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Abstract—During the last few years, we have had the 
opportunity to watch a fast evolution in the devices for 
scientific computing. Looking at the Top500 Supercomputer 
Sites rank, we can see that the most important sites are 
building new infrastructures with accelerators devices beside 
traditional Central Processing Units (CPUs). One of the 
main reasons of this behavior is the investigation of a way to 
reduce power consumption. For this purpose nowadays the 
trend is to reduce the amount of memory over the single core 
in each computing device. The most promising approach to 
reach this goal is the utilization of Graphics Processing Units 
(GPUs) alongside traditional CPUs. In this paper, we show a 
study on nVidia GPUs in parallel computing applied to two 
demanding fields, such as the Lattice Quantum 
ChromoDynamics and the Computational Fluid Dynamics. 
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I.  INTRODUCTION  
Over the last 20 years, the computing revolution has 

created many social benefits. The computing energy and 
environmental footprint have grown, and as a 
consequence the energy efficiency is becoming 
increasingly important. The evolution toward an always-
on connectivity is adding demands for efficient computing 
performances. The result is a strong market that pulls for 
technologies that improve processor performance while 
reducing energy use.  

The improvements in energy performance have largely 
come as a side effect of the Moore's law [1] - the number 
of transistors on a chip doubles about every two years, 
thanks to an ever-smaller circuitry. An improvement in 
better performance and in energy efficiency is due to 
more transistors on a single computer, with less physical 
distance between them.  

In the last few years, however, the energy-related 
benefits resulting from the Moore's law are slowing down 
[2][3][4], threatening future advances in computing. This 
is caused by the reaching of a physical limit in the 
miniaturization of transistors.  

The industry's answers to this problem for now are new 
processor architectures and power efficient technologies.  

For decades, the CPU of a computer has been the one 

designated to run general programming tasks, excelling at 
running computing instructions serially, and using a 
variety of complex techniques and algorithms in order to 
improve speed.  

GPUs are specialized accelerators originally designed 
for painting millions of pixels simultaneously across a 
screen, doing this by performing parallel calculation using 
simpler architecture. In recent years the video game 
market developments compelled GPUs manufacturers to 
increase the floating-point calculation performance of their 
products, by far exceeding the performance of standard 
CPUs in floating point calculations, as illustrated in Figure 
1. The architecture evolved toward programmable many-
core chips that are designed to process in parallel massive 
amounts of data. These developments suggested the 
possibility of using GPUs in the field of High-Performance 
Computing (HPC) as low-cost substitutes of more 
traditional CPU-based architectures: nowadays such 
possibility is being fully exploited and GPUs represent an 
ongoing breakthrough for many computationally 
demanding scientific fields, providing consistent 
computing resources at relatively low cost, also in terms of 
power consumption (watts/flops). Due to their many-core 
architectures, with fast access to the on-board memory, 
GPUs are ideally suited for numerical tasks allowing for 
data parallelism, i.e., for Single Instruction Multiple Data 

 
 

Figure 1. Floating-point operations per seconds for the CPUs and the 
GPUs [5] 
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(SIMD) parallelization.  
In this work, the parallel computing in Lattice 

Quantum Chromodynamics (Lattice QCD or LQCD) and 
in Computing Fluid Dynamics (CFD) using multi-GPUs 
systems is presented, highlighting the approach of the 
software in each case, and trying to understand how to 
build and how to exploit the next generation clusters for 
scientific computing. In Section 2, the Pisa National 
Institute for Nuclear Physics (Istituto Nazionale di Fisica 
Nucleare, INFN) data center is described. The application 
fields and the computing tools used are introduced in 
Section 3. In Section 4, the approach to the study and the 
obtained results are described. Finally, in section 5 the 
results are discussed. 

II. BACKGROUND 
The numerical simulation of the path integral 

formulation of the Quantum Field Theory discretized on a 
Euclidean space-time lattice (Lattice QCD), and the 
numerical resolution of Navier-Stokes partial differential 
equations using discretization methods in CFD are two 
typical demanding fields, where parallel computing is 
applied.  

This work has been developed at the Pisa INFN 
computing center [6][7]. Two of the main communities 
that work in the computing center are a theoretical physics 
one, specialized on field theory like QCD, and a 
mechanical engineers one, working on automotive 
engineering, that exploits the computing center for CFD 
computing since 2002. The other main intended use of the 
computing center is the Tier2 of Compact Muon Solenoid 
(CMS), one of the two main experiments working at the 
Large Hadron Collider (LHC) in Geneva.  

