1 and
node2.node.UnvisitedLeftChild()is a function that returns
the unvisited and leftmost links connected to thenode.
Figure 3 shows that the function returns node P3 when
node B is the current node and no links (P1, P2, P3) are
not as visited flags. Likewise,node.UnvisitedRightChild()
is a function that returns the unvisited and rightmost links
connected to the current node.

B. Method for Extracting Expanded Loop Roads

The expanded loop road algorithm expands to city blocks
surrounding a loop road in a radial direction, block-by-block.

The expanded loop road algorithm proceeds as follows.
For each link in the level N expanded loop road, apply the
loop road algorithm in the clockwise direction, as shown in
Figure 4. This finds the level N+1 expanded loop road and
expands to city blocks in a radial direction. However, we

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Algorithm 1 LoopRoad algorithm (counterclockwise)
Require: Link : Start

1: stack := newStack()
2: setV isitedLink(Start.tail, Start.head)
3: stack.push(Start.head)
4: while not stack.empty() do
5: node := stack.top()
6: if node = Start.tail then
7: return stack
8: else
9: child := node.UnvisitedLeftChild()

10: if child = null then
11: stack.pop()
12: else
13: setV isitedLink(node, child)
14: stack.push(child)
15: end if
16: end if
17: end while

must apply the loop road algorithm in a counterclockwise
direction for some links when expanding to city blocks in a
complex road network. Thus, we must apply the loop road
algorithm in both clockwise and counterclockwise directions
for each link. The algorithm is provided below.

Step 1Initialize List A.
Step 2Store links for an initial loop road (Figure 4-a) in

List A.
Step 3For each link stored in List A, apply the loop road

algorithm in both clockwise and counterclockwise
directions, as shown in Figure 4-b.

Step 4Remove links stored in List A from links generated
in Step3.

Step 5Apply the loop road algorithm in the counterclock-
wise direction using the links generated in Step4,
as shown in Figure 4-c. This provides an expanded
loop road.

Step 6Repeat from Step 2 if the city blocks need to be
further expanded, as shown in Figure 4-d and 4-e.

List A is the list structure storing the loop road. Finally, we
find the radius and center point of the Focus connected to
the loop road at each level.

III. FAST EXTRACTION METHOD

This section describes fast extraction methods for loop
roads and expanded loop roads.

The basic principle of the proposed method is as follows.
First, we build a loop road database to store all loop roads,
which are calculated in advance to improve efficiency. The
loop road database contains a loop road table with the road
links of loop roads and a neighboring table with relationships
between roads and loop roads. Thus we can rapidly find
any loop road by querying the loop road database without

(a (b (c

(d (e

Figure 4. Expanded loop road algorithm. Gray lines, black arrows, red
arrows, and the green circle indicate roads, links, previous links, and the
Focus area, respectively.

searching road networks, because searching huge networks
would be too computationally intensive. We can also find
expanded loop roads by combining neighboring loop roads,
which also eliminates the need to search road networks.

A. Definitions of databases

First, we provide details of the road database and the loop
road database.

The road database contained a road table with road links
between intersections for navigation. The columns of the
road table contained road link IDs, coordinates of road start
points and end points, and other road link IDs connected
to this link. The road database was converted from the
“Navigation Road Map 2007” published by Yahoo Japan.

A loop road database includes the LoopRoadTbl table
and the NeighborTbl table. The LoopRoadTbl table contains
road links for loop roads. The columns of the LoopRoadTbl
table contain loop road ID(id), lists of road link IDs and
coordinates connected with a loop road (roadList, coordList),
and a rectangular region containing a loop road (north, south,
west, east), as shown in Table I. The roadList column is
a text field containing a list of road link IDs in Comma
Separated Value (CSV) format. For example, the CSV
format of a loop road with road IDs of 100, 101, and 102
is ”100,101,102”. The coordList column is also a text field
containing a list of coordinates for the loop road.

The NeighborTbl table contains relationships between a
road and loop roads containing this road. Figure 5 shows
that a road connects with two loop roads: a left loop road
and a right loop road. The columns of the NeighborTbl table
contain road link ID (id), left-hand side loop road ID (leftId),
and right-hand side loop road ID (rightId), as shown in Table
II. We can find loop road IDs connected with any roads by
searching the neighboring table.

B. Loop Road Database Construction

Here we describe an automatic method for building a
loop road database from an existing road database to satisfy
requirement 2 in Section I.

