
Post Deployment Secure Key Management in Wireless Ad hoc Networks

Paul Loree and Kendall Nygard
Dept. of Computer Science

North Dakota State University
Fargo, ND USA

Email:{paul.loree, kendall.nygard}@ndsu.edu

Abstract— Providing secure communication between nodes in
mobile ad hoc networks is critical in many applications. In this
paper, we present our work on a key distribution scheme for
mobile ad hoc networks. Unlike traditional key distributions
which establish encryption keys prior to node deployment we
devise a post-deployment key distribution scheme to allow nodes
a higher chance of connectivity with neighboring nodes. At the
same time, nodes are able to be highly mobile within the network
while reducing the need for excessive storage of encryption keys
by each node in the network.

Keywords-mobile ad hoc networks; wireless ad hoc networks;
network security; key management; key distribution; secure
communication; WANET; MANET; VANET.

I. INTRODUCTION
Wireless technology has advanced rapidly in recent years.

New advances in low powered microcontrollers, such as
Atmel [1] and ARM [2], and miniature computers [3] [4] have
allowed for wireless enabled devices to be networked together
to provide novel and interesting devices both commercially
and by hobbyists. One of the promising networking
techniques advanced in recent years are wireless ad hoc
networks (WANETs). WANETs are organized as a
decentralized network which operate over a wireless medium
to provide communication services among different devices.
Unlike an infrastructure network, WANETs are self-
organizing, whereby the nodes in the network cooperate to
provide the routing of data. One of the benefits of using
wireless WANETs is robustness to node failure. Nodes
participating in an ad hoc network join and leave the network
randomly while not disrupting the network and its ability to
route messages towards the destination. WANETs have
several applications, such as in personal area networks
(PANs), sensor networks (WSNs) vehicular WANETs
(VANETs), and mobile WANETs (MANETs).

WANETs may also consist of nodes with different
capabilities. For example, an ad hoc network may consist of
several battery operated low powered devices, such as sensor
nodes, and more powerful nodes, such as a laptop or tablet
computer, which aggregate and process the sensor node data.
MANETs and other WANETs have applications in many
areas, including military surveillance, emergency incident
response, industrial and agricultural monitoring, and in-home
automation. For example, a military deployment may utilize a
UAV-MBN network which consists of three levels of ad hoc
networks operating together. At the lowest level the military
may distribute sensor nodes into a battlefield environment

which communicate information back to devices being used
by troops on the ground through an ad hoc network [5]. The
devices used by the troops are then connected through a
localized mobile backbone network consisting of ground
vehicles in the middle layer. At the highest level are
unmanned aircraft which are used as a backbone to connect
the ground vehicles over rough terrain and distances. Other
uses of an ad hoc network include extending the range of
existing infrastructure networks to allow additional devices to
communicate via the Internet while out of range of
infrastructure equipment, or connecting devices to the
“Internet of Things”. Securing the communication between
the nodes in these networks is essential for high resistance to
attackers who want to disrupt communication or gather
information from the network.

The heterogeneous nature of these networks presents
unique challenges for providing secure communication
among all parties in the network. Resources available to
devices found in the network may vary between devices and
have limited capacity. Sensor network nodes, for example,
may be limited by computational power, transmission range,
and rely on battery resources for a power source. However, a
laptop with an external wireless card connected to a power
source does not have these limitations. This creates a serious
problem for heterogeneous WANETs, as some devices may
allow existing security techniques to be used, but they may not
apply to other devices in the network.

