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Abstract— Providing secure communication between nodes in 
mobile ad hoc networks is critical in many applications. In this 
paper, we present our work on a key distribution scheme for 
mobile ad hoc networks. Unlike traditional key distributions 
which establish encryption keys prior to node deployment we 
devise a post-deployment key distribution scheme to allow nodes 
a higher chance of connectivity with neighboring nodes. At the 
same time, nodes are able to be highly mobile within the network 
while reducing the need for excessive storage of encryption keys 
by each node in the network. 
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I.  INTRODUCTION 
Wireless technology has advanced rapidly in recent years. 

New advances in low powered microcontrollers, such as 
Atmel [1] and ARM [2], and miniature computers [3] [4]  have 
allowed for wireless enabled devices to be networked together 
to provide novel and interesting devices both commercially 
and by hobbyists. One of the promising networking 
techniques advanced in recent years are wireless ad hoc 
networks (WANETs). WANETs are organized as a 
decentralized network which operate over a wireless medium 
to provide communication services among different devices. 
Unlike an infrastructure network, WANETs are self-
organizing, whereby the nodes in the network cooperate to 
provide the routing of data. One of the benefits of using 
wireless WANETs is robustness to node failure. Nodes 
participating in an ad hoc network join and leave the network 
randomly while not disrupting the network and its ability to 
route messages towards the destination. WANETs have 
several applications, such as in personal area networks 
(PANs), sensor networks (WSNs) vehicular WANETs 
(VANETs), and mobile WANETs (MANETs).  

WANETs may also consist of nodes with different 
capabilities. For example, an ad hoc network may consist of 
several battery operated low powered devices, such as sensor 
nodes, and more powerful nodes, such as a laptop or tablet 
computer, which aggregate and process the sensor node data. 
MANETs and other WANETs have applications in many 
areas, including military surveillance, emergency incident 
response, industrial and agricultural monitoring, and in-home 
automation. For example, a military deployment may utilize a 
UAV-MBN network which consists of three levels of ad hoc 
networks operating together. At the lowest level the military 
may distribute sensor nodes into a battlefield environment 

which communicate information back to devices being used 
by troops on the ground through an ad hoc network [5]. The 
devices used by the troops are then connected through a 
localized mobile backbone network consisting of ground 
vehicles in the middle layer. At the highest level are 
unmanned aircraft which are used as a backbone to connect 
the ground vehicles over rough terrain and distances. Other 
uses of an ad hoc network include extending the range of 
existing infrastructure networks to allow additional devices to 
communicate via the Internet while out of range of 
infrastructure equipment, or connecting devices to the 
“Internet of Things”. Securing the communication between 
the nodes in these networks is essential for high resistance to 
attackers who want to disrupt communication or gather 
information from the network. 

The heterogeneous nature of these networks presents 
unique challenges for providing secure communication 
among all parties in the network. Resources available to 
devices found in the network may vary between devices and 
have limited capacity. Sensor network nodes, for example, 
may be limited by computational power, transmission range, 
and rely on battery resources for a power source. However, a 
laptop with an external wireless card connected to a power 
source does not have these limitations. This creates a serious 
problem for heterogeneous WANETs, as some devices may 
allow existing security techniques to be used, but they may not 
apply to other devices in the network.  

To provide confidential communication in a network, key 
distribution must take place. A simple solution would be to 
preload a single key for encryption on each node. However, 
this approach has a drawback, because an attacker would only 
need to compromise one node in the network. Since WANETs 
rely on the cooperation and trust of all nodes in the network to 
handle routing, the compromised node is likely to receive a 
significant amount of data that may contain confidential 
information. Another simple solution using current 
technologies is to use a transient key based on a passphrase, 
as seen in 802.11 infrastructure networks. While this allows 
for easy implementation in the 802.11 protocol for securing 
the traffic on the network, not all WANETs may be able to 
utilize these security mechanisms. Additionally, nodes joining 
the network must know the predefined passphrase to connect 
to the network. This may not be possible in all situations, since 
the passphrase may not be known. For example, a VANET 
may consist of vehicles made by different manufacturers 
using their own passphrases for vehicles to form VANETs. 
This would reduce the usage of the VANETs being formed. 
To be effective in the unique environment of MANETs, some 
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method of encryption key distribution must be devised that 
does not rely on existing methods.  

