A Class of Minimum-Time Synchronization Algorithms for 2D Rectangluar Arrays Based on L-Shaped Mapping

Hiroshi Umeo ${ }^{\dagger}$, Takuya Yamawaki ${ }^{\dagger}$, Hiroki Uchino ${ }^{\dagger}$, and Kaori Ishida ${ }^{\dagger}$
${ }^{\dagger}$ School of Information Engineering
University of Osaka Electro-Communication
Neyagawa-shi, Hastu-cho, 18-8, Osaka, Japan
corresponding email address: umeo@cyt.osakac.ac.jp
\{yamawaki, uchino, ishida\}@cyt.osakac.ac.jp

Abstract

We introduce a new class of minimum-time FSSP (Firing Squad Synchronization Problem) algorithms for twodimensional (2D) rectangular arrays. The algorithms in the class are all based on L-shaped mapping, where the synchronized configurations on 1D arrays are mapped in an L-shaped form onto 2D arrays efficiently, yielding minimum-time FSSP algorithms. We also present a comparative study of their recent implementations. Several state-efficient implementations, new insights into 2D synchronization and multi-dimensional extensions are also discussed.

Keywords-cellular automata; FSSP; synchronization.

I. Introduction

The synchronization in ultra-fine grained parallel computational model of cellular automata, known as the Firing Squad Synchronization Problem (FSSP), has been studied extensively for more than fifty years, and a rich variety of synchronization algorithms has been proposed. In the present paper, we attempt to answer the following questions:

- First, how many variations of 2D FSSP algorithms and their implementations which are based on L-shaped mapping exist?
- How can we synchronize 2D arrays using the Lshaped decomposition in minimum-time?
- What is the exact rule set for the real implementations of minimum-time FSSP algorithms on 2D arrays?
- How do the algorithms compare with each other?
- Can we extend those 2D FSSP algorithms to 3D arrays, or more generally, to multi-dimensional arrays?

In Section 2, we give a description of the 2D FSSP and review some basic results on the 2D FSSP algorithms. Section 3 introduces a new class of FSSP algorithms based on Lshaped mapping for 2 D arrays. In the last section, we give a summary of the paper.

II. Firing Squad Synchronization Problem

A. FSSP on $2 D$ Cellular Arrays

Fig. 1 shows a finite two-dimensional (2D) cellular array consisting of $m \times n$ cells. Each cell is an identical (except the border cells) finite-state automaton. The array operates in lock-step mode in such a way that the next state of each cell (except border cells) is determined by both its own present

Fig. 1. A two-dimensional (2D) rectangular cellular automaton of size $m \times n$ arranged in m rows and n columns.
state and the present states of its north, south, east, and west neighbors. All cells (soldiers), except the north-west corner cell (general), are initially in the quiescent state at time $t=0$ with the property that the next state of a quiescent cell with quiescent neighbors is the quiescent state again. At time $t=0$, the north-west upper corner cell $\mathrm{C}_{1,1}$ is in the fire-when-ready state, which is the initiation signal for the array. The FSSP is to determine a description (state set and next-state function) for cells that ensures all cells enter the fire state at exactly the same time and for the first time. The tricky part of the problem is that the same kind of soldier having a fixed number of states must be synchronized, regardless of the size $m \times n$ of the array. The set of states and transition rules must be independent of m and n.

A formal definition of the 2D FSSP is as follows: A cellular automaton \mathcal{M} is a pair $\mathcal{M}=(\mathcal{Q}, \delta)$, where

1) \mathcal{Q} is a finite set of states with three distinguished states G, Q, and F, each in $\mathcal{Q} . G$ is an initial general state, Q is a quiescent state, and F is a firing state, respectively.
2) $\quad \delta$ is a next state function such that $\delta: \mathcal{Q} \times(\mathcal{Q} \cup$ $\{*\})^{4} \rightarrow \mathcal{Q}$. The state $* \notin \mathcal{Q}$ is a pseudo state of the border of the array.
3) The quiescent state Q must satisfy the following conditions:
$\delta(\mathbf{Q}, \mathbf{Q}, \mathbf{Q}, \mathbf{Q}, \mathbf{Q})=\delta(\mathbf{Q}, *, \mathbf{Q}, \mathbf{Q}, *)=\delta(\mathbf{Q}, *, \mathbf{Q}, \mathbf{Q}, \mathbf{Q})=$
$\delta(\mathbf{Q}, *, *, \mathbf{Q}, \mathbf{Q})=\delta(\mathbf{Q}, \mathbf{Q}, \mathbf{Q}, *, \mathbf{Q})=\delta(\mathbf{Q}, \mathbf{Q}, *, *, \mathbf{Q})=$
$\delta(\mathbf{Q}, \mathbf{Q}, *, \mathbf{Q}, \mathbf{Q})=\delta(\mathbf{Q}, \mathbf{Q}, *, \mathbf{Q}, *)=\delta(\mathbf{Q}, \mathbf{Q}, \mathbf{Q}, \mathbf{Q}, *)=$ Q.