To provide confidential communication in a network, key
distribution must take place. A simple solution would be to
preload a single key for encryption on each node. However,
this approach has a drawback, because an attacker would only
need to compromise one node in the network. Since WANETs
rely on the cooperation and trust of all nodes in the network to
handle routing, the compromised node is likely to receive a
significant amount of data that may contain confidential
information. Another simple solution using current
technologies is to use a transient key based on a passphrase,
as seen in 802.11 infrastructure networks. While this allows
for easy implementation in the 802.11 protocol for securing
the traffic on the network, not all WANETs may be able to
utilize these security mechanisms. Additionally, nodes joining
the network must know the predefined passphrase to connect
to the network. This may not be possible in all situations, since
the passphrase may not be known. For example, a VANET
may consist of vehicles made by different manufacturers
using their own passphrases for vehicles to form VANETs.
This would reduce the usage of the VANETs being formed.
To be effective in the unique environment of MANETs, some

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

method of encryption key distribution must be devised that
does not rely on existing methods.

This paper is organized as follows: in Section II, we
present related works in key management schemes for
MANETs. Section III discusses our key distribution scheme.
Section IV discusses our preliminary analysis and
experimentation results of our proposed key distribution
scheme. We conclude the paper in Section V and discuss our
future plans for this research.

II. RELATED WORKS
Many key distribution schemes have been proposed in

recent years for providing encryption keys to nodes in various
types of WANETs. In this section, we discuss several of these
proposed methods.

One of the first schemes proposed for establishing secure
communication in WANETs was described in [6]. Eschenauer
and Gligor’s scheme was designed to be deployed in WSNs.
Each node randomly selects a subset of keys from a key pool
prior to being deployed in the network. After deployment, the
nodes establish secure communication if two nodes share a
common key. However, this scheme may not guarantee secure
communication can be established since the scheme is based
on the probability that nodes share a common key. To increase
the probability a larger subset of keys must be preloaded
which also increases vulnerabilities if a node is captured as
more keys are exposed to the attacker. Chan et al. improved
upon the security of this scheme in [7] by proposing that each
node must have at least 𝑞 keys in common between
communicating nodes at a cost of additional memory.

In [8] and [9], two independent research studies
proposed predistribution schemes which generate a set of key
spaces and preload each node with a subset of the key spaces,
known as keying shares. The difference in their approaches
exist in the underlying mathematical framework used. In [8]
the scheme uses a key space approach found in [10], while in
[9] the authors generate key spaces based on the work found
in [11]. Both allow communication to be secured between
nodes if they share the same key space, but they rely on the
probability of two nodes sharing keying information after
deployment. This research expands on the use of keying
shares as described in [10] and [11] to provide the generation
of encryption keys after nodes have been deployed.

In [12], Hai-tao divides the network into zones based on
the connectivity of nodes in a general area and a CH is selected
to manage keys for each zone. The cluster key is created at the
CH by nodes signing a nonce with their preloaded private key.
Each of the nodes is then provided a shadow of the key and
reconstructs the cluster key from the signatures of its
neighbors.

PushpaLakshmi et al. proposed an agent based composite
key management scheme in [13]. Nodes are partitioned into
clusters in the network and a CH is selected based on its
trustworthiness and probability the node will remain in the
network. In their scheme, a fuzzy logic algorithm is used to
determine the trustworthiness based on the node’s successful
routing statistics. Each node is also assigned a public
certificate by an offline CA prior to joining the network and

CHs are initially selected by an administrator. Additionally, a
subset of nodes in the deployment will be used for creating
partial private keys for new nodes to join the network. When
a node joins the network the node generates its public key and
registers with the CH that assigns a unique ID to the node. The
CH then assembles the private key for the new node. The main
drawbacks to this approach are that an offline CA is required,
the initial CH nodes must be assigned by an administrator, and
CHs know the private keys for joining nodes.

Liu et al. proposed an in situ key management scheme in
[14] which establishes keys in homogeneous network after
deployment. Their scheme elects nodes as CHs in a wireless
sensor network to act as key distribution centers in the
network based on a predetermined probability factor. When a
node is elected, it generates a key space and distributes keying
shares to nodes nearby which request keying information.
However, their scheme was designed to be used in a
homogeneous network and allowed the CHs to die after
distributing the keying information.