This paper is organized as follows: in Section II, we 
present related works in key management schemes for 
MANETs. Section III discusses our key distribution scheme. 
Section IV discusses our preliminary analysis and 
experimentation results of our proposed key distribution 
scheme.  We conclude the paper in Section V and discuss our 
future plans for this research. 

II. RELATED WORKS 
Many key distribution schemes have been proposed in 

recent years for providing encryption keys to nodes in various 
types of WANETs. In this section, we discuss several of these 
proposed methods.  

One of the first schemes proposed for establishing secure 
communication in WANETs was described in [6]. Eschenauer 
and Gligor’s scheme was designed to be deployed in WSNs. 
Each node randomly selects a subset of keys from a key pool 
prior to being deployed in the network. After deployment, the 
nodes establish secure communication if two nodes share a 
common key. However, this scheme may not guarantee secure 
communication can be established since the scheme is based 
on the probability that nodes share a common key. To increase 
the probability a larger subset of keys must be preloaded 
which also increases vulnerabilities if a node is captured as 
more keys are exposed to the attacker. Chan et al. improved 
upon the security of this scheme in [7] by proposing that each 
node must have at least 𝑞  keys in common between 
communicating nodes at a cost of additional memory. 

In [8] and [9], two independent research studies 
proposed predistribution schemes which generate a set of key 
spaces and preload each node with a subset of the key spaces, 
known as keying shares. The difference in their approaches 
exist in the underlying mathematical framework used. In [8] 
the scheme uses a key space approach found in [10], while in 
[9] the authors generate key spaces based on the work found 
in [11]. Both allow communication to be secured between 
nodes if they share the same key space, but they rely on the 
probability of two nodes sharing keying information after 
deployment. This research expands on the use of keying 
shares as described in [10] and [11] to provide the generation 
of encryption keys after nodes have been deployed. 

In [12], Hai-tao divides the network into zones based on 
the connectivity of nodes in a general area and a CH is selected 
to manage keys for each zone. The cluster key is created at the 
CH by nodes signing a nonce with their preloaded private key. 
Each of the nodes is then provided a shadow of the key and 
reconstructs the cluster key from the signatures of its 
neighbors.  

PushpaLakshmi et al. proposed an agent based composite 
key management scheme in [13]. Nodes are partitioned into 
clusters in the network and a CH is selected based on its 
trustworthiness and probability the node will remain in the 
network. In their scheme, a fuzzy logic algorithm is used to 
determine the trustworthiness based on the node’s successful 
routing statistics. Each node is also assigned a public 
certificate by an offline CA prior to joining the network and 

CHs are initially selected by an administrator. Additionally, a 
subset of nodes in the deployment will be used for creating 
partial private keys for new nodes to join the network. When 
a node joins the network the node generates its public key and 
registers with the CH that assigns a unique ID to the node. The 
CH then assembles the private key for the new node. The main 
drawbacks to this approach are that an offline CA is required, 
the initial CH nodes must be assigned by an administrator, and 
CHs know the private keys for joining nodes. 

Liu et al. proposed an in situ key management scheme in 
[14] which establishes keys in homogeneous network after 
deployment. Their scheme elects nodes as CHs in a wireless 
sensor network to act as key distribution centers in the 
network based on a predetermined probability factor. When a 
node is elected, it generates a key space and distributes keying 
shares to nodes nearby which request keying information. 
However, their scheme was designed to be used in a 
homogeneous network and allowed the CHs to die after 
distributing the keying information.  