A 2D cellular automaton of size $m \times n, \mathcal{M}_{m \times n}$ consisting of $m \times n$ copies of \mathcal{M}, is a 2 D array of \mathcal{M}. Each \mathcal{M} is referred to as a cell and denoted by $\mathrm{C}_{i, j}$, where $1 \leq i \leq m$ and $1 \leq j \leq n$. We denote a state of $\mathrm{C}_{i, j}$ at time (step) t by $S_{i, j}^{t}$, where $t \geq 0,1 \leq i \leq m, 1 \leq j \leq n$. Each tuple in the
next state function δ means that:

$$
\mathrm{S}_{\mathrm{itself}}^{t+1}=\delta\left(\mathrm{S}_{\mathrm{itself}}^{t}, \mathrm{~S}_{\text {north }}^{t}, \mathrm{~S}_{\mathrm{south}}^{t}, \mathrm{~S}_{\text {east }}^{t}, \mathrm{~S}_{\mathrm{west}}^{t}\right)
$$

A configuration of $\mathcal{M}_{m \times n}$ at time t is a function \mathcal{C}^{t} : $[1, m] \times[1, n] \rightarrow \mathcal{Q}$ and denoted as:

$$
\begin{gathered}
\mathrm{S}_{1,1}^{t} \mathrm{~S}_{1,2}^{t} \ldots \ldots \mathrm{~S}_{1, n}^{t} \\
\mathrm{~S}_{2,1}^{t} \mathrm{~S}_{2,2}^{t} \ldots . \mathrm{S}_{2, n}^{t} \\
\mathrm{~S}_{3,1}^{t} \mathrm{~S}_{3,2}^{t} \cdots . \mathrm{S}_{3, n}^{t} \\
\cdot \\
\cdot \\
\cdot \\
\mathrm{~S}_{m, 1}^{t} \mathrm{~S}_{m, 2}^{t} \cdots . \mathrm{S}_{m, n}^{t}
\end{gathered}
$$

A computation of $\mathcal{M}_{m \times n}$ is a sequence of configurations of $\mathcal{M}_{m \times n}, \mathcal{C}^{0}, \mathcal{C}^{1}, \mathcal{C}^{2}, \ldots, \mathcal{C}^{t}, \ldots$, where \mathcal{C}^{0} is a given initial configuration such that:

$$
\mathrm{S}_{i, j}^{0}= \begin{cases}\mathrm{G} & i=j=1 \tag{1}\\ \mathrm{Q} & \text { otherwise } .\end{cases}
$$

A configuration at time $t+1, \mathcal{C}^{t+1}$ is computed by synchronous applications of the next transition function δ to each cell of $\mathcal{M}_{m \times n}$ in \mathcal{C}^{t} such that:

$$
\mathrm{S}_{i, j}^{t+1}=\delta\left(\mathrm{S}_{i, j}^{t}, \mathrm{~S}_{i-1, j}^{t}, \mathrm{~S}_{i+1, j}^{t}, \mathrm{~S}_{i, j+1}^{t}, \mathrm{~S}_{i, j-1}^{t}\right)
$$

A synchronized configuration of $\mathcal{M}_{m \times n}$ at time t is a configuration $\mathcal{C}^{t}, \mathrm{~S}_{i, j}^{t}=\mathrm{F}$, for any $1 \leq i \leq m$ and $1 \leq j \leq n$.

The FSSP is to obtain an \mathcal{M} such that, for any $m, n \geq 2$,

1) A synchronized configuration at time $t=T(m, n)$, $\mathcal{C}^{T(m, n)}: \mathrm{S}_{i, j}^{T(m, n)}=\mathrm{F}$, for any $1 \leq i \leq m$ and $1 \leq$ $j \leq n$, can be computed from an initial configuration \mathcal{C}^{0} in equation (1).
2) For any t, i such that $1 \leq t \leq T(m, n)-1,1 \leq i \leq$ $m, 1 \leq i \leq n, \mathrm{~S}_{i, j}^{t} \neq \mathrm{F}$.