In [15], Loree et al. proposed a similar scheme that
extended on the work proposed in [14] by introducing a
scheme designed to more efficiently provide keying
information to a heterogeneous sensor network which used
more powerful nodes to act as CHs. This work was further
investigated in [16] and is the basis for this work in MANETs.

Zhao et al., [17] also proposed a scheme that uses a CA to
provide public key encryption keys to wireless mesh
networks. Unlike the previous scheme however, the CA is part
of the infrastructure backbone of the network and nodes
register when joining the network. Additionally, the CA must
remain in the network which may not be suitable in a MANET
environment.

Boukerche et al. proposed a key management scheme for
MANETs in [18]. Their scheme provides both asymmetric
and symmetric encryption to nodes in the network. Their work
attempts to address the issue that a CA may not be present in
the network to after deployment. They do require a CA to exist
to distribute public/private keys to nodes prior to the network
being formed. Additionally, each node is required to store
both public keys and session keys of its neighbors. Lastly,
since each message establishes a session between nodes,
significant communication overhead occurs due to session key
being established between nodes in the route.

In [19], Chauhan and Tapaswi describe a key management
scheme that provides both asymmetric and symmetric
encryption. In their scheme several nodes are preloaded with
a public/private keys and a function to create key pairs for
other nodes in the network. Each node stores either a
symmetric key or a public key for use with each of the nodes
in their cluster. Nodes are allowed move between clusters but
must be validated by the previous CH before the node is given
new keys. However, this is a drawback in this scheme when a
node joins the network because the CH must know about the
node prior to being added. Another drawback to this scheme
is that nodes may only join clusters they are assigned to prior
to setup or each CH would require information about all of the
nodes in the network.

Lu et al., proposed a certificateless key distribution
scheme in [20]. Their scheme distributes parts of a master

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

secret key to several key generating centers (KGC) that
provide keying information to the nodes. In their approach a
several KGCs must be contacted by a node to receive keying
information, reducing the chance a single KGC is
compromised the network if attacked. In their approach each
node is able to calculate its neighbor’s public key for secure
communication with the neighbor’s ID and the current key
phase’s salt value.

In [21], Dahshan and Irvine propose a MANET key
management scheme which distributes threshold
cryptography keys. In their scheme the nodes in the network
consist of two types of devices, CA trusted nodes
authenticated prior to deployment and non-trusted nodes
which joined after deployment. Nodes establish a connection-
orientated route to the destination only through CA trusted
nodes. Both source and destination nodes may then either
accept or deny the route to be used. Nodes are also able to
individually revoke certificates if they believe it has been
compromised. However, each node must keep a public
certificate for all nodes in a route which may not scale well
especially if nodes are required to persistently store all
received certificates. If nodes are allowed to delete the
certificates there will be significant communication overhead
when establishing a route for each message and nodes would
no longer be able to revoke keys. Lastly, only CA
authenticated nodes are used in a route and the network may
not be fully connected since nodes are mobile and may have
moved out of range of CA authenticated nodes. In order to
ensure that nodes stay connected in their scheme enough
statically located CA authenticated nodes must be placed
knowingly in the topology of the network prior to deployment.

In [22], Seghal et al. presented analysis of security issues
in MANETs. Their work provided analysis of the existing
problems facing three key areas of MANETs, key
management, ad hoc routing, and intrusion detection. They
state two main problems are faced when dealing with key
management in MANETs. The first problem is it is difficult
for nodes in the network to determine if nodes in the network
have revoked a certificate used by a node in the network. A
second problem is that nodes may be in different trust
hierarchies and their certificates may not be valid across
different levels in the network. They propose the solution to
this is to use a trusted third party (3P) or global password
authentication for all nodes to use to gain access. Both of these
however pose drawbacks since MANETs may be created in
places with limited infrastructure or a 3P CA would be
infeasible. Global passwords also provide limited security
since clients with malicious intent can gain access to this
information easily. This demonstrates the need for a
distributed key distribution system that can be efficient to
deploy to nodes joining the network without compromising
the security of existing or future clients in the network.