In [15], Loree et al. proposed a similar scheme that 
extended on the work proposed in [14] by introducing a 
scheme designed to more efficiently provide keying 
information to a heterogeneous sensor network which used 
more powerful nodes to act as CHs. This work was further 
investigated in [16] and is the basis for this work in MANETs. 

Zhao et al., [17] also proposed a scheme that uses a CA to 
provide public key encryption keys to wireless mesh 
networks. Unlike the previous scheme however, the CA is part 
of the infrastructure backbone of the network and nodes 
register when joining the network. Additionally, the CA must 
remain in the network which may not be suitable in a MANET 
environment.  

Boukerche et al. proposed a key management scheme for 
MANETs in [18]. Their scheme provides both asymmetric 
and symmetric encryption to nodes in the network. Their work 
attempts to address the issue that a CA may not be present in 
the network to after deployment. They do require a CA to exist 
to distribute public/private keys to nodes prior to the network 
being formed. Additionally, each node is required to store 
both public keys and session keys of its neighbors. Lastly, 
since each message establishes a session between nodes, 
significant communication overhead occurs due to session key 
being established between nodes in the route. 

In [19], Chauhan and Tapaswi describe a key management 
scheme that provides both asymmetric and symmetric 
encryption. In their scheme several nodes are preloaded with 
a public/private keys and a function to create key pairs for 
other nodes in the network. Each node stores either a 
symmetric key or a public key for use with each of the nodes 
in their cluster. Nodes are allowed move between clusters but 
must be validated by the previous CH before the node is given 
new keys. However, this is a drawback in this scheme when a 
node joins the network because the CH must know about the 
node prior to being added. Another drawback to this scheme 
is that nodes may only join clusters they are assigned to prior 
to setup or each CH would require information about all of the 
nodes in the network.  

Lu et al., proposed a certificateless key distribution 
scheme in [20]. Their scheme distributes parts of a master 
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secret key to several key generating centers (KGC) that 
provide keying information to the nodes. In their approach a 
several KGCs must be contacted by a node to receive keying 
information, reducing the chance a single KGC is 
compromised the network if attacked. In their approach each 
node is able to calculate its neighbor’s public key for secure 
communication with the neighbor’s ID and the current key 
phase’s salt value.  

In [21], Dahshan and Irvine propose a MANET key 
management scheme which distributes threshold 
cryptography keys. In their scheme the nodes in the network 
consist of two types of devices, CA trusted nodes 
authenticated prior to deployment and non-trusted nodes 
which joined after deployment. Nodes establish a connection-
orientated route to the destination only through CA trusted 
nodes. Both source and destination nodes may then either 
accept or deny the route to be used. Nodes are also able to 
individually revoke certificates if they believe it has been 
compromised. However, each node must keep a public 
certificate for all nodes in a route which may not scale well 
especially if nodes are required to persistently store all 
received certificates. If nodes are allowed to delete the 
certificates there will be significant communication overhead 
when establishing a route for each message and nodes would 
no longer be able to revoke keys. Lastly, only CA 
authenticated nodes are used in a route and the network may 
not be fully connected since nodes are mobile and may have 
moved out of range of CA authenticated nodes. In order to 
ensure that nodes stay connected in their scheme enough 
statically located CA authenticated nodes must be placed 
knowingly in the topology of the network prior to deployment.  

In [22], Seghal et al. presented analysis of security issues 
in MANETs. Their work provided analysis of the existing 
problems facing three key areas of MANETs, key 
management, ad hoc routing, and intrusion detection. They 
state two main problems are faced when dealing with key 
management in MANETs. The first problem is it is difficult 
for nodes in the network to determine if nodes in the network 
have revoked a certificate used by a node in the network. A 
second problem is that nodes may be in different trust 
hierarchies and their certificates may not be valid across 
different levels in the network. They propose the solution to 
this is to use a trusted third party (3P) or global password 
authentication for all nodes to use to gain access. Both of these 
however pose drawbacks since MANETs may be created in 
places with limited infrastructure or a 3P CA would be 
infeasible. Global passwords also provide limited security 
since clients with malicious intent can gain access to this 
information easily. This demonstrates the need for a 
distributed key distribution system that can be efficient to 
deploy to nodes joining the network without compromising 
the security of existing or future clients in the network. 

