
Studies on nVidia GPUs in Parallel Computing for Lattice Quantum
Chromodynamics and Computational Fluid Dynamics Applications

Simone Coscetti
Ph.D. School of Engineering, Unversità di Pisa

National Institute for Nuclear Physics (INFN) - Pisa, Italy
e-mail: simone.coscetti@pi.infn.it

Abstract—During the last few years, we have had the
opportunity to watch a fast evolution in the devices for
scientific computing. Looking at the Top500 Supercomputer
Sites rank, we can see that the most important sites are
building new infrastructures with accelerators devices beside
traditional Central Processing Units (CPUs). One of the
main reasons of this behavior is the investigation of a way to
reduce power consumption. For this purpose nowadays the
trend is to reduce the amount of memory over the single core
in each computing device. The most promising approach to
reach this goal is the utilization of Graphics Processing Units
(GPUs) alongside traditional CPUs. In this paper, we show a
study on nVidia GPUs in parallel computing applied to two
demanding fields, such as the Lattice Quantum
ChromoDynamics and the Computational Fluid Dynamics.

Keywords-Parallel Computing; Graphics Processing Units;
Lattice Quantum Chromodynamics; Computational Fluid
Dynamics.

I. INTRODUCTION
Over the last 20 years, the computing revolution has

created many social benefits. The computing energy and
environmental footprint have grown, and as a
consequence the energy efficiency is becoming
increasingly important. The evolution toward an always-
on connectivity is adding demands for efficient computing
performances. The result is a strong market that pulls for
technologies that improve processor performance while
reducing energy use.

The improvements in energy performance have largely
come as a side effect of the Moore's law [1] - the number
of transistors on a chip doubles about every two years,
thanks to an ever-smaller circuitry. An improvement in
better performance and in energy efficiency is due to
more transistors on a single computer, with less physical
distance between them.

In the last few years, however, the energy-related
benefits resulting from the Moore's law are slowing down
[2][3][4], threatening future advances in computing. This
is caused by the reaching of a physical limit in the
miniaturization of transistors.

The industry's answers to this problem for now are new
processor architectures and power efficient technologies.

For decades, the CPU of a computer has been the one

designated to run general programming tasks, excelling at
running computing instructions serially, and using a
variety of complex techniques and algorithms in order to
improve speed.

GPUs are specialized accelerators originally designed
for painting millions of pixels simultaneously across a
screen, doing this by performing parallel calculation using
simpler architecture. In recent years the video game
market developments compelled GPUs manufacturers to
increase the floating-point calculation performance of their
products, by far exceeding the performance of standard
CPUs in floating point calculations, as illustrated in Figure
1. The architecture evolved toward programmable many-
core chips that are designed to process in parallel massive
amounts of data. These developments suggested the
possibility of using GPUs in the field of High-Performance
Computing (HPC) as low-cost substitutes of more
traditional CPU-based architectures: nowadays such
possibility is being fully exploited and GPUs represent an
ongoing breakthrough for many computationally
demanding scientific fields, providing consistent
computing resources at relatively low cost, also in terms of
power consumption (watts/flops). Due to their many-core
architectures, with fast access to the on-board memory,
GPUs are ideally suited for numerical tasks allowing for
data parallelism, i.e., for Single Instruction Multiple Data

Figure 1. Floating-point operations per seconds for the CPUs and the
GPUs [5]

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

(SIMD) parallelization.
In this work, the parallel computing in Lattice

Quantum Chromodynamics (Lattice QCD or LQCD) and
in Computing Fluid Dynamics (CFD) using multi-GPUs
systems is presented, highlighting the approach of the
software in each case, and trying to understand how to
build and how to exploit the next generation clusters for
scientific computing. In Section 2, the Pisa National
Institute for Nuclear Physics (Istituto Nazionale di Fisica
Nucleare, INFN) data center is described. The application
fields and the computing tools used are introduced in
Section 3. In Section 4, the approach to the study and the
obtained results are described. Finally, in section 5 the
results are discussed.