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Table I
DEFINITION OF THE LOOP ROAD TABLE: LOOPROADTBL

column type description
id integer ID of the loop road

north real northernmost latitude of loop road
south real southernmost latitude of loop road
west real westernmost longitude of loop road
east real easternmost longitude of loop road

roadList text list of road IDs
coordList text list of coordinates

Right-hand side Loop Road

Left-hand side Loop Road

Road Link

Figure 5. Road connected to two neighboring loop roads (left-hand side
and right-hand side).

A very high number of road links exist in Japan, so it is
difficult to generate a loop road database in a short period of
time. We needed to generate a loop road database as quickly
as possible, so we tested the following three methods.

1) Grid Division Method: First, we discuss a simple
method of dividing the map into a grid made of vertical and
horizontal lines at a constant interval before applying the
loop road algorithm described in Section II to all vertices of
the grid.

The algorithm for this method is as follows. First, we
divide a map into a grid with a distance intervaln. The
following steps are then applied to each vertexP of this
grid.

Step 1Apply the loop road algorithm described in Section
II to point P .

Step 2Check whether the same loop road is stored in the
loop road database.

Step 3Insert the loop road to the loop road database if
the loop road does not exist in the database.

This method can extract loop roads containing any ver-
tices in the grid, but this method cannot extract loop roads
that contain no vertices in the grid. A loop road with multiple
vertices in the grid must be calculated redundantly with the
same number of vertices included in the loop road. We may
extract all loop roads if the distancen is sufficiently small,
such as 1 meter, but the extraction time is too great since
there are a lot of vertices. In contrast, we can extract loop
roads in a short time if distancen is sufficiently high, such
as 10 km, but we might not extract many loop roads because
small loop roads might include no vertices. The density of
roads varies in different areas, which makes it difficult to
determine the best distancen for solving this dilemma.

2) Road Link Method:We next discuss the road link
method, which extracts loop roads by searching from each

Table II
DEFINITION OF THE NEIGHBORING TABLE: NEIGHBORTBL

column type description
id integer ID of the road

leftId integer left-hand side loop road ID
rightId integer right-hand side loop road ID

road instead of vertices on a grid. This method applies
clockwise and counterclockwise loop road algorithms based
on Algorithm 1 to all road links and inserts these loop roads
into the loop road database.

The algorithm is as follows. We apply the following steps
to each road linkL.

Step 1Apply the clockwise loop road algorithm based on
Algorithm 1, to a road linkL.

Step 2Apply counterclockwise loop road algorithm to a
road linkL.

Step 3Check whether the same loop road is already stored
in the loop road database, for each loop road
detected in Step 1 and Step 2.

Step 4Insert each loop road to the loop road database if
the same loop road is not present in the database.

In contrasts to the grid division method, this method can
extract all loop roads. A problem with this method is the
need to calculaten times for one loop road when a loop
road hasn road links. Ideally, a loop road must be calculated
only once, so the extraction time of a loop road with this
method isn times longer compared with the ideal method.
For example, whenn = 4 in the grid road network, the road
link method takes four times longer than the ideal method.
It is desirable to solve this duplication problem.

3) Road Link Method without Duplication:Finally, we
propose a road link method without duplication. This method
can extract all loop roads without calculating duplicate loop
roads by using the NeighborTbl table.

The algorithm is as follows. We apply the following steps
to each road linkK, where a link ID of linkK is k. The
detailed algorithm is shown in Algorithm 2.

Step 1Select the row for a column, where the link ID is
k from the NeighborTbl table. Go to Step 6, if the
leftId of this row is not null.

Step 2Find a loop roadR by applying the counterclock-
wise loop road algorithm based on Algorithm 1,
where the loop road ID of the loop roadR is r.

Step 3Go to Step 6 if Step 2 cannot find a loop road.
Step 4Insert loop roadR into the LoopRoadTbl table.
Step 5For each roadK ′ of the loop roadR, update the

leftId column in the row of the linkId column in
the NeighborTbl table fork′ as follows.

UPDATE NeighborTbl SET leftId=r WHERE id=k’

Step 6Likewise, apply Step 1 to Step 5 using the clock-
wise loop road algorithm and rightId.