No cells fire before time $t=T(m, n)$. We say that the array $\mathcal{M}_{m \times n}$ is synchronized at time $t=T(m, n)$ and the function $T(m, n)$ is the time complexity for the synchronization.

B. Lower-Bound and Optimality in 2D FSSP Algorithms

As for the time optimality of the 2D FSSP algorithms, Beyer [1] and Shinahr [4] gave a lower bound and minimumtime FSSP algorithm.

Theorem 1 There exists no cellular automaton that can synchronize any 2D array of size $m \times n$ in less than $m+n+$ $\max (m, n)-3$ steps, where the general is located at one corner of the array.

Theorem 2 There exists a cellular automaton that can synchronize any 2D array of size $m \times n$ at exactly $m+n+\max (m, n)-$ 3 steps, where the general is located at one corner of the array.

Fig. 2. A 2D array synchronization scheme based on L-shaped mapping developed in Beyer [1] and Shinahr [4].

Fig. 3. Snapshots of the configurations of the Shinahr's 28 -state synchronization algorithm on a rectangle array of size 7×12.

III. Algorithm \mathcal{A}_{1}

The first minimum-time FSSP algorithm \mathcal{A}_{1}, developed independently by Beyer [1] and Shinar [4], is based on rotated L-shaped mapping which maps configurations of generalized FSSP solutions on 1D L-shaped arrays onto 2D arrays. A rectangular array of size $m \times n$ is regarded as $\min (m, n)$ rotated L-shaped 1D arrays, where each rotated L-shaped 1D array is synchronized independently by using the Generalized FSSP (GFSSP) algorithm. The GFSSP algorithm [3], [8] is stated as follows:

Theorem 3 There exists a cellular automaton that can synchronize any 1D array of length n in optimum $n+\max (k, n-$ $k+1)-2$ steps, where the general is located on the k th cell from left end.

We overview the algorithm \mathcal{A}_{1} operating on an array of size $m \times n$. Configurations of the generalized synchronization processes on 1D array can be mapped on the rotated L-shaped array. We refer it as L-array. See Fig. 2. At time $t=0$, the north-west cell $\mathrm{C}_{1,1}$ is in general state and all other cells are in quiescent state. For any i such that $1 \leq i \leq \min (m, n)$, the cell $\mathrm{C}_{i, i}$ will be in the general state at time $t=3 i-3$. A special signal which travels towards a diagonal direction is used to generate generals on the cells $\left\{\mathrm{C}_{i, i} \mid 1 \leq i \leq \min (m, n)\right\}$. For each i such that $1 \leq i \leq \min (m, n)$, the cells $\left\{\mathrm{C}_{i, j} \mid i \leq j \leq n\right.$ $\}$ and $\left\{\mathrm{C}_{k, i} \mid i \leq k \leq m\right\}$ constitute the i th L-shaped array. Note that the i th general generated at time $t=3 i-3$ is on
the $(m-i+1)$ th cell from the left end of the i th L-array. The length of the i th L-array is $m+n-2 i+1$. Thus, using Theorem 3, the i th L-array can be synchronized at exactly $t_{i}=3 i-3+m+n-2 i+1-2+\max (m-i+1, n-i+1)=$ $m+n+\max (m, n)-3$, which is independent of i. In this way, all of the L-arrays can be synchronized simultaneously.

Shinahr [4] presented a 28 -state implementation of the algorithm, where most (97%) of the transition rules had wild cards which can match any state. Later, H. Umeo, K. Ishida, K. Tachibana, and N. Kamikawa [7] showed that the rule set consists of 12849 transition rules and it is valid for the synchronization for any rectangle arrays of size $m \times n$ such that $2 \leq m, n \leq 500$. Fig. 3 illustrates snapshots of the configurations on an array of size 7×12 based on our new 28 -state 12849 -rule implementation. Thus, we have:
Theorem 4 The algorithm \mathcal{A}_{1} can synchronize any $m \times n$ rectangular array in optimum $m+n+\max (m, n)-3$ steps.

IV. Algorithm \mathcal{A}_{2}

In this section, we develop a new minimum-time FSSP algorithm \mathcal{A}_{2} based on a new L-shaped mapping. First, we introduce a freezing-thawing technique that yields a delayed synchronization algorithm for 1D array. The technique was developed by Umeo [5] for designing several fault-tolerant FSSP algorithms for 1D arrays.

