
Using BP Neural Network for Adapting Playout Time in Communication Networks

Sara Helmi1, 2, Niveen Mohamed Badra2, Mohamed Elkattan3

1Department of Basic Science, Faculty of Engineering, British University in Egypt, Cairo, Egypt
e-mail: Sara.helmy@bue.edu.eg

2Department of Engineering Physics and Mathematics, Faculty of Engineering, Ain Shams University, Cairo, Egypt
e-mail: niveen_badra@eng.asu.edu.eg

3Nuclear Materials Authority, Cairo, Egypt
e-mail: emtiazegf@hotmail.com

Abstract-New multimedia applications have a critical
requirement on jitter. Network jitter is a serious problem in
communication networks, especially in Voice over IP networks
(VOIP). One of the proposed solutions to minimize jitter is to
adapt the playout time. In our paper, we introduce an
adaptive approach using Back Propagation (BP) neural
network to identify the jitter and adjust the playout time
according to several network conditions. The algorithm was
tested using k-fold cross validation and the results show that
the algorithm can achieve promising results under different
delay conditions.

Keywords-Jitter, playout time, optimization, Neural Network,
Back-propagation neural network, k-fold cross validation

I. INTRODUCTION

In VOIP communication, several requirements for
Quality of Service (QOS) affect the speech quality [1][2].
There are three main performance aspects that characterize
the quality of voice in communication networks over the
Internet. The first aspect is the end-to-end delay, which is
the time it takes for a packet to be transmitted across a
network from source to destination. Acceptable end-to-end
delay values are less than 100 ms for the one way delay
[3][4]. The second aspect is the packet loss, as described in
[5]. The acceptable range of the voice quality is when the
packet loss is less than 2%. The last aspect is the delay
jitter. It is defined as the difference in end-to-end one-
way delay between selected packets in a flow with any lost
packets being ignored.

Delay jitter is the result of network congestion and
improper queuing is the delay jitter. In the sending host, the
voice packets are transmitted at a steady rate, but packets
are received at a disparate rate [6]. To be able to recover the
initial steady rate, the played out packets should be at a
steady rate. When the jitter is large, dropping of the delayed
packets can occur, and that will lead to obvious audible
gaps. The sense of hearing in humans is highly sensitive for
short audio gaps. That is the reason behind keeping the
jitter in to a minimum value (less than 30 ms). Other
elements mentioned in [7] state that the acceptable jitter can
be between 30 ms and 75 ms.

In VOIP applications, the mechanism that is used to
make the rate of output packets constant is the play out

buffer, also known as the jitter buffer. The jitter buffer
holds the late packets and then plays them out at a steady
rate. There are two kinds of jitter buffers: static buffers and
dynamic buffers [8]. An adaptive jitter buffer is the most
applicable mechanism, because it uses several strategies in
the sender and the receiver hosts. When network conditions
are perfect (the variation in interspace delay is almost 0
ms), it adjusts to be at a minimum value to reduce latency.
On the other hand, when network conditions are very hard
(a high transient jitter and packet loss exist), it adjusts itself
to a higher value. However, this has the side effect of
increasing the latency [9].

Many other works have been proposed to improve jitter.
In [10], Artificial Neural Network (ANN) was combined
with a standard multi-layer perceptron (MLP) and a
recurrent-MLP [11] and Wavelet Packet-MLP (WP-MLP)
[12]. Our new approach is combining ANN with the
algorithms Exponential-Average, Fast-Exponential-
Average and Min-Delay [13]. We use back propagation
(bp) neural network on the three algorithms and we train
the (bp) neural network to choose which algorithm is
suitable to be run in different network conditions. This
offered a flexibility in the network and a wide range of
conditions that the network can deal with. We will focus on
optimization of the playout time to achieve the best trade-
off between latency and dropping of a voice packet.

The following sub-section presents the background for
the problem formulation in Section II. It is the basic
concept behind sending packets with time i from a sender to
a receiver [13]. Fig. 1 shows a schematic diagram that
illustrates the packet timing from sender to receiver. Table
1 shows the description of each parameter in “Fig. 1”.