III. WANET KEY DISTRIBUTION SCHEME 
In this section, we describe our key management scheme 

for providing keys for symmetric encryption to nodes in a 
WANET. We expand on our work in [15] and [16] for support 
of WANETs. In our scheme nodes are partitioned into clusters 

and CHs are elected post-deployment to provide keying 
information for nodes to generate encryption keys. A secret 
key is generated between two nodes using key space models 
discussed in [11] and [10]. These key spaces are generated 
using either a bivariate symmetric 𝑛-degree polynomial [11] 
or symmetric public and private matrices of (𝑛	 + 	1)	×	(𝑛	 +
	1)	dimensions [10]. The coefficients of the polynomial or the 
elements of the matrices are generated after the network is 
deployed. Keying information is distributed to the nodes in a 
cluster by a CH. By using the keying information, each node 
is able to create secret keys for symmetric encryption between 
themselves and their neighbors using their IDs as input. 

A. Key Space Models 
Our scheme will operate under both key space models 

described in [11] and [10]. In [11], the authors utilize a 
symmetric 𝑛-degree polynomial. In the first key space model 
we use the bivariate symmetric 𝑛-degree polynomial such that  

𝑓 𝑥, 𝑦 = 𝑓 𝑦, 𝑥 = 	 𝑎/,0𝑥0𝑦0
1

/,02	3
																 1  

over a finite field 𝐹5, where 𝑟 is a large prime number that can 
be used for cryptographic keys. A key for symmetric 
encryption can be found by two nodes in the network that 
share the same coefficients,	𝑎/, the key space, by exchanging 
IDs and computing (1). In our scheme, the CH generates a set 
of functions, 𝐹, and each node in the cluster is provided with 
one of the generated functions as its keying information. 
When creating a secure link between two nodes in the cluster 
the nodes send their calculated coefficients for their function 
using their ID,	𝑥. This allows the receiving node to compute 
the same key by inputting their ID,	𝑦 to create the secret key. 

In [10], the authors proposed a similar method that uses 
matrices instead of a polynomial. Nodes exchange column 
values of a public matrix along with their ID to compute a key. 
One benefit to using this key space method is that 
communication overhead can be reduced by using a 
generation matrix, e.g. Vondermonde matrix [8], where a seed 
value is used to compute a column. This however increases 
the computational overhead by 𝑛 − 1  modular 
multiplications. 

A valuable property in both of these models is that they 
are both 𝑛-collusion resistant. That is, where less than 𝑛 nodes 
using the key space remain uncompromised, the key space 
itself remains secure and new keys generated by the key space 
cannot be determined using the information contained in the 
compromised nodes as shown in [11] and [10]. Furthermore, 
both of these models have low storage overhead as shown in 
[14]. 

B. Assumptions 
In our work, we assume no prior knowledge of node 

placement before deployment. We also assume that nodes are 
mobile and may move between clusters in the network. Nodes 
may belong to several clusters if they are within transmission 
range of a CH. CHs are also assumed to operate normally in 
the network in addition to CH responsibilities. We also 
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assume each node is loosely time synchronized within the 
network. Furthermore, the network supports an ad hoc routing 
protocol such as Ad hoc On-demand Distance Vector 
(AODV) or Dynamic Source Routing (DSR). Each node is 
preloaded with various parameters prior to joining the 
network described in Table 1. 