Theorem 5 Let t_{0}, t_{1}, t_{2} and Δt be any integer such that $t_{0} \geq 0, t_{1}=t_{0}+n-1, t_{1} \leq t_{2}$ and $\Delta t=t_{2}-t_{1}$. We assume that a usual synchronization operation is started at time $t=t_{0}$ by generating a special signal at the left end of 1D array of length n. We also assume that the right end cell of the array receives another special signals from outside at time $t_{1}=t_{0}+n-1$ and $t_{2}=t_{1}+\Delta t=t_{0}+n-1+\Delta t$, respectively. Then, there exists a 1 D cellular automaton that can synchronize the array at time $t=t_{0}+2 n-2+\Delta t$.

We can freeze the entire configuration during Δt steps and delay the synchronization on the array for Δt steps. We refer the scheme as the freezing-thawing technique. Here, the freezing-thawing technique is employed efficiently.

A. Segmentation of rectangular array

First, we consider the case where $m \leq n$. We regard a 2D array of size $m \times n$ as consisting of m rotated $\left(90^{\circ}\right.$ in counterclockwise direction) L-shaped 1D arrays. Each Lshaped array is denoted by $\mathrm{L}_{i}, 1 \leq i \leq m$, shown in Fig. 4. Each L_{i} is divided into three segments, referred to as 1st, 2 nd and 3 rd segments. The length of each segment of L_{i} is i, $n-m$, and i, respectively.

Fig. 4. A 2D array of size $m \times n$ is regarded as consisting of m rotated (90° in counterclockwise direction) L-shaped 1-D arrays. Each L-shaped array is divided into three segments.

B. Starting the synchronization process

At time $t=0$, a 2D array M has a general at $\mathrm{C}_{1,1}$ and any other cells of the array are in quiescent state. The general G (denoted by \bullet in Fig. 4) generates three signals $\mathrm{s}_{V}, \mathrm{~s}_{D}$ and s_{H}, simultaneously, each propagating at $1 / 1$-speed in the vertical, diagonal and horizontal directions, respectively. See Fig. 4. The $\mathrm{s}_{V^{-}}$and s_{H}-signals work for generating wake-up signals for the 1 st and 3rd segments on each L-shaped array. The s_{D}-signal is used for printing a delimiter between the 1 st and 2 nd segments. Their operations are as follows:

- Signal \mathbf{s}_{V} : The s_{V}-signal travels along the 1st column and reaches $\mathrm{C}_{m, 1}$ at time $t=m-1$. Then, it returns there and begins to travel at $1 / 2$-speed along the 1 st column towards $\mathrm{C}_{1,1}$. On the return's way, the signal initiates the synchronization process for the 1st segment of each L_{i}. Thus, a new general $\mathrm{G}_{i 1}$ for the synchronization of the 1 st segment of each L_{i} and its wake-up signal for the 1 st segment are generated at time $t=3 m-2 i-1$ for $1 \leq i \leq m$.
- Signal \mathbf{s}_{H} : The s_{H}-signal travels along the 1 st row at $1 / 1$-speed and reaches $\mathrm{C}_{1, n}$ at time $t=n-1$. Then it reflects there and returns the same route at $1 / 2$-speed. Each time it visits a cell of the 1 st row on its return way, it generates a general $\mathrm{G}_{i 3}$ at time $t=2 m+n-2 i-1$ to initiate a synchronization for the 3 rd segment on each $\mathrm{L}_{i}, 1 \leq i \leq m$.
- Signal \mathbf{s}_{D} : The s_{D}-signal travels along a diagonal line by repeating a zig-zag movement: going one cell to the right, then going down one cell. Each time it visits a cell $\mathrm{C}_{i, i}$ on the diagonal, it marks a special symbol to denote a delimiter between the 1 st and 2 nd segments. The symbol on $\mathrm{C}_{i, i}$ is marked at time $t=2 i-2$ for any $i, 1 \leq i \leq m$. Note that the wake-up signal of the 1st segment of L_{m} knows its right end by the arrival of s_{D}-signal, where they meet at $\mathrm{C}_{m, m}$ at the very time $t=2 m-2$.

The wake-up signal generated by $\mathrm{G}_{i 1}$ reaches its right end at time $t=3 m-i-2$ and generates a new general $\mathrm{G}_{i 2}$ for the 2 nd segment. The new general $\mathrm{G}_{i 2}$ generates a wakeup signal. The wake-up signals for the 2 nd and 3 rd segments of L_{i} meet on $\mathrm{C}_{i, n-m+i}$ at time $t=2 m+n-i-2$. The collision of the two signals acts as a delimiter between the 2 nd and 3rd segments in the case where $m \leq n$. Note that the synchronization operations on the 1st and 2 nd segments are started at the left end of each segment. On the other hand, the synchronization on the 3rd segment is started at the right (upper) end of the segment.