The computing center is made up of 1,5 PB of storage 
(up to 90% CMS data) and consists so far of four clusters 
(over 3300 cores) dedicated to theoretical physics and 
engineering activities. 

III. APPLICATION FIELDS 
Lattice QCD and Computational Fluid Dynamics are 

two of the most promising and demanding fields for 
GPUs computing. But they are not the only ones. GPUs 
are used for the computing in several application fields 
such as: weather and ocean modeling, computational 
chemistry, biology, bioinformatics, metagenomic data 
analysis, earth and space science, computational finance.  

However, these particular application fields have been 
chosen because they are extremely interesting as typical 
examples of different application contests.  

Lattice QCD simulations enable us to investigate 
aspects of the QCD physics that would be impossible to 
systematically investigate in perturbation theory. The 
computation time for Lattice QCD simulations is a strong 
limiting factor, bounding for example the usable lattice 
size. Fortunately enough, the most time consuming 
kernels of the Lattice QCD algorithms are embarrassingly 
parallel, so today, in a quest to tackle larger and larger 

lattices, computations are commonly performed using 
large computer clusters. Moreover, the use of 
accelerators, such as GPUs, has been successfully 
explored for several years [8]. More generally, massively 
parallel machines based on heterogeneous nodes 
combining traditional powerful multicore CPUs with 
energy-efficient and fast accelerators are ideal targets for 
Lattice QCD simulations and are indeed commonly used. 
Programming these heterogeneous systems can be 
cumbersome, mainly because of the lack of standard 
programming frameworks for accelerator-based machines. 
In most of the cases, reasonable efficiency requires that 
the code is re-written targeting a specific accelerator, 
using proprietary programming languages, such as 
Compute Unified Device Architecture (CUDA) for 
nVidia GPUs.  

OpenACC offers a different approach based on 
directives, allowing to port applications onto hybrid 
architectures by annotating existing codes with specific 
“pragma” directives. A perspective OpenACC 
implementation of a Lattice QCD simulation code would 
grant its portability across different heterogeneous 
machines without the need of producing multiple versions 
using different languages. However, the price to pay for 
code portability may be in terms of code efficiency. 

A. CUDA 
CUDA [9] is a parallel computing platform and 

application programming interface (API) model created 
by nVidia. It allows software developers to use CUDA-
enabled GPUs for general purpose processing. The 
CUDA platform is a software layer that gives direct 
access to the GPU's virtual instruction set and parallel 
computational elements.  

The CUDA platform is designed to work with 
programming languages, such as C, C++ and Fortran. This 
accessibility makes it easier for a specialist in parallel 
programming to utilize GPU resources, as opposed to 
previous Application Program Interface (API) solutions 
like Direct3D and OpenGL, which required advanced 
skills in graphics programming. Also, CUDA supports 
programming frameworks such as OpenCL and 
OpenACC. 

B. OpenACC 
OpenACC [10] is a programming framework for 

parallel computing aimed to facilitate code development 
on heterogeneous computing systems, and in particular to 
simplify porting of existing codes. Its support for different 
architectures relies on compilers; although at this stage 
the few available ones target mainly GPU devices, thanks 
to the OpenACC generality the same code can be 
compiled for different architectures when the 
corresponding compilers and run-time supports become 
available.  

OpenACC, like OpenCL, provides a widely applicable 
abstraction of actual hardware, making it possible to run 
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the same code across different architectures. Contrary to 
OpenCL, where specific functions (called kernels) have to 
be explicitly programmed to run in a parallel fashion (e.g., 
as GPU threads), OpenACC is based on pragma directives 
that help the compiler identify those parts of the source 
code that can be implemented as parallel functions. 
Following pragma instructions the compiler generates one 
or more kernel functions – in the OpenCL sense – that run 
in parallel as a set of threads. 

Regular C/C++ or Fortran code, already developed 
and tested on traditional CPU architectures, can be 
annotated with OpenACC pragma directives (e.g., parallel 
or kernels clauses) to instruct the compiler to transform 
loop iterations into distinct threads, belonging to one or 
more functions to run on an accelerator. Various 
directives are available, allowing fine-tuning of the 
application. 