III. WANET KEY DISTRIBUTION SCHEME
In this section, we describe our key management scheme

for providing keys for symmetric encryption to nodes in a
WANET. We expand on our work in [15] and [16] for support
of WANETs. In our scheme nodes are partitioned into clusters

and CHs are elected post-deployment to provide keying
information for nodes to generate encryption keys. A secret
key is generated between two nodes using key space models
discussed in [11] and [10]. These key spaces are generated
using either a bivariate symmetric 𝑛-degree polynomial [11]
or symmetric public and private matrices of (𝑛	 + 	1)	×	(𝑛	 +
	1)	dimensions [10]. The coefficients of the polynomial or the
elements of the matrices are generated after the network is
deployed. Keying information is distributed to the nodes in a
cluster by a CH. By using the keying information, each node
is able to create secret keys for symmetric encryption between
themselves and their neighbors using their IDs as input.

A. Key Space Models
Our scheme will operate under both key space models

described in [11] and [10]. In [11], the authors utilize a
symmetric 𝑛-degree polynomial. In the first key space model
we use the bivariate symmetric 𝑛-degree polynomial such that

𝑓 𝑥, 𝑦 = 𝑓 𝑦, 𝑥 = 	 𝑎/,0𝑥0𝑦0
1

/,02	3
																 1

over a finite field 𝐹5, where 𝑟 is a large prime number that can
be used for cryptographic keys. A key for symmetric
encryption can be found by two nodes in the network that
share the same coefficients,	𝑎/, the key space, by exchanging
IDs and computing (1). In our scheme, the CH generates a set
of functions, 𝐹, and each node in the cluster is provided with
one of the generated functions as its keying information.
When creating a secure link between two nodes in the cluster
the nodes send their calculated coefficients for their function
using their ID,	𝑥. This allows the receiving node to compute
the same key by inputting their ID,	𝑦 to create the secret key.

In [10], the authors proposed a similar method that uses
matrices instead of a polynomial. Nodes exchange column
values of a public matrix along with their ID to compute a key.
One benefit to using this key space method is that
communication overhead can be reduced by using a
generation matrix, e.g. Vondermonde matrix [8], where a seed
value is used to compute a column. This however increases
the computational overhead by 𝑛 − 1 modular
multiplications.

A valuable property in both of these models is that they
are both 𝑛-collusion resistant. That is, where less than 𝑛 nodes
using the key space remain uncompromised, the key space
itself remains secure and new keys generated by the key space
cannot be determined using the information contained in the
compromised nodes as shown in [11] and [10]. Furthermore,
both of these models have low storage overhead as shown in
[14].

B. Assumptions
In our work, we assume no prior knowledge of node

placement before deployment. We also assume that nodes are
mobile and may move between clusters in the network. Nodes
may belong to several clusters if they are within transmission
range of a CH. CHs are also assumed to operate normally in
the network in addition to CH responsibilities. We also

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

assume each node is loosely time synchronized within the
network. Furthermore, the network supports an ad hoc routing
protocol such as Ad hoc On-demand Distance Vector
(AODV) or Dynamic Source Routing (DSR). Each node is
preloaded with various parameters prior to joining the
network described in Table 1.