This method is fast, because this method can build the

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Algorithm 2 Road Link Method without Duplications
(counterclockwise).LoopRoad(link) function returns the
loop road started fromlink based on Algorithm 1.
Require: Link : k

1: row :=select∗ from NeighborTbl where id = k
2: if row.leftId = null then
3: loop := LoopRoad(row.ID)
4: if loop ̸= null then
5: for all link ∈ loop do
6: update NeighborTbl set leftId = loop.ID

where id = link.ID
7: end for
8: end if
9: end if

LoopRoadTbl table without duplications by referring to the
NeighborTbl table. The number of loop road calculations
required this method can be four times smaller than that
required by the road link method, when a loop road has
4 road links. This method requires extra disk space for
the NeighborTbl table, but the NeighborTbl table is also
required for speeding up expanded loop road extraction. For
these reasons, we adopted this method.

C. SQL-based Loop Road Extraction

We propose a rapid method for finding the loop road for
a target pointP by referring to the previously constructed
loop road database.

The algorithm of this method is as follows, where the
latitude of target pointP is P.lat, and the longitude is
P.long. The detailed algorithm is shown in Algorithm 3.

Step 1Find the candidate loop roads by querying the
LoopRoadTbl table using the following SQL query.
SELECT * FROM LoopRoadTbl where

north<P.lat and south>P.lat and
west <P.long and east>P.long

Step 2Apply a point-in-polygon[6] algorithm to the point
P and each loop road candidate to determine the
loop road including the pointP .

Step 3The result is a candidate loop road including the
point P . If no candidate loop road includes the
point P , the result is null.

The advantage of this method is that we can rapidly
acquire loop roads using a simple SQL query and without
searching any road networks.

D. SQL-based Expanded Loop Road Extraction

Next, we propose a method for finding an expanded loop
road for a target pointP . The algorithm for this method is
as follows, where SetA and SetB are null. The detailed
algorithm is shown in Algorithm 4.

Step 1Find a loop road that surrounds the pointP by
using the loop road extraction method described in
Section III.C.

Algorithm 3 FastLoopRoad Algorithm.
Require: Position : P

1: rows :=select∗ from LoopRoadTbl where north <
P.lat and south > p.lat and west < P.long and
east > P.long

2: for all row ∈ rows do
3: if PointInPolygon(P, row) then
4: return loop
5: end if
6: end for

Algorithm 4 FastExpandedLoopRoad Algorithm. N
means a level of the expanded loop road.LinksOf(A)
function returns road links included in loop roads ofA.
Require: Position : P, Integer : N

1: A :=new Set()
2: B :=new Set()
3: loop := FastLoopRoad(P)
4: if loop ̸= null then
5: A.add(loop.ID)
6: for i = 1 → N do
7: B.addAll(A)
8: rows :=select leftId, rightId from

NeighborTbl where id in (select id from
NeighborTbl where leftId in A or rightId in
A)

9: A.clear()
10: for all row ∈ rows do
11: A.add(row.leftId)
12: A.add(row.rightId)
13: end for
14: A.removeAll(B)
15: end for
16: return LoopRoad(LinksOf(A)− LinksOf(B))
17: end if

Step 2Add the loop road ID to SetA if the loop road is
not null.

Step 3Repeat the following Step 3.1 to Step 3.4N times.
Step 3.1 Add SetA values to SetB.
Step 3.2 Find loop roads with road links in loop roads

included in SetA by querying the NeighborTbl
table with the following query.
SELECT leftId, rightId FROM neighborTbl

WHERE id IN (SELECT id FROM neighborTbl
WHERE leftId IN (Set A values) OR
rightId IN (Set A values))

Step 3.3 Update SetA with the values of leftId and
rightId based on the SQL results of Step 3.2.

Step 3.4 Remove SetB values from SetA.
Step 4Remove links in loop roads of SetB from links

in loop roads of SetA. Apply LoopRoad method
described in Algorithm 1 to the links in order to

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

A={a,b,c,d,e,f,g,h,i,j,k,l,m}
B={a,b,c,d,e}

A={a}
B={}

A={a,b,c,d,e}
B={a}

A={b,c,d,e}
B={a}

ab

c

d

e

ab

c

d

e

a

A={f,g,h,i,j,k,l,m}
B={a,b,c,d,e}

ab

c

d

e

f

g

h

i

j

k

l

m

ab

c

d

e

f

g

h

i

j

k

l

m

1) 2) 3)

4) 5)

Figure 6. Example of Level 2 expanded loop road algorithm. 1)a is a loop
road extracted by FastRoadLink function, 2) Add values ofA to B. And,
a, b, c, d, e ∈ A are the loop roads extracted by the SQL query of line 8
of Algorithm 4, which share the edges ofa. 3) Remove values ofB from
A. 4) Add values ofA to B. A are the loop roads extracted by the SQL
query of line 8, which share edges ofb, c, d, e. 5) Remove values ofB
from A. Remove links in loop roads ofB from links in loop roads ofA.

connect the links.