C. Synchronization of L_{m}

Now, we consider the synchronization on L_{m}. Fig. 5 (left) shows a space-time diagram for synchronizing L_{m}. As was mentioned in the previous subsection, the synchronization of the 1st, 2 nd and 3rd segments of L_{m} are started by the generals $\mathrm{G}_{m 1}, \mathrm{G}_{m 2}$ and $\mathrm{G}_{m 3}$ at time $t=m-1, t=2 m-2$ and $t=n-1$, respectively. Each General always generates a wake-up and a pre-thawing signal, each propagating at $1 / 1-$ and $1 / 2$-speed in the same direction. The wake-up signal wakes up cells in the segment itself, however, the pre-thawing signal
generates a thawing signal at its neighboring segment that it encounters first. Precisely, the pre-thawing signal generated by $\mathrm{G}_{m 1}$ reaches the left end of the 2 nd segments at time $t=3 m-3$. In the case $m \leq n$, the configuration of the 2nd segment have not been frozen yet, and the signal doesn't work. The pre-thawing signal generated by $\mathrm{G}_{m 2}$ arrives at the delimiter between the 2 nd and 3rd segments at time $t=2 n-2$ and generates a thawing signal for the 3 rd segment. In a similar way, the pre-thawing signal generated by $\mathrm{G}_{m 3}$ initiates its thawing operation for the 2 nd segment at time $t=2 m+n-2$.

Fig. 5. Space-time diagram for synchronizing L_{m} (left) and L_{i} (right).

At time $t=2 m-2$, the wake-up signal of the 1st segment reaches its right end and generates a freezing signal for the segment. Simultaneously, it initiates synchronization on the 2 nd segments. The freezing signal for the 1st segment propagates in left direction at $1 / 1$-speed, and freezes the configuration on it. At time $t=2 n-2$, a thawing signal is generated at its right end, that is initiated by the arrival of the freezing signal for the 2nd segment, which will be explained again below. The wake-up signal for the 2 nd and 3 rd segments meets $\mathrm{C}_{m, n}$ at time $t=m+n-2$, where $\mathrm{C}_{m, n}$ acts as an end of the both two segments. A new freezing signal is generated there for the 2 nd and 3 rd segments. It propagates in right and left directions at $1 / 1$-speed to freeze the synchronization operations on the 2nd and 3rd segments, respectively. The freezing signal for the 2 nd segment reaches at its left end at time $t=2 n-3$, which generates a thawing signal for the 1 st segment at time $t=2 n-2$. The thawing signals for the 1 st , 2nd and 3 rd segments are generated at time $t=2 n-2$, $t=2 m+n-2$ and $t=2 n-2$, respectively. Synchronization operations on j th $(1 \leq j \leq 3)$ segment are delayed for $\Delta t_{m_{j}}$ steps such that:

$$
\Delta t_{m_{j}}= \begin{cases}2(n-m) & j=1 \tag{2}\\ m & j=2 \\ n-m & j=3\end{cases}
$$

The synchronization for the 1st segment is started at time $t=m-1$ and its operations are delayed for $\Delta t=\Delta t_{m_{1}}=$ $2(n-m)$ steps. Now, letting $t_{0}=m-1, \Delta t=\Delta t_{m_{1}}=2(n-$ $m)$ in Theorem 5, the 1st segment of L_{m} can be synchronized at time $t=t_{0}+2 m-2+\Delta t=m+2 n-3=m+n+$ $\max (m, n)-3$. In a similar way, the 2 nd and the 3 rd segments can be synchronized at time $t=m+2 n-3=m+n+$ $\max (m, n)-3$. Thus, L_{m} can be synchronized at time $t=$ $m+n+\max (m, n)-3$.