TABLE I. PRELOADED PARAMETERS

𝜆 Maximum number of nodes in a cluster

𝑛 Degree of polynomial or matrix dimensions for generating
key spaces

𝐼𝐷 Unique ID
𝑟 Large prime for generating key space over finite field

𝑡<=/> Maximum bootstrapping wait time
𝑡>?5@A?BCD Minimum time period before rekeying for new node joins
𝑡C/E/> Time period for each key share in network
𝑇𝑇𝐿 Time to Live
𝑝, 𝑞 Large primes needed for Rabin's cryptosystem
𝐵 Predefined padding for Rabin's cryptosystem

Each cluster has a maximum of 𝜆	nodes. Since the key

space models are 𝑛-collusion resistant the optimal value for
the cluster size should be less than or equal to the value of 𝑛.
Each node contains a unique ID and large prime number, 𝑟, to
be used to generate key spaces over a finite field, 𝐹5 . Each
node is also preloaded with three threshold values. These
thresholds are used to define the maximum wait time, 𝑡<=/>,
before a CH announces it has generated keying information,
the minimum amount of time a node is allowed to join before
rekeying, 𝑡>?5@A?BCD , and a key expiration time limit, 𝑡C/E/> .
Additionally, the maximum time to live for packets being
broadcast from the CH is defined by 𝑇𝑇𝐿 . The last three
values are optional if the network is assumed to be insecure at
startup then these parameters are used for Rabin’s
cryptosystem as described in the next section.

C. Rabin’s Cryptosystem
In our scheme we assume that the network may be

insecure from eavesdropping. In this network model we use
Rabin’s Cryptosystem [23] to temporarily secure the
transmissions between the CH and joining nodes while
distributing keying information. This allows new nodes to
join without requiring a CA to preload public/private key
pairs to new nodes joining the network.

Rabin’s cryptosystem is a computationally asymmetric
encryption algorithm that uses two large prime numbers to
create a public key	𝑛 = 𝑝𝑞. The CH sends 𝑛 to cluster nodes
to encrypt a temporary session key, 𝑘 . The nodes in the
network randomly generate 𝑘 to encrypt the exchange of
keying information. Using Rabin’s algorithm this session key
is encrypted as 	𝐸1(𝑘| 𝐵 = (𝑘||𝐵)M	𝑚𝑜𝑑	𝑛 , where 𝐵 is a
preloaded bit pattern. 𝐵 is required to allow the CH to decrypt
the message successfully using Rabin’s algorithm. In
addition to the session key the node also sends its ID to the
CH. We use this cryptosystem because it is computationally
cheap for encryption but as computationally expensive as
RSA to factor the two large prime numbers, 𝑝 and 𝑞 from	𝑛.

D. Cluster Head and Key Distribution Algorithms
In this subsection, we describe two algorithms used by

CHs to generate key spaces and distribute keying information
to nodes in the cluster. The first algorithm we discuss is the
Cluster Head Algorithm illustrated below in Figure 1.

In our scheme we elect CHs using a predefined
probability threshold value. An alternative would be to elect
nodes based on their performance capabilities in the network.
If performance capabilities are measured, the CHs can be
selected based on several metrics such as computational
performance, battery life, wireless medium interfaces on the
device, number of neighboring nodes within a specific hop
distance, or transmission range.

Once elected, the CH generates a key space based on one
of the key space models previously described on Line 2. On
line 3, the CH generates a random wait time, 𝑤 less than the
preloaded maximum wait time, 𝑡<=/>. The CH then listens for
other nodes that may have also elected themselves to be the
CH for an area in the network as shown in the loop starting
on line 4. This is to reduce collisions between two nodes in
an area of the network that may be simultaneously
broadcasting an announcement that they have keying
information available and to let the first node announcing it
has keying information available to become the CH. Once the
announcement has been broadcasted the CH starts the
distribution process as illustrated below in Figure 2.