The result of Step 5 is the target expanded loop road
(Level N).

The advantage of this method is that it is almost completed
by the SQL query in Step 3.1. The SQL query is only con-
ducted N times for level N and the size of the NeighborTbl
table is smaller than the LoopRoadTbl table, and the road
database. Thus, we expect that the processing speed of this
method will be lower than other methods.

IV. SYSTEM ARCHITECTURE

In order to satisfy Requirement 3 described in Section
I, we had to develop a function to communicate with
other Web services. Thus, we examined the following two
methods. One is a library approach used by Web engineers
to install a whole system to a Web server, including the
programs and the large road loop road databases. The other
method is a Web API approach used by Web services to
communicate on-demand with our system using a Web API.
The library approach cannot satisfy Requirement 3, because
this approach uses large volumes of disk spaces and requires
engineers to install programs on Web servers. Therefore, we
adopted a Web API approach that more easily allows Web
engineers to use the proposed methods.

A. System Architecture

We adopted a server-client architecture, as shown in
Figure 7. This system includes an application server and
database servers. A database server includes the previously
constructed road databases and the loop road database. We
adopted MySQL 5 as the database management system. We
adopted Tomcat 6 and Java 1.6 in the application server. The
method of communication between the server and clients
was based on a Web API described in the next section. The

Application server Database server

Road database

 extract

Loop road database

Apache Tomcat 6.0 MySQL 5.1

Loop road

Expanded loop road

Web API

SQL

Road

links

Web

services

REST

Figure 7. System architecture. We adopted a server-client architecture
with Web API functionality.

adoption of Web API allows clients and other Web servers
to find loop roads and expanded loop roads on demand.

B. Web API
Web API provides methods such as REST (Represen-

tational State Transfer) and SOAP (Simple Object Access
Protocol). We adopted the REST method, because this
method is easiest for Web services. This method submits
parameters by adding them to a request URL and returns
results in XML format. A sample URL request is as follows.

http://server/api?mode=loop&lat=X&long=Y&level=N

In this request,server is the URL of proposed system, while
the mode attribute indicates whether the request wants to
acquire a loop road or an expanded loop road. The system
returns a loop road if themode attribute is “loop”. The
system returns an expanded loop road if themode attribute
is “expand”. We can setlat/long using latitude and longitude
attributes. We can set the appropriate level of an expanded
loop road using thelevel attribute. The response contains
the road links of the loop road. An example of a response
is as follows.

<looproad>
<header>

<circle lat="" long="" radius=""/>
<rect top="" bottom="" left="" right=""/>

</header>
<roads>

<road id="" lat1="" lng1="" lat2="" lng2=""/>
...

</roads>
</looproad>

Theheader element contains a summary of the response,
which includes acircle element and arectangle element.
The circle element contains a center coordinate and the
radius of a circle including the loop road. Therectangle
element shows a rectangle containing the loop road. The
roads element includesroad elements with road links for
the loop road, where thelat1 and long1 attributes denote
the starting point of the road link, andlat2 and long2
indicate the end points. Web services can access loop road
information by reading this XML format.

V. EXPERIMENTAL RESULT

We tested the applicability of the proposed system from
the perspective of Web services. Thus, we compared the
processing time of the existing method with that of the
proposed method.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

The experimental environment consisted of a database
server and an application server, as described in Section IV.
The size of the road database was about 22 GB, so we could
not load all roads in the memory. Instead, we loaded road
links from the road database on demand. The specification
of the database server was as follows: Intel Core i7 2.9
GHz, 12.0 GB memory. The application server contained
the programs for the proposed system. The specification of
the application server was as follows: Intel Core i7 3.0 GHz,
8.0 GB memory.

A. Loop Road Database Construction

First, we investigated the time required for constructing
the loop road database. The loop road database can be
constructed automatically in advance from road databases,
but the time required to construct the loop road database
must be short. We must rebuild the loop road database after
the original road databases are updated, so it is better to
construct the loop road database as quickly as possible to
reduce the lead time.

Therefore, we compared the following three methods. The
target area was a central area in a major Japanese city
(Nagoya city). The area has 21820 road links.

method 1 We used the grid division method described
in Section III.B.1 and divided the map into 50 m,
100 m, or 200 m intervals.

method 2 Road link method, as described in Section
III.B.2.

method 3 Road link method without duplication, as de-
scribed in Section III.B.3.