TABLE I.  PRELOADED PARAMETERS 

𝜆 Maximum number of nodes in a cluster 

𝑛 Degree of polynomial or matrix dimensions for generating 
key spaces 

𝐼𝐷 Unique ID 
𝑟 Large prime for generating key space over finite field 

𝑡<=/> Maximum bootstrapping wait time 
𝑡>?5@A?BCD  Minimum time period before rekeying for new node joins 
𝑡C/E/> Time period for each key share in network 
𝑇𝑇𝐿 Time to Live 
𝑝, 𝑞 Large primes needed for Rabin's cryptosystem 
𝐵 Predefined padding for Rabin's cryptosystem 

 
Each cluster has a maximum of 𝜆	nodes. Since the key 

space models are 𝑛-collusion resistant the optimal value for 
the cluster size should be less than or equal to the value of 𝑛. 
Each node contains a unique ID and large prime number, 𝑟, to  
be used to generate key spaces over a finite field, 𝐹5 . Each 
node is also preloaded with three threshold values. These 
thresholds are used to define the maximum wait time, 𝑡<=/>, 
before a CH announces it has generated keying information, 
the minimum amount of time a node is allowed to join before 
rekeying, 𝑡>?5@A?BCD , and a key expiration time limit, 𝑡C/E/> . 
Additionally, the maximum time to live for packets being 
broadcast from the CH is defined by 𝑇𝑇𝐿 . The last three 
values are optional if the network is assumed to be insecure at 
startup then these parameters are used for Rabin’s 
cryptosystem as described in the next section. 

C. Rabin’s Cryptosystem 
In our scheme we assume that the network may be 

insecure from eavesdropping. In this network model we use 
Rabin’s Cryptosystem [23] to temporarily secure the 
transmissions between the CH and joining nodes while 
distributing keying information. This allows new nodes to 
join without requiring a CA to preload public/private key 
pairs to new nodes joining the network. 

Rabin’s cryptosystem is a computationally asymmetric 
encryption algorithm that uses two large prime numbers to 
create a public key	𝑛 = 𝑝𝑞. The CH sends 𝑛 to cluster nodes 
to encrypt a temporary session key, 𝑘 . The nodes in the 
network randomly generate 𝑘  to encrypt the exchange of 
keying information. Using Rabin’s algorithm this session key 
is encrypted as 	𝐸1(𝑘| 𝐵 = (𝑘||𝐵)M	𝑚𝑜𝑑	𝑛 , where 𝐵  is a 
preloaded bit pattern. 𝐵 is required to allow the CH to decrypt 
the message successfully using Rabin’s algorithm. In 
addition to the session key the node also sends its ID to the 
CH. We use this cryptosystem because it is computationally 
cheap for encryption but as computationally expensive as 
RSA to factor the two large prime numbers, 𝑝 and 𝑞 from	𝑛.  

D. Cluster Head and Key Distribution Algorithms 
In this subsection, we describe two algorithms used by 

CHs to generate key spaces and distribute keying information 
to nodes in the cluster. The first algorithm we discuss is the 
Cluster Head Algorithm illustrated below in Figure 1. 

In our scheme we elect CHs using a predefined 
probability threshold value. An alternative would be to elect 
nodes based on their performance capabilities in the network. 
If performance capabilities are measured, the CHs can be 
selected based on several metrics such as computational 
performance, battery life, wireless medium interfaces on the 
device, number of neighboring nodes within a specific hop 
distance, or transmission range.  

Once elected, the CH generates a key space based on one 
of the key space models previously described on Line 2. On 
line 3, the CH generates a random wait time, 𝑤 less than the 
preloaded maximum wait time, 𝑡<=/>. The CH then listens for 
other nodes that may have also elected themselves to be the 
CH for an area in the network as shown in the loop starting 
on line 4. This is to reduce collisions between two nodes in 
an area of the network that may be simultaneously 
broadcasting an announcement that they have keying 
information available and to let the first node announcing it 
has keying information available to become the CH. Once the 
announcement has been broadcasted the CH starts the 
distribution process as illustrated below in Figure 2. 