IV. APPROACH, METHODS AND RESULTS 
In the following, the GPU computing approach in both 

Lattice QCD and in CFD fields are presented, and the 
results concerning performance comparisons are shown. 

A. Lattice QCD 
From the Lattice QCD side the existing code [11] has 

been ported and recoded, writing two versions of the 
code: one in CUDA and one using OpenACC directives. 
We used a single portion of the original code used for the 
entirely simulation. In particular, we coded (using plain 
C) a discretized version of the Dirac matrix, which 
included two functions Deo and Doe. OpenACC directives 
instruct the compiler to generate one GPU kernel function 
for each of them. The function bodies of the OpenACC 
version strongly resemble the corresponding CUDA 
kernel bodies, trying to ensure a fair comparison between 
codes, which perform the same operations. For both the 
CUDA and OpenACC versions, each GPU thread is 
associated to a single lattice site. Data structures are 
allocated in memory following the Structure of Arrays 
(SoA) layout to obtain better memory coalescing for both 
vectors and matrices. The basic data element of both the 
structures is the standard C99 double complex.  

We prepared a benchmark code able to repeatedly call 
the Deo and the Doe functions, one after the other, using 
the OpenACC implementation or the CUDA one. The two 
implementations were compiled respectively with the 
Portland Group (PGI) compiler, version 14.6, and the 
nVidia nvcc CUDA compiler, version 6.0. 

The benchmark code [12] was run on a 324 lattice, 
using an nVidia K20m GPU; results are shown in Table 1, 
where we list the sum of the execution times of the Deo 
and Doe operations in nanoseconds per lattice site, for 
different choices of thread block sizes. All the 
computations were performed using double precision 
floating point values.  

TABLE 1.  EXECUTION TIME PER LATTICE SIZE FOR THE CUDA AND 
THE   OPENACC IMPLEMENTATIONS. 

 Deo + Doe functions 
Block size CUDA (ns) OpenACC (ns) 

8,8,8 7.58 9.29 
16,1,1 8.43 16.16 

16,2,1 7.68 9.92 
16,4,1 7.76 9.96 
16,8,1 7.75 10.11 

16,16,1 7.64 10.46 
 

 
Execution times have a very mild dependence on the 

block size and for the OpenACC implementation are in 
general slightly higher; if one considers the best thread 
block sizes both for CUDA and OpenACC, the latter is ≃ 
23% slower. 

A slight performance loss with respect to CUDA is 
expected, given the higher level of the OpenACC 
language. In this respect, our results are very satisfactory, 
given the lower programming efforts needed to use 
OpenACC and the increased code maintainability given 
by the possibility to run the same code on CPUs or GPUs, 
by simply disabling or enabling pragma directives. 
Moreover, OpenACC code performance is expected to 
slightly improve in the future also due to the rapid 
development of OpenACC compilers, which at the 
moment are yet in their early days. 

The development of a complete Lattice QCD 
simulation code fully based on OpenACC is now in 
progress.  

 

B. CFD 
The CFD community that works at the Pisa INFN data 

center has experienced (from 2002) a reduction of an 
order of magnitude in the calculation time every 4 years 
[13]. This huge performance improvement is due 
basically to the software evolution, and only in small part 
to the hardware improvement. 

During the same period, the number of manageable 
cells is improved too, from 5 millions in 2002, to 40 
millions today. In this case, the hardware is mainly 
responsible.  

Assuming that the actual trend continues in the next 
years, the expected scenario is shown in Figure 2.  

The ability of simulating 40 millions cells lattice in 1 
minute of computation time and managing even 20 
billions cells is not trivial. The processors architecture 
will have to evolve to maintain the trend. The implication 
will be that both the software and the methodological 
approach need to evolve and update.  

The most promising approach is represented by the 
employment of GPUs in the simulation chain. However, 
this technology isn't mature yet, but a version of ANSYS 
Fluent software enabled to exploit GPUs computing has 
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been released in late 2013.  
One of the main aspects to be considered is that the 

software behaves differently if GPUs are involved in the 
computing. In this case, there is an "agglomeration" step 
on the CPU before the data are sent to the GPUs, and 
naturally there is a backward step once data have been 
processed by the GPUs [14][15].  