We investigated the construction time, the number of
calculations required, and the number of loop roads with
each method. The number of calculations referred to the
total number of function calls by the loop road algorithm.
The number of loop roads means the actual number of loop
roads without duplications, because the same loop road may
be counted many times.

Table III shows the results. First, we compared method
1 with method 2. Method 2 was 0.68-9.8 times faster than
method 1. In particular, the total time required for method 1
with 50 m intervals was significant longer than other method,
including method 1 with 100 m and 200 m. Method 1 with
50 m intervals detected almost as many loop roads as method
2, whereas method 1 with 50 m and 100 m intervals failed to
detect many loop roads. This result suggests that method 1
has a problem with the trade-off between calculation speed
and the number of loop roads, which contrasts with methods
2 and 3.

Next, we compared method 2 with method 3. Method
3 was 3.86 times faster than method 2. The loop roads
calculation number with method 3 (8737) was 4.99 times
higher than method 2 (43640), which suggests that method
3 is effective in avoiding duplications. Since the number of
extracted loop roads with method 3 was almost identical to

Table III
TIME REQUIRED TO CONSTRUCT LOOP ROAD DATABASES USING EACH

METHOD. METHOD 3 IS PROPOSED METHOD.

calculation
total time number loop road

method 1 (50m) 17291 s 26649 7518
method 1 (100m) 4518 s 6745 4402
method 1 (200m) 1206 s 1828 1407
method 2 1769 s 43640 8082
method 3 459 s 8737 8058

method 2, the extraction rate was almost the same. Method
3 has the disadvantage that it requires extra disk space
in the NeighborTbl table, but we consider this problem to
be trivial because the NeighborTbl table is also useful for
accelerating the expanded loop extraction method. However,
method 3 has the advantage that it constructs a stable loop
road database rapidly and robustly.

The target area was only one of more than 4800 areas
in Japan, so the time required to construct a database for
all areas in Japan may be more than 4000 times greater.
Therefore, the advantages of the proposed method become
more significant when applied to all areas in Japan.

B. Loop Road Extraction

Next, we investigated the loop road extraction time.
The extraction time for a loop road included: 1) the time
required for accessing databases; and 2) the time required
for calculating road networks. Thus, we measures the time
required for each process. The target area was the center
area of a major city in Japan (Nagoya city). We measures the
extraction time for loop roads at 1000 random time points.
We compared the following two methods.

method 1 Existing method. The system applied the algo-
rithm described in Section II.A, after loading road
links within 1km2 of the target point.

method 2 Proposed method described in Section III.C.
This system can detect loop roads much more
quickly by using the loop road database, rather than
the road database.

Table IV shows results. The total time required for method
2 was 45.4 times faster than that with method 1. The
reason for this was as follows. Both methods had to access
the database once, but the time required for accessing the
database with method 2 was 51.0 times faster than with
method 1. Method 1 had to acquire road links from the
database in a large range (1km2), because the range of the
target loop road was previously unknown, whereas method 2
had the advantage of acquiring candidate loop roads directly
from database by issuing a simple SQL query. Method 1 had
to apply a loop road extraction algorithm after acquiring
the SQL results, whereas method 2 had the advantage
of not applying this algorithm. The average road network
calculation time with method 2 was only about 1 ms.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

The standard variance with method 2 was much smaller
than that with method 1. The reason for this was as follows.
The road network calculation time with method 1 varied with
the size and complexity of the loop road, whereas this was
constant with method 2 which acquired any result by issuing
a simple SQL query to the database without any complex
processing requirements.

The precision of method 2 (98.0%) was higher than that
of method 1 (92.3%). Method 1 searched a loop road starting
from only the nearest link of target point, whereas method
2 could search a loop road starting from any of the links.
The main reason why the precision of method 2 was not
100 percent was that some areas lacked loop roads, such as
the coast. The precision of method 2 was low if the loop
road database could not be constructed with high accuracy,
which suggests that loop road extraction and construction of
the loop road database had high accuracy with the proposed
method. Method 2 was more stable and quicker at extracting
loop roads than method 1, which suggest that the proposed
method is more suitable for Web services.

C. Expanded Loop Road Extraction

Finally, we investigated the extraction time for expanded
loop roads. The extraction time for an expanded loop road
includes: 1) the time required to access the database; and 2)
the time required to calculate data. Thus, we measured the
time required for each process. The target area was the center
area of a major city in Japan (Nagoya city). We measured
the time required to calculate the loop road extraction at 100
random points, for each Level of the expanded loop road.
We compared the following two methods.

method 1 Existing method. The system applied the al-
gorithm described in Section II.B to road links,
after loading road links within 2km2 of the target
point.

method 2 Proposed method described in Section III.D.
This system used the loop road database to find
loop roads more quickly.