Figure 2 below describes our Key Distribution Algorithm.
On line 2, the CH announces its ID to the network to notify
nodes within 𝑇𝑇𝐿 hops that keying information is available.
After sending the announcement the CH will start a loop on
Line 3 and accepts requests from other nodes in the network
within range of its broadcast for keying information. Nodes
send requests to the CH using unicast messages. This loop
will continue to provide keying information as long as the
cluster size limit, 𝜆 − 1, has not been reached. The CH will
also save one keying information share for itself so it remains
in the cluster it has formed. When the CH receives a request
for keying information the CH selects an unused keying
information share as shown on Line 6. The CH will also mark

Figure 1. Generates Keying Information

Cluster Head Algorithm
1: function runClusterHead (𝜆,	𝑡<)
2: 𝑘𝑒𝑦𝑠	ß genKeySpace() // construct key space for𝜆	nodes,

store one for self
3: 𝑤	ß random(0 < 𝑡<) // random wait time
4: while 𝑤	 > 	0 do
5: listen for broadcasts from neighboring nodes that

have elected themselves as cluster heads
6: if BROADCAST heard
7: RequestKeyInfo() // get keying info
8: exit
9: end if

10: elapse(𝑤)
11: end while
12: KeyDistro() // Fig. 2
13: end function

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

Figure 2. Distributes Keying Information

the used keying information so that it will not provide this
information to another node in the cluster as shown on Line
7. On Line 8, the CH will send an unused keying information
to the requesting node using a unicast message. The
distribution algorithm runs until all keying information has
been used. As long as keying information remains available
the cluster may accept new nodes joining the network.

E. Cluster Joining Algorithm
In this subsection, we describe our algorithm for forming

clusters and nodes joining a cluster in the network after the
network has been established.

Figure 3 shows our Cluster Joining Algorithm. When a
node joins a cluster it requests the remaining time until the
rekeying phase, as shown on Line 3. Only the CH will
respond to this request with a broadcast, so existing nodes are
informed of the new node and the remaining time before
rekeying the cluster begins. If there is no response, then a
cluster does not exist and the node will begin the election
process to become a CH, as previously described in Figure 1
and the function exits. If there is a response from a CH and
the 𝑡5@E=/1/1V ≤ 	 𝑡>?5@A?BCD the re-election and rekeying
event will be started early and the node will join the newly
formed cluster during this phase. During the re-election
process nodes will generate a probability or benchmark score
on Line 9 and announce their score to their area in the
network. The node with the highest value will then become
the new CH for the cluster starting on Line 12. Once a node
has been elected as a CH it will start generating key spaces as
shown on Line 20. Nodes not elected will then request keying
information once a CH broadcasts an announcement as
described in the previous subsection. Nodes within range of
more than one CH will also request keying information from
each of the CHs it receives a broadcast from. This allows
nodes which are lying on the fridges of a cluster to join
multiple clusters and provide routing paths between clusters.

If the value of 𝑡5@E=/1/1V > 𝑡>?5@A?BCD then the node
joining the cluster will request the keying information from
the current CH as shown on Line 25. Security can be
improved by setting 𝑡>?5@A?BCD = 𝑡C/E/> since a new node will
force rekeying. However, if the network is expected to have
a lot of nodes moving into and out of the cluster than this may

Figure 3. Joins or forms network clusters

cause unwanted computational and communication
overhead.

Additionally, the CHs will restart the keying process once
the 𝑡C/E/>	threshold value has been met. At this time either the
node may generate new keys for their cluster or restart the
election process to see if a new CH is available. To reduce
the load on the previous CH the current CH may also be set
to not elect itself again for a period of time and a round robin
approach may be used to elect new CHs.

IV. KEY DISTRIBUTION ANALYSIS
In this section, we provide a performance analysis of our

scheme. First we re-examine the security performance of the
scheme. As shown in [10] and [11], both key space models
require at least 𝑛 nodes in a cluster to be compromised before
all of the generated keys for symmetric encryption used in the
key space can be calculated. We assert that to increase the
security of these key space models that the degree should be
at least	𝑛 ≥ 𝜆. If the number of nodes in each cluster is the
same as the degree of the polynomial or the size of the