Figure 1. Packet i timing from sender to receiver [13]

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

FUTURE COMPUTING 2017 : The Ninth International Conference on Future Computational Technologies and Applications

mailto:Sara.helmy@bue.edu.eg

TABLE 1. NOTATION PACKET i TIMING

In [13], three adaptive playout delay adjustment
algorithms were defined:

- Algorithm 1 (Exponential-Average): This
algorithm uses the mean ప݀

 to estimate the playout delay పෝ
of its arriving packet so that:

ప݀
 = ܽ ∗ መ݀

ି ଵ + (1 −)ܽ ∗ ݊ (1)

- Algorithm 2 (Fast-Exponential-Average): The
only difference between this algorithm and the previous one
is the new condition when the network delay ݊ is larger
than መ݀

ି ଵ, β was chosen as 0.75 as in [13].

if ൫ ݊ > ప݀
 ൯ (2)

ప݀
 = ܤ ∗ መ݀

+ (1 − (ܤ ∗ ݊

else

ప݀
 = ܽ ∗ መ݀

+ (1 −)ܽ ∗ ݊

end

- Algorithm 3 (Min-Delay): The proposal of this
algorithm is to minimize the delays. It uses the minimum
delay of all packets received in the current talkspurt as ప݀

 to

predict the next talkspurt playout delay. Let పܵ
 be the set of

all packets received in a single talkspurt

ప݀
 = ݉ ݅݊ ∈ ௌ

{ ݊}

if (݊ < ݊ି ଵ) (3)
መ݀
 = ݊

else
መ݀
 = ݊ି ଵ

End

The remainder of this paper is structured as follows.
Section II provides a description and overview of the
problem formulation. Section III provides our modeling
approaches. Section IV provides the optimization approach
wit back propagation (NN). Section V presents the
validation test using k-fold cross validation and the results,
and, finally, Section VI gives the conclusions.

II. PROBLEM FORMULATION

If the first packet i in a talkspurt is played out, then its
calculation will be as below, where ప݀

 is the mean and పෝݒ is
the variation in the end-to-end delay:

= +ݐ ప݀
 + μ ∗ పෝݒ (4)

In this paper, we use a uniform distribution for random
variance పෝݒ from 0 to 10 in normal conditions because the
equation of variance [13] cancels the delay in the network,
which is not realistic in a real network communication. A
certain value 0.998002 of the weighting factor α was
mentioned in [13] and, after applying some statistical
analysis with small differences from the specific value
0.998002, α was settled as a value varying between 0.01 ≤
α ≤ 0.998002. The playout time for any posterior packet j
in a talk spurt is computed as:

 = + −ݐ ݐ (5)

The term µ in the playout time is used to keep the
playout time beyond the delay estimate so that only a small
number of the packets in the receiver will be lost due to late
arrivals [14]. In this paper, we set a range of values 1 ≤ µ ≤.
20. Also, we considered that, if the packet i arrived at the
receiving host at the same time or after its playout time, the
packet i will be played out:

if) <= ܽ)
(6)

= ܽ

Notation Description

ݐ
The time of sending ith packet.

ܽ

The received time of packet i at
the receiver.

ܽ= +ݐ ݊

The played out time for packet i
at the receiver.

Dprop
The delay of propagation from the
sender to the receiver.

ݒ
The delay of packet i from the sent to
the destination.

ܾ
buffer delay for packet i

ܾ= − ܽ

݀

The time elapsed from transmitting
from the source until it is played out at
destination, (playout delay).

݊

Packet network delay.

݊= ܦ + పෝݒ

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

FUTURE COMPUTING 2017 : The Ninth International Conference on Future Computational Technologies and Applications

TABLE 2. NORMAL CONDITIONS OF NETWORKS (×10-15)

A new formula is proposed to calculate the old jitter at

ܽby using:

หܽ− ଵܽห− ܰܶ (7)

And the new jitter at by using

ห− −ଵห ܰܶ (8)

N: 1, 2, 3, 4…

We assumed that the packets will be sent at a constant rate.
So, T refers to a constant time for sending the packets at the
sending host, which will be 1.2.

To evaluate the best parameters for different network
conditions, we set 100 packets with eight conversations,
each conversation including 5 to 20 packets. Under normal
condition of the network where variance changes from 0 to
10, and the initial value for the playout delay ݀ will be 29,
and propagation delay 20. The mean and standard deviation
for the proposed formula (8) have been calculated in the
receiving host. After that, we evaluate the performance of
the three algorithms ଵ݀, ଶ݀, ଷ݀ in normal conditions. With
variance ,(ݒ) propagation delay (ܦ) and initial value
where used, for each α value we changed µ from 1 to 20.
With total simulation trials of 27, and after conducting
those trials we choose the minimum mean for the calculated
function and identify the corresponding µ to it.