Table V shows the results. The total processing time with
method 2 was 16.4-25.3 times faster than with method 1.
The reason for this was as follows. The detection time with
method 1 was higher, because method 1 had to load a very
large range of road links from the road database, whereas
method 2 had the advantage that it only had to make as many
SQL queries as there were loop road levels. Method 1 had
to apply the loop road extraction algorithm to road networks
for the total number of city blocks, whereas method 1 only
had to apply this algorithm once.

The standard variance with method 2 (9.1-39.3) is much
smaller than that with method 1 (2096-8321). The reason for
this was as follows. The road network calculation time with
method 1 varied with the size and complexity of the loop
road, while it was constant with method 2 which acquired
any result by issuing an SQL query to the database N times,

for the level N of the expanded loop road. Thus, method
2 was more stable at detecting loop roads compared with
method 1.

These results suggest that the proposed system is better
for Web map services than existing systems.

VI. A PPLICATION

This section describes the application of the loop road
extraction method to satisfy Requirement 4 in Section I.

So, we have proposed and developed the
Focus+Glue+Context type fisheye view maps Emma
[7][8][9]. Emma is the first Fisheye view map system for
Web map services. Figure 8 shows that Emma has a Focus
to show large-scale maps of target areas, a Context to
show a small-scale map, and a Glue that shows the routes
connecting Focus with Context. Unlike existing fisheye
views [10][11][12][13][14], the Focus and Context have no
distortion, because Glue contains all the distortion. Only
the Glue must be drawn dynamically, so this system is
rapid and suitable for Web map services. Emma users can
observe detailed maps of target areas and the geographical
relationships between the targets. Users can also adjust the
size, scale, and position of the Focus according to target
area, by mouse-dragging the edge of the Focus.

The Context and Glue is too small when the Focus is
too large when using a small display, so it is important to
adjust the size, position, and scale of the Focus to make the
Focus as small as possible and fitting the Focus in the target
area. Users cannot use a mouse with mobile maps, such as
smart phones, which makes it is difficult to adjust the Focus
manually. Therefore, we must adjust the Focus automatically
based on the target area.

Thus, we propose a “One Click Focusing” function to
automatically adjust the size, position, and scale of the
Focus, based on the target city blocks. We adopted a server-
client model using Web API. The algorithm of this function
is as follows.

Step 1A user clicks any point on the map in the client.
Step 2The client submits the clicked point to the server

using a Web API function.
Step 3The server calculates a loop road for the clicked

point and responds to the client in XML format.
Step 4The client finds the center positionP and the

radiusR of a circle that contains the loop road
based on the XML response.

Step 5The client adjusts the Focus, based on the position
P and radiusR.

In Step 5, the center of the Focus,FP , and the scale of
the Focus,FS , are calculated using the following functions
where the radius of the Focus isFR, which is limited by the
display size.

FP = p (1)

FS = k · FR/r (2)

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

Table IV
MEAN LOOP ROAD EXTRACTION TIME AND PRECISION FOR EACH METHOD. DATABASE TIME MEANS THE TIME OF ACCESSING DATABASES.

CALCULATION TIME MEANS THE TIME OF CALCULATING ROAD NETWORKS. UNIT IS MILLISECOND. METHOD 2 IS PROPOSED METHOD.

database time calculation time total precision
mean std. mean std. mean std. factor

method 1 931.1 ms 258.8 12.2 ms 15.6 943.3 ms 259.9 51.0× 92.3%
method 2 18.5 ms 6.2 0 ms 0 18.5 ms 6.2 1.0× 98.0%

Table V
EXPANDED LOOP ROAD DETECTION TIME USING EACH METHOD, FOR EACH LEVEL OF THE EXPANDED LOOP ROAD. DATABASE TIME MEANS THE

TIME REQUIRED TO ACCESS THE DATABASES. CALCULATION TIME MEANS THE TIME REQUIRED TO CALCULATE THE ROAD NETWORKS. UNIT IS

MILLISECOND. METHOD 2 IS PROPOSED METHOD.