This procedure requires additional time to be 
performed, and it has two main effects: i) the total 
execution time will not necessarily be reduced by the 
exploitation of the GPUs; ii) the performance 
improvement is difficult to evaluate, taking into account 
the case and the machine architecture.  

The performance improvement depends substantially 
on the fraction of the whole computation time dedicated 
to the "Linear Solver". More generally, using only CPUs 
remains convenient in those cases where CPUs have huge 
loads (high number of cells per core) and when every 
single iteration is expensive (double precision, coupled 
equations, thermal exchange).  

The test case is an 8.3 millions cells one, with density 
base solver, k-epsilon turbulence model [16], with the 

equation energy activated and a second order 
discretization accuracy.  

The case has been run on a machine set up in the 
following way:  

• CPU: Intel Xeon® E5-2650 v2 @ 2.60 GHz; 2 
Socket x 8 cores; 128 GB memory; 

• GPU: 2x Tesla K40m, Kepler GK110B, 2880 
CUDA cores @ 745 MHz; 12 GB memory.  

In Figure 3, one can see how the performance 
improvement using GPUs decreases increasing the 
number of CPU cores involved. The improvement has 
been totally cancelled using all the 16 cores in the 
machine. We have to underline that due to the limited 
computing power of the machine, the adopted test case is 
a lightweight one, both for the cells number and for the 
model analyzed.  

In the case of two CPU cores the benefit of using two 
GPUs amount to a satisfying 30%.  

V. CONCLUSIONS 
Current high performance computing (HPC) systems 

in the Top500 list have reached petaflops of 
computational power. Every decade, the computing power 
of HPC systems increases by a factor of ten. This leads to 
exascale systems within the next decade. One of the major 
challenges will be the power. Accelerators offer an 
unprecedented computational power per watt. Therefore, 
they are becoming a vital part in todays and future HPC 
systems. Few dozens systems in the recent (November 
2015) Top500 Supercomputing sites list are using either 
coprocessor or GPGPU technology, including Tianhe-2, 
Titan, Pin Daint and Stampede in the Top10. 
Heterogeneous systems combine accelerators and 
multicore CPU nodes to achieve a better performance 
while being more energy efficient. One of the major  

Figure 3. Improvement in AMG with GPUs on a single machine. 
 

 
       (a)                            (b) 

 
Figure 2. (a) Computing time and (b) number of cells analyzed during past years with an estimation of the performances in the next years. 
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challenges of these systems is the scalability between host 
CPUs and accelerators.  

In order to prepare a mid-size computing center such 
as the Pisa INFN one for the advent of new architectures 
dedicated to scientific computing, this work has been 
finalized to the study of two of the most promising and 
demanding fields: Lattice Quantum Chromodynamics and 
Computational Fluid Dynamics. These two fields are 
extremely interesting as typical examples of different 
context.  

Lattice QCD scientists have a “home-made” code for 
their simulations, and the approach to a multi-GPU 
system has been made by porting and recoding the 
existent code. Different programming approaches, such as 
CUDA and OpenACC, have been tested, measuring the 
performances in each case. 

Instead, CFD simulations are performed running 
commercial software (ANSYS Fluent) and the code able 
to run in a CPUs-GPUs system is not adjustable. In CFD 
there are two different performance evaluation contexts: 
how many cells the system can simulate, to more and 
more defined simulations, and how much time the system 
spends to perform a simulation with a fixed number of 
cells, the ideal context for optimizations activities. CFD 
approach to GPU technology is in its early years, but both 
hardware and software are proceeding in the right 
direction.  

In particular, for the CFD field, this work represents 
an in-depth examination whose final target will be the 
fulfillment of a heterogeneous cluster made of CPUs and 
GPUs, fully dedicated to the CFD simulations. The 
purpose is to reach the computing power of 1 PetaFlop, 
starting from todays 16 TeraFlops cluster (classical CPU-
based). The groups concerned to reach the goal will be the 
CFD-skilled engineers to better understand the simulating 
strategies, and the ANSYS Fluent experts to configure, 
set-up and optimize the simulation runs.  
GPUs approach is not the only one. The utilization of 
Xeon Phi coprocessors alongside traditional CPUs has 
been tested in various environment and application fields 
and the opinion is that the new generation advent (Knights 
Landing model) will extend the range of possible 
applications in fields such as Lattice QCD and CFD. 
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