II. BACKGROUND
The numerical simulation of the path integral

formulation of the Quantum Field Theory discretized on a
Euclidean space-time lattice (Lattice QCD), and the
numerical resolution of Navier-Stokes partial differential
equations using discretization methods in CFD are two
typical demanding fields, where parallel computing is
applied.

This work has been developed at the Pisa INFN
computing center [6][7]. Two of the main communities
that work in the computing center are a theoretical physics
one, specialized on field theory like QCD, and a
mechanical engineers one, working on automotive
engineering, that exploits the computing center for CFD
computing since 2002. The other main intended use of the
computing center is the Tier2 of Compact Muon Solenoid
(CMS), one of the two main experiments working at the
Large Hadron Collider (LHC) in Geneva.

The computing center is made up of 1,5 PB of storage
(up to 90% CMS data) and consists so far of four clusters
(over 3300 cores) dedicated to theoretical physics and
engineering activities.

III. APPLICATION FIELDS
Lattice QCD and Computational Fluid Dynamics are

two of the most promising and demanding fields for
GPUs computing. But they are not the only ones. GPUs
are used for the computing in several application fields
such as: weather and ocean modeling, computational
chemistry, biology, bioinformatics, metagenomic data
analysis, earth and space science, computational finance.

However, these particular application fields have been
chosen because they are extremely interesting as typical
examples of different application contests.

Lattice QCD simulations enable us to investigate
aspects of the QCD physics that would be impossible to
systematically investigate in perturbation theory. The
computation time for Lattice QCD simulations is a strong
limiting factor, bounding for example the usable lattice
size. Fortunately enough, the most time consuming
kernels of the Lattice QCD algorithms are embarrassingly
parallel, so today, in a quest to tackle larger and larger

lattices, computations are commonly performed using
large computer clusters. Moreover, the use of
accelerators, such as GPUs, has been successfully
explored for several years [8]. More generally, massively
parallel machines based on heterogeneous nodes
combining traditional powerful multicore CPUs with
energy-efficient and fast accelerators are ideal targets for
Lattice QCD simulations and are indeed commonly used.
Programming these heterogeneous systems can be
cumbersome, mainly because of the lack of standard
programming frameworks for accelerator-based machines.
In most of the cases, reasonable efficiency requires that
the code is re-written targeting a specific accelerator,
using proprietary programming languages, such as
Compute Unified Device Architecture (CUDA) for
nVidia GPUs.

OpenACC offers a different approach based on
directives, allowing to port applications onto hybrid
architectures by annotating existing codes with specific
“pragma” directives. A perspective OpenACC
implementation of a Lattice QCD simulation code would
grant its portability across different heterogeneous
machines without the need of producing multiple versions
using different languages. However, the price to pay for
code portability may be in terms of code efficiency.

A. CUDA
CUDA [9] is a parallel computing platform and

application programming interface (API) model created
by nVidia. It allows software developers to use CUDA-
enabled GPUs for general purpose processing. The
CUDA platform is a software layer that gives direct
access to the GPU's virtual instruction set and parallel
computational elements.

The CUDA platform is designed to work with
programming languages, such as C, C++ and Fortran. This
accessibility makes it easier for a specialist in parallel
programming to utilize GPU resources, as opposed to
previous Application Program Interface (API) solutions
like Direct3D and OpenGL, which required advanced
skills in graphics programming. Also, CUDA supports
programming frameworks such as OpenCL and
OpenACC.

B. OpenACC
OpenACC [10] is a programming framework for

parallel computing aimed to facilitate code development
on heterogeneous computing systems, and in particular to
simplify porting of existing codes. Its support for different
architectures relies on compilers; although at this stage
the few available ones target mainly GPU devices, thanks
to the OpenACC generality the same code can be
compiled for different architectures when the
corresponding compilers and run-time supports become
available.