database time calculation time total
mean std. mean std. mean std. factor

level 1 method 1 1212.3 ms 428.9 414.1 ms 2098.6 1626.4 ms 2096.4 14.8×
method 2 106.6 ms 8.2 3.3 ms 3.1 109.9 ms 9.12 1.0×

level 2 method 1 1174.3 ms 416.7 1540.0 ms 3532.0 2714.7 ms 3684.5 17.2×
method 2 149.8 ms 8.4 8.2 ms 9.7 158.1 ms 14.8 1.0×

level 3 method 1 1233.9 ms 401.1 2085.2 ms 3977.3 3319.1 ms 3989.4 16.4×
method 2 190.2 ms 31.62 12.2 ms 20.2 202.4 ms 36.5 1.0×

level 4 method 1 1181.9 ms 369.3 5329.0 ms 8296.7 6510.9 ms 8321.3 25.3×
method 2 238.0 ms 32.7 19.3 ms 19.5 257.3 ms 39.3 1.0×

Focus

Focus

Glue

Context
Glue

Figure 8. “Focus+Glue+Context” fisheye view maps in Emma. Users can
adjust the size, position, and scale of the Focus by mouse-dragging.

k is a constant determined by the display resolution. If users
want to expand the Focus, the Focus can be expanded step-
by-step by acquiring expanded loop roads, instead of a loop
road.

The advantage of the proposed method is that the Focus
can be part of target area and also boundary roads of the
target area, because the size of the Focus is determined
by the loop roads. Therefore, the proposed system can find
the routes for the target area of the Focus with certainty,
as shown in Figure 9. This suggests that we can develop
advanced Web map services by applying the loop road
algorithm to existing Web map services.

VII. R ELATED WORK

One of the most advanced Web map services is the Open
Street Map [15]. Open Street Map enables users to easily edit
maps using Web browsers like a Wiki. Users can modify and
add roads in the Open Street Map, but users cannot edit and
control the map based on city blocks or areas, as described
in our current study.

a) b)

Figure 9. “One Clicking Focusing” function can automatically adjust the
size, position, and size of the Focus, based on loop roads. a) The route to
the target area is interrupted, because part of a loop road is not shown in
the Focus. b) The route to the target area is connected to the target area,
because loop roads are shown in the Focus.

Many studies have detected roads by analyzing paper
maps or satellite images. For example, satellite images have
been used in many studies in the academic fields of geo-
science and pattern recognition, particularly in methods for
detecting roads by recognizing road edges [16][17], pattern
matching [18][19], and methods based on local coidentity of
roads [20]. These methods are effective when a user wants
to generate new maps for an area that has no road maps. Our
method is effective for areas found in road map databases,
which contrasts with these image-based methods.

In some field of academic study, such as graph theory [21]
and mobile distributed network theory [22], it is popular to
detect cycle graphs. In particular, when a network is down
due to a loop problem where a data packet goes through the
same routes many times if the system dynamically builds
the network, such as occurs with cycle graphs in mobile
distributed networks. Thus, there are many approaches for

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

generating directed acyclic graphs (DAG) without cycle
graphs, which contrasts with our approach. These studies
are relevant to our proposed method, but the definition and
purpose of the loop road are different from cycle graphs.
For example, a cycle graph may not be the smallest network
surrounding any point, which contrasts with a loop road.

VIII. C ONCLUSION

This study proposes rapid methods for extracting loop
roads and expanded loop roads by constructing a loop road
database from an existing road database, for use in Web
map services. The proposed method can find a loop road
51.0 times faster than the previous method, and an expanded
loop road 16.4-25.3 times faster than previous method. The
precision of the proposed method (98.0%) is higher than
that of the previous method (92.3%). The proposed method
can effectively build a loop road database by avoiding
duplications and it constructs a loop road database 3.86
times faster than conventional method. We developed a Web
API, which allows Web engineers to develop Web Map
services based on city blocks. We also developed a One
Click Focusing function as an example application of loop
roads. This function can automatically adjust the size, scale,
and position of the Focus, according to the target area and
city blocks. This system is particularly effective for mobile
maps on smartphones.

This system allows Web map services to handle maps
based on surfaces, such as city blocks, which contrasts with
existing Web map services. We consider that our study
contributes to the interface of mobile Web map services,
such as One Click Focusing, but also to novel Web map
services based on surfaces, such as city blocks. The feature
of the proposed system is calculation using SQL technology
mainly, so we believe that the processing speed of the
proposed system could be further increased by adopting
other database technologies, such as replications, which are
popular technologies used in Web services. Thus, our system
contributes to GIS and novel Web services.

Acknowledgments In the development of the prototype
system, we were supported by Yahoo Japan Corporation. We
would like to thank Yahoo Japan Corporation. This work was
supported by JSPS KAKENHI 20509003.