III. IMPLEMENTATION

Our approach for changing the network conditions is
summarized in five stages, as follows:

Stage 1. Comparing the results of the three adaptive
algorithms under normal conditions (i.e. ଵ݀, ଶ݀, ଷ݀

respectively) and selecting the minimum jitter value in the
receiving host with the corresponding µ (see Table 2). The
last row in Table 2 shows the selected algorithm for each
set of trials that gives the minimum playout value between
the three algorithms while comparing over a certain α.

Stage 2. Repeating this process for the three algorithms
will be done now under different network conditions, first,

by varying the variance from 0 to 15, 0 to 20, and 0 to 25
respectively. This leads us to a really hard condition in
queuing delay. Different results are shown for algorithms
that give the minimum values.

Stage 3. Inserting a different value for the propagation
delay 40, 60, and 80 to create a new set of network
simulations.

Stage 4. Varying the initial value for playout delay ݀

from 50, 75, and 100.
Stage 5. In the final stage, we vary the variance v, mean

݀ and propagation delay ܦ simultaneously to evaluate
the algorithms in terms of achieving the minimum jitter in
the receiving host under rough conditions. The previous
five stages results are summarized in Table 3.

TABLE 3. INPUTS AND OUTPUTS RESULTS

ࢊ µ = 10 7.4 µ = 12 8.9 µ = 6 7.3 µ = 14 8.3 µ = 12 8.3 µ = 1 9.1 µ = 17 8.4 µ = 3 9.7 µ = 1 8.4

ࢊ µ = 4 8.3 µ = 9 9.4 µ = 15 9.1 µ = 6 7.4 µ = 18 8.4 µ = 18 8.3 µ = 7 8.7 µ = 2 9.1 µ = 9 7.2

ࢊ µ = 14 7.6 µ = 6 9.6 µ = 18 7.6 µ = 16 7.4 µ = 12 8.3 µ = 16 8.9 µ = 6 8.6 µ = 6 7.4 µ = 2 8.7

min
µ = 10

7.4
µ = 12

8.9
µ = 6

7.3
µ = 6

7.4
µ = 12

8.3
µ = 18

8.3
µ = 17

8.4
µ = 6

7.4
µ = 9

7.2
d1 d1 d1 d2 d1 d2 d1 d3 d2

α 0.01 0.26 0.51 0.76 0.875 0.9 0.925 0.95 0.998002

No.
training

set

Inputs Outputs

࢜ ࢘ࡰ ࢊ α µ Algorithm

1 0 to 10 20 29 0.998002 9 d2

2 0 to 15 20 29 0.875 18 d2

3 0 to 20 20 29 0.9 18 d2

4 0 to 25 20 29 0.26 6 d3

5 0 to 10 40 29 0.01 4 d2

6 0 to 10 60 29 0.01 4 d2

7 0 to 10 80 29 0.9 16 d3

8 0 to 10 20 50 0.76 16 d3

9 0 to 10 20 75 0.76 16 d3

10 0 to 10 20 100 0.76 16 d3

11 0 to 15 40 29 0.925 7 d2

12 0 to 15 60 29 0.9 16 d3

13 0 to 15 80 29 0.51 18 d3

14 0 to 20 40 29 0.998002 9 d2

15 0 to 20 60 29 0.925 7 d2

16 0 to 20 80 29 0.998002 2 d3

17 0 to 25 40 29 0.51 6 d1

18 0 to 25 60 29 0.76 14 d1

19 0 to 25 80 29 0.998002 2 d2

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

FUTURE COMPUTING 2017 : The Ninth International Conference on Future Computational Technologies and Applications

IV. OPTIMIZATION APPROACH

Neural networks are modeled on the mechanism of the
brain [Kohen, 1989] [Hecht-Nielsen, 1990]. Neural
networks can perform various duties like classification,
identification, pattern recognition, control systems, speech
and vision.

A supervised learning algorithm adjusts the strengths or
weights of the inter-neuron connections according to the
difference between the desired and actual outputs
corresponding to a given input. Thus, supervised learning
requires a "teacher" or "supervisor" to provide desired or
target output signals.