OpenACC, like OpenCL, provides a widely applicable
abstraction of actual hardware, making it possible to run

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

the same code across different architectures. Contrary to
OpenCL, where specific functions (called kernels) have to
be explicitly programmed to run in a parallel fashion (e.g.,
as GPU threads), OpenACC is based on pragma directives
that help the compiler identify those parts of the source
code that can be implemented as parallel functions.
Following pragma instructions the compiler generates one
or more kernel functions – in the OpenCL sense – that run
in parallel as a set of threads.

Regular C/C++ or Fortran code, already developed
and tested on traditional CPU architectures, can be
annotated with OpenACC pragma directives (e.g., parallel
or kernels clauses) to instruct the compiler to transform
loop iterations into distinct threads, belonging to one or
more functions to run on an accelerator. Various
directives are available, allowing fine-tuning of the
application.

IV. APPROACH, METHODS AND RESULTS
In the following, the GPU computing approach in both

Lattice QCD and in CFD fields are presented, and the
results concerning performance comparisons are shown.

A. Lattice QCD
From the Lattice QCD side the existing code [11] has

been ported and recoded, writing two versions of the
code: one in CUDA and one using OpenACC directives.
We used a single portion of the original code used for the
entirely simulation. In particular, we coded (using plain
C) a discretized version of the Dirac matrix, which
included two functions Deo and Doe. OpenACC directives
instruct the compiler to generate one GPU kernel function
for each of them. The function bodies of the OpenACC
version strongly resemble the corresponding CUDA
kernel bodies, trying to ensure a fair comparison between
codes, which perform the same operations. For both the
CUDA and OpenACC versions, each GPU thread is
associated to a single lattice site. Data structures are
allocated in memory following the Structure of Arrays
(SoA) layout to obtain better memory coalescing for both
vectors and matrices. The basic data element of both the
structures is the standard C99 double complex.

We prepared a benchmark code able to repeatedly call
the Deo and the Doe functions, one after the other, using
the OpenACC implementation or the CUDA one. The two
implementations were compiled respectively with the
Portland Group (PGI) compiler, version 14.6, and the
nVidia nvcc CUDA compiler, version 6.0.

The benchmark code [12] was run on a 324 lattice,
using an nVidia K20m GPU; results are shown in Table 1,
where we list the sum of the execution times of the Deo
and Doe operations in nanoseconds per lattice site, for
different choices of thread block sizes. All the
computations were performed using double precision
floating point values.

TABLE 1. EXECUTION TIME PER LATTICE SIZE FOR THE CUDA AND
THE OPENACC IMPLEMENTATIONS.

 Deo + Doe functions
Block size CUDA (ns) OpenACC (ns)

8,8,8 7.58 9.29
16,1,1 8.43 16.16

16,2,1 7.68 9.92
16,4,1 7.76 9.96
16,8,1 7.75 10.11

16,16,1 7.64 10.46

Execution times have a very mild dependence on the

block size and for the OpenACC implementation are in
general slightly higher; if one considers the best thread
block sizes both for CUDA and OpenACC, the latter is ≃
23% slower.

A slight performance loss with respect to CUDA is
expected, given the higher level of the OpenACC
language. In this respect, our results are very satisfactory,
given the lower programming efforts needed to use
OpenACC and the increased code maintainability given
by the possibility to run the same code on CPUs or GPUs,
by simply disabling or enabling pragma directives.
Moreover, OpenACC code performance is expected to
slightly improve in the future also due to the rapid
development of OpenACC compilers, which at the
moment are yet in their early days.

The development of a complete Lattice QCD
simulation code fully based on OpenACC is now in
progress.

B. CFD
The CFD community that works at the Pisa INFN data

center has experienced (from 2002) a reduction of an
order of magnitude in the calculation time every 4 years
[13]. This huge performance improvement is due
basically to the software evolution, and only in small part
to the hardware improvement.