D. Synchronization of L_{i}

Now, we discuss the synchronization for $\mathrm{L}_{i}, 1 \leq i \leq m$. Fig. 5 (right) shows a space-time diagram for synchronizing L_{i}. The wake-up signals for the three segments of L_{i} are generated at time $t=m+2(m-i)-1,3 m-i-2$, and $n+2(m-$ $i)-1$, respectively. Generation of the corresponding freezing and thawing signals are done in a similar way as employed in L_{m}. Synchronization operations on j th $(1 \leq j \leq 3)$ segment are delayed for $\Delta t_{i_{j}}$ steps such that:

$$
\Delta t_{i_{j}}= \begin{cases}2(n-m) & j=1 \tag{3}\\ i & j=2 \\ n-m & j=3\end{cases}
$$

The synchronization for the 1 st segment of L_{i} is started at time $t=m+2(m-i)-1$ and its operations are delayed for $\Delta t=\Delta t_{i_{1}}=2(n-m)$ steps. Now, letting $t_{0}=m+2(m-$ i) $-1, \Delta t=\Delta t_{i_{1}}=2(n-m)$ in Theorem 5, the 1st segment of L_{i} can be synchronized at time $t=t_{0}+2 i-2+\Delta t=$ $m+2 n-3=m+n+\max (m, n)-3$. In a similar way, the 2 nd and the 3 rd segments can be synchronized at time $t=m+2 n-3=m+n+\max (m, n)-3$. Thus, L_{i} can be synchronized at time $t=m+n+\max (m, n)-3$.

E. Synchronization of rectangle longer than wide

In the case where $m>n$, a two-dimensional array of size $m \times n$ is regarded as consisting of n rotated L-shaped arrays. Segmentation and synchronization operations on each L-shaped array can be done almost in a similar way. It is noted that the right end cell of the 2 nd segment works as a General for the 2 nd segment. Any rectangle of size $m \times n$ can be synchronized at time $t=2 m+n-3=m+n+\max (m, n)-3$.

Fig. 6. Snapshots of the synchronization process on 5×8 array.

Fig. 6 shows some snapshots of the synchronization process operating in optimum-steps on a 5×8 array. Now, we can establish the next theorem.

Theorem 6 The algorithm \mathcal{A}_{2} can synchronize any $m \times n$ rectangular array in optimum $m+n+\max (m, n)-3$ steps.

V. ALGORITHM \mathcal{A}_{3}

In this section, we develop a new minimum-time firing squad synchronization algorithm \mathcal{A}_{3} based on a new L-shaped mapping. The overview of the algorithm \mathcal{A}_{3} is as follows:

1) A 2D array of size $m \times n$ is regarded as $\min (m, n)$ rotated or mirrored L-shaped 1-D arrays, each consisting of a horizontal and a vertical segment.
2) The shorter segment is synchronized by the freezingthawing technique with $\Delta t=|m-n|$ steps delay. The longer one is synchronized in the usual way without using the freezing-thawing technique.
3) All of the L-shaped arrays fall into a special firing (synchronization) state simultaneously and for the first time.

A. Segmentation of rectangular array of size $m \times n$

First, we consider the case where $m \leq n$. We assume that the initial general \mathbf{G} is on the north-west corner denoted by \bullet in Fig. 7. We regard a two-dimensional array of size $m \times n$ as consisting of m rotated (90° in counterclockwise direction) L-shaped one-dimensional arrays. Each bending point of the L-shaped array is the farthest one from the general. Each L shaped array is denoted by $\mathrm{L}_{i}, 1 \leq i \leq m$, shown in Fig. 7. Each L_{i} is divided into two segments, that is, one horizontal and one vertical segment, each referred to as 1 st and 2 nd segments. The length of each segment of L_{i} is $n-m+i$ and i, respectively.

Fig. 7. A 2D array of size $m \times n(m \leq n)$ is regarded as consisting of m rotated (90° in counterclockwise direction) L-shaped 1-D arrays. Each L-shaped array is divided into two segments.

B. Starting the synchronization process

At time $t=0$, a two-dimensional array M has a general at $\mathrm{C}_{1,1}$ and any other cells of the array are in quiescent state. The general G (denoted by • in Fig. 7) generates three signals $\mathrm{s}_{V}, \mathrm{~s}_{D}$ and s_{H}, simultaneously, each propagating at $1 / 1$-speed in the vertical, diagonal and horizontal directions, respectively. See Fig. 3. The $\mathrm{s}_{V^{-}}$and $\mathrm{s}_{H^{-}}$-signals work for generating wake-up signals for the 1 st and 2 nd segments on each L-shaped array. The s_{D}-signal is used for printing a special marker "'" for generating a thawing signal that thaws frozen configurations on shorter segment. Their operations are as follows:

- Signal \mathbf{s}_{V} : The s_{V}-signal travels along the 1 st column and reaches $\mathrm{C}_{m, 1}$ at time $t=m-1$. Then, it returns there and begins to travel again at $1 / 2$-speed along the 1 st column towards $\mathrm{C}_{1,1}$. On the return's way, the signal initiates the synchronization process for the 1 st segment of each L_{i}. Thus, a new general $\mathrm{G}_{i 1}$ for the synchronization of the 1st segment of each L_{i} is generated, together with its wake-up signal, at time $t=3 m-2 i-1$ for $1 \leq i \leq m$.
- Signal \mathbf{s}_{D} : The s_{D}-signal travels along a principal diagonal line by repeating a zigzag movement: going one cell to the right, then going down one cell. Each
time it visits cell $\mathrm{C}_{i, i}$ on the diagonal, it marks a special symbol " \square " to inform the wake-up signal on the segment of the position where a thawing signal is generated for the neighboring shorter segment. The symbol on $\mathrm{C}_{i i}$ is marked at time $t=2 i-2$ for any $i, 1 \leq i \leq m$. Note that the wake-up signal of the 1 st segment of L_{m} knows the right position by the arrival of the s_{D}-signal, where they meet at $\mathrm{C}_{m, m}$ at the very time $t=2 m-2$.
- Signal \mathbf{s}_{H} : The s_{H}-signal travels along the 1 st row at $1 / 1$-speed and reaches $\mathrm{C}_{1, n}$ at time $t=n-1$. Then it reflects there and returns the same route at $1 / 2$-speed. Each time it visits a cell of the 1 st row on its return way, it generates a general $\mathrm{G}_{i 2}$ at time $t=2 m+n-2 i-1$ to initiate a synchronization for the 2 nd segment on each $\mathrm{L}_{i}, 1 \leq i \leq m$.

Fig. 8. Space-time diagram for synchronizing L_{m} (left) and L_{i} (right).

The wake-up signals for the 1 st and 2 nd segments of L_{i} meet on $\mathrm{C}_{i, n-m+i}$ at time $t=2 m+n-i-2$. The collision of the two signals acts as a delimiter between the 1 st and 2 nd segments. Note that the synchronization operations on the 1st segment are started at the left end of the segment. On the other hand, the synchronization on the 2 nd segment is started at the right (upper) end of the segment. The wake-up signal generated by $\mathrm{G}_{i 1}$ reaches a cell where the special mark is printed at time $t=3 m-i-2$ and generates a thawing signal which travels at $1 / 2$-speed along the 1 st segment to thaw the configuration on the 2 nd segment.

C. Synchronization of L_{m}

Now, we consider the synchronization on L_{m}. Fig. 8 (left) shows a space-time diagram for synchronizing L_{m}. As was mentioned in the previous subsection, the synchronization of the 1 st and 2 nd segments of L_{m} are started by the generals $\mathrm{G}_{m 1}$ and $\mathrm{G}_{m 2}$ at time $t=m-1$ and $t=n-1$, respectively. Each general generates a wake-up signal propagating at $1 / 1$ speed. The wake-up signal for the 1 st and 2 nd segments meets $\mathrm{C}_{m n}$ at time $t=m+n-2$, where $\mathrm{C}_{m, n}$ acts as an end of the both two segments. A freezing signal is generated simultaneously there for the 2nd segment at time $t=m+n-2$. It propagates in upper (right in Fig. 8 (left)) direction at 1/1speed to freeze the synchronization operations on the 2 nd segment. At time $t=2 m-2$, the wake-up signal of the 1 st segment reaches the symbol """ and generates a thawing signal for the 2 nd segment. The thawing signal starts to propagate from the cell at $1 / 2$-speed in the same direction. Those two signals reach at the left end of the 2 nd segment with time difference $n-m$ which is equal to the delay for the 2 nd segment. The synchronization for the 1st segment is started
at time $t=m-1$ and it can be synchronized at time $t=m+2 n-3=m+n+\max (m, n)-3$ by the usual way On the other hand, the synchronization for the 2 nd segment is started at time $t=n-1$ and its operations are delayed for $\Delta t=\Delta t_{m}=n-m$ steps. Now, letting $t_{0}=n-1, \Delta t=n-m$ in Theorem 1, the 2 nd segment of length m on L_{m} can be synchronized at time $t=t_{0}+2 m-2+\Delta t=m+2 n-3=$ $m+n+\max (m, n)-3$. Thus, L_{m} can be synchronized at time $t=m+n+\max (m, n)-3$.