Figure 2. Training a neural network

The main objective of neural networks is to adjust a
particular input to lead to a specific target output. This
situation is illustrated in Fig. 2. A comparison has been
adjusted in the network between outputs and targets, until
the output matched the target in the network. In the
proposed model, back propagation neural network
(Rumelhart and McClelland, 1986) was used in Layered
feed-forward ANNs, as in [15]. This means that the
artificial neurons are organized in layers and send their
signals “forward”, and then the errors are propagated
backwards. The network receives inputs by neurons in the
input layer, and the output of the network is given by the
neurons on an output layer. There may be one or more
intermediate hidden layers, as in [15].

Neural Network Implementation

In our approach, we first conduct linear scaling of data
(i.e., data normalization), which is important to put the data
in interval between zero and one. This requires ݉ ݁ܽ ݊ and
ݐܽݏ ݊݀ ݎܽ݀ ݀ ݒ݁݅ ݊ݐܽ݅ values associated with the facts for a
single data inputݔ= −ݔ) ݉ ݁ܽ ݊) ݐܽݏ) ݎ݀ܽ݀݊ ݀ ݒ݁݅ ݊ݐܽ݅)/ ,
and then the error (difference between actual and expected
results) is calculated.

Our training data set in Table 3 consists of 19 input
signals assigned with corresponding target (desired output).
The neural network is then trained using back propagation
algorithms. We separate the three desired outputs to
construct three separate networks. We train the network
with the 19 training data in each round a three input from ,

݀, ܦ will inter the three input neuron. Each BP neural
network consists of input layer with three neurons, one
hidden layer with five neurons, and output layer consist of
one or three outputs based on the type of the network, two

of them with only one output and that will be for outputs α
and µ in Table 3; see Fig. 3.

Figure 3. BP neural network for outputs α and µ

For the input layer, we use hyperbolic tangent sigmoid
as a transfer function, which varies in the interval [-1, 1].
For the hidden layer, we used Log-sigmoid transfer
functions to calculate a layer's output in the interval [0, 1]
from its net input. At the output layer, we used linear
transfer function. Fig. 4 and Fig. 5 show the performance of
the two BP neural networks after 1000 epoch. It can be seen
that the curve converges to a minimum value after 1000
epoch.

Figure 4. Performance of α

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

FUTURE COMPUTING 2017 : The Ninth International Conference on Future Computational Technologies and Applications

Figure 5. Performance of µ

Classification
A classification problem occurs when an object needs to

be assigned into a pre-defined group or class based on a
number of observed attributes related to that object as in
[16] [17]. Neural networks (NNs) are popular classification
algorithms in computer-aided diagnosis because of their
ability to ‘‘learn’’ classification rules from a set of training
data (see Fig. 6).

Figure 6. Classification in machine learning

The network with output algorithm is used to calculate
the playout time related to the classification problem. We
used a three-output network to sense the classification in

ଵ݀, ଶ݀, ଷ݀. Fig. 7 shows the performance out of 1000
epoch. It can be seen that neural network succeeds in
classifying each one to the appropriate algorithms.

Now, let us test and evaluate our model using the k-fold
cross validation method. The test will give us a really good
overview of the model performance.

Figure 7. Performance of network algorithm

V. K-FOLD CROSS VALIDATION

To be able to build a strong and useful machine learning
solution, we need suitable analytical tools for evaluating the
performance of our system. We can calculate the prediction
errors (differences between the actual response values and
the predictions) and summarize the predictive ability of the
model by the mean squared prediction error (MSPE). This
gives an indication of how well the model will predict in
the future. Sometimes. the MSPE is rescaled to provide a
cross-validation R2. However, most of the time. we cannot
obtain new independent data to validate our model. An
alternative is to partition the sample data into a training (or
model-building) set, which we can use to develop the
model, and a validation (or prediction) set, which is used to
evaluate the predictive ability of the model. This is
called cross-validation.

Here, we will clarify the reasons why k-fold cross
validation is used in neural networks. The main goal of the
classification problem is to find a group of weights and bias
values that will lead to a perfect match between the targets
and the output values, as in [18] [19].