During the same period, the number of manageable
cells is improved too, from 5 millions in 2002, to 40
millions today. In this case, the hardware is mainly
responsible.

Assuming that the actual trend continues in the next
years, the expected scenario is shown in Figure 2.

The ability of simulating 40 millions cells lattice in 1
minute of computation time and managing even 20
billions cells is not trivial. The processors architecture
will have to evolve to maintain the trend. The implication
will be that both the software and the methodological
approach need to evolve and update.

The most promising approach is represented by the
employment of GPUs in the simulation chain. However,
this technology isn't mature yet, but a version of ANSYS
Fluent software enabled to exploit GPUs computing has

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

been released in late 2013.
One of the main aspects to be considered is that the

software behaves differently if GPUs are involved in the
computing. In this case, there is an "agglomeration" step
on the CPU before the data are sent to the GPUs, and
naturally there is a backward step once data have been
processed by the GPUs [14][15].

This procedure requires additional time to be
performed, and it has two main effects: i) the total
execution time will not necessarily be reduced by the
exploitation of the GPUs; ii) the performance
improvement is difficult to evaluate, taking into account
the case and the machine architecture.

The performance improvement depends substantially
on the fraction of the whole computation time dedicated
to the "Linear Solver". More generally, using only CPUs
remains convenient in those cases where CPUs have huge
loads (high number of cells per core) and when every
single iteration is expensive (double precision, coupled
equations, thermal exchange).

The test case is an 8.3 millions cells one, with density
base solver, k-epsilon turbulence model [16], with the

equation energy activated and a second order
discretization accuracy.

The case has been run on a machine set up in the
following way:

• CPU: Intel Xeon® E5-2650 v2 @ 2.60 GHz; 2
Socket x 8 cores; 128 GB memory;

• GPU: 2x Tesla K40m, Kepler GK110B, 2880
CUDA cores @ 745 MHz; 12 GB memory.

In Figure 3, one can see how the performance
improvement using GPUs decreases increasing the
number of CPU cores involved. The improvement has
been totally cancelled using all the 16 cores in the
machine. We have to underline that due to the limited
computing power of the machine, the adopted test case is
a lightweight one, both for the cells number and for the
model analyzed.

In the case of two CPU cores the benefit of using two
GPUs amount to a satisfying 30%.

V. CONCLUSIONS
Current high performance computing (HPC) systems

in the Top500 list have reached petaflops of
computational power. Every decade, the computing power
of HPC systems increases by a factor of ten. This leads to
exascale systems within the next decade. One of the major
challenges will be the power. Accelerators offer an
unprecedented computational power per watt. Therefore,
they are becoming a vital part in todays and future HPC
systems. Few dozens systems in the recent (November
2015) Top500 Supercomputing sites list are using either
coprocessor or GPGPU technology, including Tianhe-2,
Titan, Pin Daint and Stampede in the Top10.
Heterogeneous systems combine accelerators and
multicore CPU nodes to achieve a better performance
while being more energy efficient. One of the major

Figure 3. Improvement in AMG with GPUs on a single machine.

 (a) (b)

Figure 2. (a) Computing time and (b) number of cells analyzed during past years with an estimation of the performances in the next years.

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

challenges of these systems is the scalability between host
CPUs and accelerators.

In order to prepare a mid-size computing center such
as the Pisa INFN one for the advent of new architectures
dedicated to scientific computing, this work has been
finalized to the study of two of the most promising and
demanding fields: Lattice Quantum Chromodynamics and
Computational Fluid Dynamics. These two fields are
extremely interesting as typical examples of different
context.

Lattice QCD scientists have a “home-made” code for
their simulations, and the approach to a multi-GPU
system has been made by porting and recoding the
existent code. Different programming approaches, such as
CUDA and OpenACC, have been tested, measuring the
performances in each case.