Figure 2 below describes our Key Distribution Algorithm. 
On line 2, the CH announces its ID to the network to notify 
nodes within 𝑇𝑇𝐿 hops that keying information is available. 
After sending the announcement the CH will start a loop on 
Line 3 and accepts requests from other nodes in the network 
within range of its broadcast for keying information. Nodes 
send requests to the CH using unicast messages. This loop 
will continue to provide keying information as long as the 
cluster size limit, 𝜆 − 1, has not been reached. The CH will 
also save one keying information share for itself so it remains 
in the cluster it has formed. When the CH receives a request 
for keying information the CH selects an unused keying 
information share as shown on Line 6. The CH will also mark  

Figure 1.  Generates Keying Information 

Cluster Head Algorithm 
1: function runClusterHead (𝜆,	𝑡<) 
2:  𝑘𝑒𝑦𝑠	ß genKeySpace()  // construct key space for𝜆	nodes, 

store one for self 
3:  𝑤	ß random(0 < 𝑡<) // random wait time 
4:  while 𝑤	 > 	0 do 
5:    listen for broadcasts from neighboring nodes that 

have elected themselves as cluster heads 
6:   if BROADCAST heard 
7:    RequestKeyInfo() // get keying info 
8:    exit 
9:   end if 

10:   elapse(𝑤) 
11:  end while 
12:  KeyDistro() // Fig. 2 
13: end function 
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Figure 2.  Distributes Keying Information 

the used keying information so that it will not provide this 
information to another node in the cluster as shown on Line 
7. On Line 8, the CH will send an unused keying information 
to the requesting node using a unicast message. The 
distribution algorithm runs until all keying information has 
been used. As long as keying information remains available 
the cluster may accept new nodes joining the network. 

E. Cluster Joining Algorithm 
In this subsection, we describe our algorithm for forming 

clusters and nodes joining a cluster in the network after the 
network has been established.  

Figure 3 shows our Cluster Joining Algorithm. When a 
node joins a cluster it requests the remaining time until the 
rekeying phase, as shown on Line 3. Only the CH will 
respond to this request with a broadcast, so existing nodes are 
informed of the new node and the remaining time before 
rekeying the cluster begins. If there is no response, then a 
cluster does not exist and the node will begin the election 
process to become a CH, as previously described in Figure 1 
and the function exits. If there is a response from a CH and 
the 𝑡5@E=/1/1V ≤ 	 𝑡>?5@A?BCD  the re-election and rekeying 
event will be started early and the node will join the newly 
formed cluster during this phase. During the re-election 
process nodes will generate a probability or benchmark score 
on Line 9 and announce their score to their area in the 
network. The node with the highest value will then become 
the new CH for the cluster starting on Line 12. Once a node 
has been elected as a CH it will start generating key spaces as 
shown on Line 20. Nodes not elected will then request keying 
information once a CH broadcasts an announcement as 
described in the previous subsection. Nodes within range of 
more than one CH will also request keying information from 
each of the CHs it receives a broadcast from. This allows 
nodes which are lying on the fridges of a cluster to join 
multiple clusters and provide routing paths between clusters.  

If the value of 𝑡5@E=/1/1V > 𝑡>?5@A?BCD  then the node 
joining the cluster will request the keying information from 
the current CH as shown on Line 25. Security can be 
improved by setting 𝑡>?5@A?BCD = 𝑡C/E/> since a new node will 
force rekeying. However, if the network is expected to have 
a lot of nodes moving into and out of the cluster than this may  

Figure 3.  Joins or forms network clusters 

cause unwanted computational and communication 
overhead. 

Additionally, the CHs will restart the keying process once 
the 𝑡C/E/>	threshold value has been met. At this time either the 
node may generate new keys for their cluster or restart the 
election process to see if a new CH is available. To reduce 
the load on the previous CH the current CH may also be set 
to not elect itself again for a period of time and a round robin 
approach may be used to elect new CHs.  