Our approach would use all of the 19 data items to train
the neural network. However, this approach would find
weights and bias values that match the target value
extremely, in fact, probably with 100 % accuracy, but when
presented with a previously unseen set of input data, the
neural network would fail to predict well. This case is
called over-fitting. To overcome this problem (over-fitting),
we use the k-fold cross validation. The idea behind k-fold

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

FUTURE COMPUTING 2017 : The Ninth International Conference on Future Computational Technologies and Applications

cross validation is to randomly sort your data and divide
your data into k equally-sized sets, unless the data cannot
be divided equally, like in our example. Each set is used
one time as the test set while the rest of the data is used as
the training set. The learner trains for k rounds, each round
using one of the sets as the validation set and the remaining
sets as the training set. We measure its accuracy on the
validation set. Then, we average the accuracy over the k
rounds to get a final cross validation accuracy, as in [20].
We used a 4-fold cross validation three folds with size 4
and the last fold sized 7, as shown in Fig. 8.

Figure 8. 4-fold cross validation

By using ܧ =
∑
ೖ
సభ

(9)

where,

the calculated accuracy for the neural network with
output µ is 0.26789 and for the neural network with output
α is 0.315789; the neural network accuracy for the output
algorithm is 0.263157.

Repeated k-fold cross validation

It will not be effective to take the mean of 4 samples.
On the other hand, splitting our sample into more than 4
would greatly reduce the stability of the estimates from
each cross validation. A way around this is to do repeated
k-folds cross validation. To do this, we simply repeat the k-
fold cross validation three times, each time with a different
random arrangement and take the mean of this estimate. An
advantage of this approach is that we can also get an
estimate of the precision of this out-of-sample accuracy by
creating a confidence interval. We will do three replications
so we end up with a nice round: 12 out-of-sample
accuracy estimates. By using the following formulas:

݁=
∑ ாೕ

ೕసభ

௧
, =ݒ

∑ (ாೕି)మ
ೕసభ

௧ି ଵ
, ߪ = ݒ√ (10)

where,

݁ Mean of the three runs for each one of the three
networks.

ଵܧ ... ௧ܧ Accuracy estimates obtained in t runs, which is
in our case 3 runs.

ݒ Variance (variability it shows for different
samples)

ߪ Standard deviation (How much it deviates from
the true value).

This time, we get an estimate for network µ, α and
algorithm, which is quite close to our estimate from a single
k-fold cross validation. We obtained the mean, variance,
and standard deviation of the 3 runs for network µ, α and
algorithm in Table 4.

TABLE 4. ACCUARACY IN THREE REPLICATIONS

Neural
Network

Mean
(e)

variance (࢜)
Standard
deviation

(࣌)

Network µ 0.0877 6.463×10-3 0.080393

Network α 0.3333 6.463×10-3 0.080395

Network
Algorithm

0.3157 2.769×10-3 0.0526

The standard procedure for training a neural network
involves training on the complete database by minimizing
the accumulated misclassification of inputs in the dataset.
Since the overall goal is not to minimize errors on the
dataset, but rather to minimize misclassification on a
much larger set of conceivable inputs, cross validation
gives a much better measure of expected ability to
generalize. The estimate for the algorithm performance has
an error of 0.0877 in network µ, 0.3333 in network α and
0.3157 in network algorithm, with standard-deviation of
0.080393 in network µ, 0.080395 in network α and 0.0526
in network algorithm. The validation error gives an
unbiased estimate of the predictive power of a model. So,
after comparing the mean of the error (e) of the three
networks with the actual error from training the 19 data sets
in the network, we conclude that more training samples
need to be used to obtain better results and provide a good
network performance, and this can be achieved by
monitoring a real voice over IP network.

VI. CONCLUSION

In this paper, we have investigated the performance of
our algorithm under different conditions of the
communication network, starting from the normal
conditions to congested conditions which have high
queuing, propagation delay, and playout delay for adapting
the buffering of packets at the receiver. The main objective
is to build an algorithm that can transact with all these
conditions and to keep the playout delay as small as
possible. We proposed an optimization method for
optimizing the playout delay of packets. Using back
propagation neural network, the results were promising in
dealing with the input data. In our future work, we will
conduct further investigation of more realistic conditions,
such as larger data sets with more complicated
distributions.

E Accuracy for the neural network.

݊ The number of examples in Fold i that were
Correctly classified.

݉ Number of examples which is equal 19.