Instead, CFD simulations are performed running
commercial software (ANSYS Fluent) and the code able
to run in a CPUs-GPUs system is not adjustable. In CFD
there are two different performance evaluation contexts:
how many cells the system can simulate, to more and
more defined simulations, and how much time the system
spends to perform a simulation with a fixed number of
cells, the ideal context for optimizations activities. CFD
approach to GPU technology is in its early years, but both
hardware and software are proceeding in the right
direction.

In particular, for the CFD field, this work represents
an in-depth examination whose final target will be the
fulfillment of a heterogeneous cluster made of CPUs and
GPUs, fully dedicated to the CFD simulations. The
purpose is to reach the computing power of 1 PetaFlop,
starting from todays 16 TeraFlops cluster (classical CPU-
based). The groups concerned to reach the goal will be the
CFD-skilled engineers to better understand the simulating
strategies, and the ANSYS Fluent experts to configure,
set-up and optimize the simulation runs.
GPUs approach is not the only one. The utilization of
Xeon Phi coprocessors alongside traditional CPUs has
been tested in various environment and application fields
and the opinion is that the new generation advent (Knights
Landing model) will extend the range of possible
applications in fields such as Lattice QCD and CFD.

REFERENCES
[1] G. E. Moore, "Progress in digital integrated electronics",

Electron Devices Meeting, vol. 21, 1975, pp. 11-13.
[2] S. Thompson and S. Parthasaranthy, "Moore's law: the

future of Si microelectronics", Materials Today, vol. 9,
issue 6, 2006, pp. 20-25.

[3] L. B. Kish, "End of Moore's law: thermal (noise) death of
integration in micro and nano electronics", Phys. Letters A,
vol. 305, issue 3, 2002, pp. 144-149.

[4] R. A. Robison, "Moore's law: predictor and driver of the
silicon era", World Neurosurgery, vol. 78, issue 5, 2012,
pp. 399-403.

[5] http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf [retrieved: February 2016].

[6] S. Arezzini et al., "Optimization of HEP analysis activity
using a Tier2 infrastructure", Jou. of Physics: Conf. series,
vol. 396, part. 4, 2012, pp. 2054-2059.

[7] S. Arezzini et al., "INFN-Pisa scientific computation
environment (GRID, HPC and Interactive Analysis)", Jou.
of Physics: Conf. series, vol. 513, track 6, 2014, 062030.

[8] G. I. Egri et al., "Lattice QCD as a video game", Com.
Phys. Comm., vol. 177, Issue 8, 2007, pp. 631-639.

[9] https://developer.nvidia.com/about-cuda [retrieved:
February, 2016].

[10] http://www.openacc.org [retrieved: February, 2016].
[11] C. Bonati, G. Cossu, M. D'Elia, and P. Incardona, "QCD

simulations with staggered fermions on GPUs", Com. Phys.
Comm., vol. 183, Issue 4, 2012, pp 853-863.

[12] C. Bonati et al., "Development of scientific software for
HPC architectures using OpenACC: the case of LQCD",
2015 IEEE/ACM 1st International Workshop on Software
Engineering for High Performance Computing in Science
(SE4HPCS), May 2015, pp. 9-15,
doi:10.1109/SE4HPCS.2015.9.

[13] A. Ciampa, S. Coscetti, G. Lombardi, and M. Maganzi,
"Impact of the power computing breakthrough on the
aerodynamic project: an outlook on GPUs utilization in
ANSYS-FLUENT", Ansys Convergence, 2015 Regional
Conference, 2015, unpublished.

[14] D. Gaudlitz, B. Landmann, and T. Indinger, "Accelerated
CFD simulations using Eulerian and Lagrangian methods
on GPUs", Procedia Engineering, vol. 61, 2013, pp. 392-
397.

[15] V. Sellappan and B. Desam, "Accelerating Ansys Fluent
simulations with Nvidia GPUs", Ansys Advantage, vol. IX,
issue 1, 2015, pp. 51-53.

[16] B. Mohammadi and O. Pironneau, "Analysis of the k-
epsilon turbolence model", 1993.

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