IV. KEY DISTRIBUTION ANALYSIS 
In this section, we provide a performance analysis of our 

scheme. First we re-examine the security performance of the 
scheme. As shown in [10] and [11], both key space models 
require at least 𝑛 nodes in a cluster to be compromised before 
all of the generated keys for symmetric encryption used in the 
key space can be calculated. We assert that to increase the 
security of these key space models that the degree should be 
at least	𝑛 ≥ 𝜆. If the number of nodes in each cluster is the 
same as the degree of the polynomial or the size of the 

Key Distribution Algorithm 
1: function KeyDistro(𝜆, ID, keys) 
2:  BROADCAST(ID) // broadcast to all nodes within TTL 

    hops 
3:  keyed ≔  1 
4:  while keyed	< 𝜆 − 1 do 
5:   if received(RequestKeyInfo(IDk)) 
6:    KeyingInfo ß an unused key share 
7:    usedKeys ß usedKeys ∪ {KeyingInfo} 
8:    send(ID, 𝑘(KeyingInfo)) // 𝑘 if using Rabin’s 
9:    keyed ≔ keyed +	1 

10:   end if 
11:  end while 
12: end function 

 

 

Join Cluster Algorithm 
1: function joinCluster (𝑡>?5@A?BCD ) 
2:  𝑡5@E=/1/1V ≔ 0  
3:  𝑡5@E=/1/1V ≔ RequestKeyTime ( ) // get remaining time 

of current key time from 
current cluster head 

4:  if(𝑡5@E=/1/1V == 0) 
5:   runClusterHead(λ,	t^) //initialization of network 
6:   exit 
7:  end if 
8:  if(𝑡5@E=/1/1V <= 	 𝑡>?5@A?BCD ) 
9:   𝑠𝑐𝑜𝑟𝑒1@< 	ßcalcScore( )  // score node capabilities 

(probability, cpu, storage, batt, 
RSSI, node connectivity) 

 
10:   𝑐ℎ𝑆𝑐𝑜𝑟𝑒{} ß	𝑠𝑐𝑜𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡( ) // Broadcast 

request for cluster node scores 
11:   BROADCAST score 
12:   foreach 𝑠𝑐𝑜𝑟𝑒 in 𝑐ℎ𝑆𝑐𝑜𝑟𝑒 
13:    if(𝑠𝑐𝑜𝑟𝑒1@< > 𝑠𝑐𝑜𝑟𝑒) 
14:     𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑  ß true // elect self 

as new cluster head 
15:    else 
16:     𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑  ß false // remove 

election if another node is better 
17:    end if 
18:   end foreach 
19:   if(𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑) 
20:    runClusterHead( ) // become cluster head and 

generate keying information (Fig. 1) 
21:   else 
22:    RequestKeyInfo( ) // request keying 

information from new cluster head 
23:   end if 
24:  else 
25:   RequestKeyInfo( ) // request keying information 

from existing cluster head 
26:  end if 
27: end function 
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matrices, this will ensure that only if all nodes in a cluster are 
compromised would the key space be compromised. At this 
point the attacker would already have access to all keys 
within the cluster. If	𝑛 > 𝜆, then determining any other keys 
generated in the future from the key space would be 
impossible, which keeps the future cluster nodes secure. 
Additionally, this will allow new nodes to join existing 
clusters before the rekeying process to starts or until all key 
shares have been distributed. 

Next we consider storage requirements for nodes in the 
network for storing keys for symmetric encryption. Each node 
will be required to store a key for itself and any node it has 
received IDs from within its transmission range. If a node has 
joined 𝑘 clusters then these nodes would be required to store 
at most 𝑘𝜆 keys for symmetric schemes. However, we expect 
most nodes in the network to only store the nodes within their 
immediate transmission range and only be connected to one 
cluster at a time except for nodes along the edges of clusters 
which join adjacent clusters to allow for communication 
between clusters. Additionally, nodes will store keying 
information for the key space. In [14], it is shown that storage 
requirements for keying information are close to 𝑛 +
1 log 𝑟 in the polynomial based model and 𝑛 + 2 log 𝑟 in 
the matrix model if the matrix selected for 𝐺  allows the 
columns to be seeded. 