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

FUTURE COMPUTING 2017 : The Ninth International Conference on Future Computational Technologies and Applications

REFERENCES

[1] J. Zhang, H. J. Kim and D. H. Ahn, "Analysis of Streaming Service
Quality Using Data Analytics of Network Parameters, " Proc. 2012
DATA ANALYTICS 2012 : The First International Conference on
Data Analytics

[2] O. Obafemi, T. Gyires and Y. Tang, " An Analytic and Experimental
Study on the Impact of Jitter Playout Buffer on the E-model in VoIP
Quality Measurement , " Proc. 2011 ICN 2011 :The Tenth
International Conference on Networks.

[3] E. TIPHON, "End-to-End Quality of Service in TIPHON
Systems,"Proc. 2000 Definition of Quality of Service (QoS)
Classes,Vols. Part 2: 101 329-2.

[4] Dr. H. A. Mohammed, Dr. A. H. Ali and H. J. Mohammed, "The
Affects of Different Queuing Algorithms within the Router on QoS
VoIP application Using OPNET," Proc. 2013 International Journal of
Computer Networks & Communications (IJCNC) Vol.5, No.1

[5] T. Uhl, "QUALITY of service in VOIP communication," Proc. 2004
Int.J.Electron.Commun 58 (3), pp. 178-182.

[6] H. Dahmouni, A. Girard and B. Sansò, "An analytical model for
jitter in IP networks," Ann. Telecommun. Proc. 2012 67:81–90.

[7] E. DTR /TIPHON, "Telecommunication and Internet Protocol
Harmonization Over Networks (TIPHON)," General Aspects of
Quality of Service (QOS), Proc. 1998 vol. tr 101 329 , no. Ver. 1.2.5

[8] R. J. B. Reynolds, A. W. Rix, 2001"Quality VOIP - an engineering
challenge," Proc. 2001 BT Technol Journal Vol.19 Issue:2 pp. 23-32.

[9] I. Klimek, M. Čajkovský and F.Jakab, "Novel methods of utilizing
Jitter for Network Congestion Control," Proc. 2013 Acta Informatica
Pragensia, 2(2), 1–24, DOI: 10.18267/j.aip.20

[10] Y. Zhang, D. Fay and L. Kilmartin, "An application of neural
networks to adaptive playout delay in VoIP," Proc. 2007 Ireland
Conference on Information and Communication Technologies

[11] S. Haykin, "Neural Networks: A Comprehensive Foundation," Proc.
1998 Prentice. Hall, Upper Saddle River, NJ. ISBN:0132733501

[12] Q. Zhang and A. Benveniste, Wavelet networks. IEEE Trans. Neural
Networks, Proc. 1992 3:889–898

[13] R. Ramjee, J. Kurose, D. Towsley and H. Schulzrinne, "Adaptive
playout mechanism for packetized audio application in wide-area
netwoks," Proc. 1994 Proseeding of IEEE infocom, vol. 2, no.
ISBN: 0-8186-5570-4, pp. 680-688.

[14] V. Jacobson, "Congestion avoidance and control," Proc.1988
ACM SIGCOMM Conf Stanford, pp. 314-329, August, 1988.

[15] Z. Reitermanoy, "Feedforward Neural Networks - Architecture
Optimization and Knowledge Extraction," Proc.2008 WDS'08
Proceedings of Contriuted Papers, Part 1, pp. 159-164.

[16] R. P. Lippmann, "Pattern classification using neural networks," Proc.
1989 IEEE Communications Magazine, vol.27, no. Issue: 11.

[17] Y. L. Murphey and G. Ou, "Multiclass pattern classification using
neural networks," Proc. 2007 science direct journal Pattern
Recognition, vol.40, Issue:1 pp. 4-18.

[18] S. Haykin, "Neural Network sand Learning machines,"Proc. 2009.

[19] A. Perez, J. A. Lozano and J. D. Rodriguez, "Sensitivity Analysis of
K-Fold Cross Validation in Prediction Error Estimation," Proc.2010
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol.32, Issue: 3 pp. 569-575.

[20] T. Fushiki, "Estimation of prediction error by using K-fold cross-
validation," Proc. 2009 Springer Science Business Media, LLC 2009.

13Copyright (c) IARIA, 2017. ISBN: 978-1-61208-530-2

FUTURE COMPUTING 2017 : The Ninth International Conference on Future Computational Technologies and Applications