REFERENCES

[1] D. Yamamoto, I. Takumi, and H. Matsuo, “Location-based
social network services employing student cards for univer-
sity,” in Proceedings of the 2009 International Workshop on
Location Based Social Networks, 2009, pp. 21–24.

[2] M. Arikawa, S. Konomi, and K. Onishi, “Navitime: Support-
ing pedestrian navigation in the real world,”IEEE Pervasive
Computing, vol. 6, no. 3, pp. 21–29, 2007.

[3] “National land numerical information downalod service,”
http://nlftp.mlit.go.jp/ksj-e/index.html, Nov. 8, 2011.

[4] “Tiger data,” http://www.census.gov/geo/www/tiger/, Nov. 8,
2011.

[5] D. Yamamoto, K. Hukuhara, and N. Takahashi, “A focus con-
trol method based on city blocks for the focus+glue+context
map,” in Proceedings of the IEEE 24th Internatinal Confer-
ence on Adavanced Information Networking and Applications
Workshops, 2010, pp. 956–961.

[6] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker,
“A characterization of ten hidden-surface algorithms,”ACM
Computing Surveys, no. 1, 1974.

[7] D. Yamamoto, S. Ozeki, and N. Takahashi,
“Focus+glue+context: An improved fisheye approach for
web map services,” inProceedings of the ACM SIGSPATIAL
GIS 2009, 2009, pp. 101–110.

[8] N. Takahashi, “An elastic map system with cognitive map-
based operations,”International Perspectives on Maps and
the Internet, Michel P. Peterson (Ed.), Lecture Notes in
Geoinformation and Cartography, pp. 73–87, 2008.

[9] “Focus+glue+context map,” http://tk-
www.elcom.nitech.ac.jp/demo/fisheye/, Nov. 8, 2011.

[10] M. Sarkar and M. H. Brown, “Graphical fisheye views of
graphs,” inProceedings of the CHI 92 conference on Human
factors in computing systems, 1992, pp. 83–91.

[11] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss,
“Stretching the rubber sheet: a metaphor for viewing large
layouts on small screens,” inProceedings of the 6th annual
ACM symposium on User interface software and technology,
1993, pp. 81–91.

[12] L. Harrie, L. T. Sarjakoski, and L. Lehto, “A variable-
scale map for small-display cartography,” inProceedings
of the Symposium on GeoSpatial Theory, Processing, and
Applications, 2002, pp. 8–12.

[13] C. Gutwin and A. Skopik, “Fisheye views are good for large
steering tasks,” inProceedings of the CHI 2003 conference
on Human factors in computing systems, 2003, pp. 5–10.

[14] C. Gutwin and C. Fedak, “A comparison of fisheye lenses
for interactive layout tasks,” inProceedings of the Graphics
Interface 2004, 2004, pp. 213–220.

[15] M. Haklay and P. Weber, “Openstreetmap: User-generated
street maps,”IEEE Pervasive, vol. 7, no. 4, pp. 12–18, 2008.

[16] Y. T. Zhou, V. Venkateswar, and R. Chellapa, “Edge detec-
tion and linear feature extraction using a 2-d random field
model,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 11, no. 1, pp. 84–95, 1989.

[17] C. Steger, “An unbiased detector of curvilinear structures,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 3, pp. 113–125, 1998.

[18] R. Bajcsy and M. Tavakoli, “Computer recognition of roads
from satellite pictures,”IEEE Transactions on Systems, Man
and Cybernetics, vol. SMC-6, no. 9, pp. 623–637, 1976.

[19] W. Shi and C. Zhu, “The line segment match method for
extracting road network from high-resolution satellite im-
ages,”IEEE Transactions on Geoscience and Remote Sensing,
vol. 40, no. 2, pp. 511–514, 2002.

[20] J. Hu, A. Razdan, J. C. Femiani, M. Cui, and P. Wonka,
“Road network extraction and intersection detection from
aerial images by tracking road footprints,”IEEE Transactions
on Geoscience and Remote Sensing, vol. 45, no. 12, pp. 4144–
4157, 2007.

[21] N. Biggs,Algebraic Graph Theory 2nd Edition. Cambridge
Mathematical Library, 1994.

[22] V. D. Park and M. S. Corson, “A highly adaptive distributed
routing algorithm for mobile wireless networks,” inProceed-
ings of the Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, 1997, pp. 1405–
1413.

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-178-6

GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services