D. Synchronization of L_{i}

Now, we discuss the synchronization for $\mathrm{L}_{i}, 1 \leq i \leq m$. Fig. 8 (right) shows a space-time diagram for synchronizing L_{i}. The wake-up signals for the two segments of L_{i} are generated at time $t=3 m-2 i-1$ and $n+2(m-i)-1$, respectively. Generation of freezing and thawing signals is done in a similar way as employed in L_{m}. Synchronization operations on the 2 nd segment are delayed for $\Delta t_{i}=n-m$ steps. The synchronization for the 1 st segment of length $n-m+i$ is started at time $t=3 m-2 i-1$ and it can be synchronized by a usual method at time $t=m+2 n-3=m+n+\max (m, n)-3$. On the other hand, the synchronization for the 2 nd segment is started at time $t=n+2(m-i)-1$ and its operations are delayed for $\Delta t=\Delta t_{i}=n-m$ steps. Now, letting $t_{0}=n+2(m-i)-1, \Delta t=n-m$ in Theorem 5, the 2nd segment of length i of L_{i} can be synchronized at time $t=$ $t_{0}+2 i-2+\Delta t=m+2 n-3=m+n+\max (m, n)-3$. Thus, L_{i} can be synchronized at time $t=m+n+\max (m, n)-3$

E. Synchronization of rectangle longer than wide

In the case where $m>n$, a two-dimensional array of size $m \times n$ is regarded as consisting of n mirrored L-shaped arrays. Segmentation and synchronization operations on each L-shaped array can be done almost in a similar way. It is noted that the thawing signal is generated on the 2 nd segment to thaw frozen configurations on the 1 st segment. Any rectangle of size $m \times n$ can be synchronized at time $t=2 m+n-3=$ $m+n+\max (m, n)-3$.

One notes that the algorithm needs no a priori knowledge on side length of a given rectangle, that is, whether wider than long or longer than wide. Fig. 9 shows some snapshots of the synchronization process operating in optimum-steps on a 6×9 arrays. Now, we can establish the next theorem.

Theorem 7 The synchronization algorithm \mathcal{A}_{3} can synchronize any $m \times n$ rectangular array in optimum $m+n+\max (m, n)-3$ steps.

VI. Conclusion and Future Work

In the present paper, we gave a survey on recent developments in FSSP algorithms for 2D cellular arrays. We focused our attention on a new class of the 2D minimum-time FSSP algorithms based on L-shaped mapping. It is shown that the Lshaped mapping presents a rich variety of 2 D minimum-time FSSP algorithms. As a future work, the mapping could be applied to the design of 3D minimum-time FSSP algorithms. The procedure would be as follows: First, a 2D version of the freezing-thawing technique has to be developed. Secondary, decompose a given 3D array into many thin layers, each consisting of three 2D faces. Last, apply the minimum-time 2D FSSP algorithm developed in this paper to each face.

Fig. 9. Snapshots of the synchronization process on 6×9 array.

References

[1] W. T. Beyer, "Recognition of topological invariants by iterative arrays." Ph.D. Thesis, MIT, (1969), pp. 144
[2] E. F. Moore, "The firing squad synchronization problem." In Sequential Machines, Selected Papers (E. F. Moore, ed.), Addison-Wesley, Reading MA., pp. 213214(1964).
[3] F. R. Moore and G. G. Langdon, "A generalized firing squad problem." Information and Control, 12, pp.212-220(1968)
[4] I. Shinahr, "Two- and three-dimensional firing squad synchronization problems." Information and Control, vol. 24, pp. 163-180(1974).
[5] H. Umeo, "A simple design of time-efficient firing squad synchronization algorithms with fault-tolerance." IEICE Trans. on Information and Systems, Vol. E87-D, No.3, pp.733-739(2004).
[6] H. Umeo, "Firing squad synchronization problem in cellular automata." In Encyclopedia of Complexity and System Science, R. A. Meyers (Ed.), Springer, Vol.4, pp. 3537-3574(2009).

7] H. Umeo, K. Ishida, K. Tachibana, and N. Kamikawa, "A transition rule set for the first 2-D optimum-time synchronization algorithm." Proc. of the 4th International Workshop on Natural Computing, PICT 2, Springer, pp.333-341(2009).
[8] H. Umeo, N. Kamikawa, K. Nishioka, and S. Akiguchi, "Generalized firing squad synchronization protocols for one-dimensional cellular automata - a survey." Acta Physica Polonica B, Proceedings Supplement. Vol.3, pp.267-289(2010)
[9] H. Umeo and H. Uchino, "A new time-optimum synchronization algorithm for rectangle arrays." Fundamenta Informaticae, Vol.87, No.2, pp.155-164(2008)