Finally, we discuss the communication overhead of our 
scheme. In the following equations let 𝑁 be the number of 
nodes in the network, 𝐶 be the number of elected CHs and 𝜆 
the number of nodes in each cluster. Below in (2) we show the 
total number of CH announcement broadcast messages 
transmitted by CHs in the network during the distribution 
phases of the scheme. In a network consisting of 𝐶 clusters 
each elected CH, 𝐸/ , sends a broadcast message to their 
neighboring nodes. This announcement broadcast message is 
then retransmitted by at most 𝜆 nodes in each cluster while the 
𝑇𝑇𝐿 > 0. 

𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑠 = 𝜆	 ⋅ 𝐸/

n

/2o

																								 2  

Once the announcements from the CHs have been 
transmitted to nodes within 𝑇𝑇𝐿	range of elected CHs, each 
node within range joins the CH cluster. The total number of 
messages needed to distribute this information is be shown 
below in the (3). In order to join the cluster each node which 
receives the announcement replies by sending a unicast 
message requesting a keying information from the key space 
generated by the CH. This requires each node, 𝑅0 , up to 𝜆 
nodes in a cluster to send a unicast message back to the CH.  
Each unicast message sent is routed up to 𝑇𝑇𝐿	times in order 
to reach the CH. This process occurs in each of the 𝐶 clusters 
in the network. Each CH then replies to up to 𝜆	nodes with a 
unicast message to each of the requests for keying information 
nodes.  

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 = 2𝐶 ⋅ (𝑅0 + 𝑇𝑇𝐿)
r

02o

												(3) 

During the election and rekeying process each node in 
each cluster broadcasts its probability or benchmark score in 

order for the new CH to be selected. The total number of 
messages this requires is shown in (4) below. Each node in the 
network, 𝑆t , broadcasts its score value which is then 
retransmitted a maximum 𝑇𝑇𝐿	times by its neighbors. 

𝑆𝑐𝑜𝑟𝑒𝑠 = (𝑆t + 𝑇𝑇𝐿)
u

t2o

																									(4) 

The average number of messages sent per each node in our 
scheme can be calculated by (5) below which is the sum of the 
previous totals divided by the number of nodes in the network, 
𝑁.   

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑠 + 𝑆𝑐𝑜𝑟𝑒𝑠 + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

𝑁
	(5) 

Limiting the average number of messages transmitted over 
the network by each node is important to increase the life 
expectancy of nodes relying on battery power.  

V. CONCLUSION 
We devised and analyzed an efficient secure key 

distribution scheme for WANETs. Our proposed scheme has 
strong security against attackers attempting to discover the 
shared secret keys used for symmetric encryption by being 𝑛-
collusion resistant, which requires attackers to compromise an 
entire cluster of nodes before keying information can be 
discovered. We also provide efficiency in our scheme in terms 
of computational, storage and communication overhead in 
order to increase the life expectancy of battery powered nodes 
placed in the network. 

Unlike existing schemes, our method does not rely on 
prior knowledge of the network topology and can establish 
keys for symmetric schemes to be used between nodes after 
deployment. Additionally, our scheme does not require 
centrally administered CAs to be used in the network to 
distribute keys to nodes prior to the nodes joining the network. 
Furthermore, our scheme allows all nodes to be mobile in the 
network and does not require nodes to remain statically 
assigned to locations in the network for handling routing and 
key distribution, which may be difficult in many situations, 
such as in MANETs.  

In the future, we plan to empirically evaluate our scheme 
by using simulations to compare our scheme with competing 
existing schemes for connectivity between nodes. 
Additionally, we plan to investigate adding authenticity and 
integrity mechanisms into the scheme to improve the security 
of the network not covered under confidentiality provided by 
encrypted communication. We also plan to simulate our 
scheme against these other methods while under various 
attacks unique to WANETs such as Sybil, black hole, and 
wormhole attacks. Finally, we plan to compare our scheme 
against other methods for routing messages across the 
network between mobile nodes while under normal network 
conditions and while under attack.  
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