Key Distribution Algorithm
1: function KeyDistro(𝜆, ID, keys)
2: BROADCAST(ID) // broadcast to all nodes within TTL

 hops
3: keyed ≔ 1
4: while keyed	< 𝜆 − 1 do
5: if received(RequestKeyInfo(IDk))
6: KeyingInfo ß an unused key share
7: usedKeys ß usedKeys ∪ {KeyingInfo}
8: send(ID, 𝑘(KeyingInfo)) // 𝑘 if using Rabin’s
9: keyed ≔ keyed +	1

10: end if
11: end while
12: end function

Join Cluster Algorithm
1: function joinCluster (𝑡>?5@A?BCD)
2: 𝑡5@E=/1/1V ≔ 0
3: 𝑡5@E=/1/1V ≔ RequestKeyTime () // get remaining time

of current key time from
current cluster head

4: if(𝑡5@E=/1/1V == 0)
5: runClusterHead(λ,	t^) //initialization of network
6: exit
7: end if
8: if(𝑡5@E=/1/1V <= 	 𝑡>?5@A?BCD)
9: 𝑠𝑐𝑜𝑟𝑒1@< 	ßcalcScore() // score node capabilities

(probability, cpu, storage, batt,
RSSI, node connectivity)

10: 𝑐ℎ𝑆𝑐𝑜𝑟𝑒{} ß	𝑠𝑐𝑜𝑟𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡() // Broadcast

request for cluster node scores
11: BROADCAST score
12: foreach 𝑠𝑐𝑜𝑟𝑒 in 𝑐ℎ𝑆𝑐𝑜𝑟𝑒
13: if(𝑠𝑐𝑜𝑟𝑒1@< > 𝑠𝑐𝑜𝑟𝑒)
14: 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑 ß true // elect self

as new cluster head
15: else
16: 𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑 ß false // remove

election if another node is better
17: end if
18: end foreach
19: if(𝑛𝑒𝑤𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑)
20: runClusterHead() // become cluster head and

generate keying information (Fig. 1)
21: else
22: RequestKeyInfo() // request keying

information from new cluster head
23: end if
24: else
25: RequestKeyInfo() // request keying information

from existing cluster head
26: end if
27: end function

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

matrices, this will ensure that only if all nodes in a cluster are
compromised would the key space be compromised. At this
point the attacker would already have access to all keys
within the cluster. If	𝑛 > 𝜆, then determining any other keys
generated in the future from the key space would be
impossible, which keeps the future cluster nodes secure.
Additionally, this will allow new nodes to join existing
clusters before the rekeying process to starts or until all key
shares have been distributed.

Next we consider storage requirements for nodes in the
network for storing keys for symmetric encryption. Each node
will be required to store a key for itself and any node it has
received IDs from within its transmission range. If a node has
joined 𝑘 clusters then these nodes would be required to store
at most 𝑘𝜆 keys for symmetric schemes. However, we expect
most nodes in the network to only store the nodes within their
immediate transmission range and only be connected to one
cluster at a time except for nodes along the edges of clusters
which join adjacent clusters to allow for communication
between clusters. Additionally, nodes will store keying
information for the key space. In [14], it is shown that storage
requirements for keying information are close to 𝑛 +
1 log 𝑟 in the polynomial based model and 𝑛 + 2 log 𝑟 in
the matrix model if the matrix selected for 𝐺 allows the
columns to be seeded.

Finally, we discuss the communication overhead of our
scheme. In the following equations let 𝑁 be the number of
nodes in the network, 𝐶 be the number of elected CHs and 𝜆
the number of nodes in each cluster. Below in (2) we show the
total number of CH announcement broadcast messages
transmitted by CHs in the network during the distribution
phases of the scheme. In a network consisting of 𝐶 clusters
each elected CH, 𝐸/ , sends a broadcast message to their
neighboring nodes. This announcement broadcast message is
then retransmitted by at most 𝜆 nodes in each cluster while the
𝑇𝑇𝐿 > 0.

𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑠 = 𝜆	 ⋅ 𝐸/

n

/2o

																								 2

Once the announcements from the CHs have been
transmitted to nodes within 𝑇𝑇𝐿	range of elected CHs, each
node within range joins the CH cluster. The total number of
messages needed to distribute this information is be shown
below in the (3). In order to join the cluster each node which
receives the announcement replies by sending a unicast
message requesting a keying information from the key space
generated by the CH. This requires each node, 𝑅0 , up to 𝜆
nodes in a cluster to send a unicast message back to the CH.
Each unicast message sent is routed up to 𝑇𝑇𝐿	times in order
to reach the CH. This process occurs in each of the 𝐶 clusters
in the network. Each CH then replies to up to 𝜆	nodes with a
unicast message to each of the requests for keying information
nodes.

𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 = 2𝐶 ⋅ (𝑅0 + 𝑇𝑇𝐿)
r

02o

												(3)

During the election and rekeying process each node in
each cluster broadcasts its probability or benchmark score in

order for the new CH to be selected. The total number of
messages this requires is shown in (4) below. Each node in the
network, 𝑆t , broadcasts its score value which is then
retransmitted a maximum 𝑇𝑇𝐿	times by its neighbors.

𝑆𝑐𝑜𝑟𝑒𝑠 = (𝑆t + 𝑇𝑇𝐿)
u

t2o

																									(4)

The average number of messages sent per each node in our
scheme can be calculated by (5) below which is the sum of the
previous totals divided by the number of nodes in the network,
𝑁.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑠 + 𝑆𝑐𝑜𝑟𝑒𝑠 + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠

𝑁
	(5)

Limiting the average number of messages transmitted over
the network by each node is important to increase the life
expectancy of nodes relying on battery power.

V. CONCLUSION
We devised and analyzed an efficient secure key

distribution scheme for WANETs. Our proposed scheme has
strong security against attackers attempting to discover the
shared secret keys used for symmetric encryption by being 𝑛-
collusion resistant, which requires attackers to compromise an
entire cluster of nodes before keying information can be
discovered. We also provide efficiency in our scheme in terms
of computational, storage and communication overhead in
order to increase the life expectancy of battery powered nodes
placed in the network.

Unlike existing schemes, our method does not rely on
prior knowledge of the network topology and can establish
keys for symmetric schemes to be used between nodes after
deployment. Additionally, our scheme does not require
centrally administered CAs to be used in the network to
distribute keys to nodes prior to the nodes joining the network.
Furthermore, our scheme allows all nodes to be mobile in the
network and does not require nodes to remain statically
assigned to locations in the network for handling routing and
key distribution, which may be difficult in many situations,
such as in MANETs.

In the future, we plan to empirically evaluate our scheme
by using simulations to compare our scheme with competing
existing schemes for connectivity between nodes.
Additionally, we plan to investigate adding authenticity and
integrity mechanisms into the scheme to improve the security
of the network not covered under confidentiality provided by
encrypted communication. We also plan to simulate our
scheme against these other methods while under various
attacks unique to WANETs such as Sybil, black hole, and
wormhole attacks. Finally, we plan to compare our scheme
against other methods for routing messages across the
network between mobile nodes while under normal network
conditions and while under attack.

REFERENCES

[1] "Atmel Corporation," [Online]. Available:

http://www.atmel.com/. [Accessed November 2015].

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

[2] "ARM," [Online]. Available: http://arm.com/. [Accessed
November 2015].

[3] "Arduino," [Online]. Available: http://www.arduino.cc/.
[Accessed November 2015].

[4] "Raspberry Pi," [Online]. Available:
http://www.raspberrypi.org/. [Accessed November 2015].

[5] H. Deng, R. Xu, J. Li, F. Zhang, R. Levy, and W. Lee,
"Agent-based Cooperative Anomaly Detection for Wireless
Ad Hoc Networks," in 12th International Conference on
Parallel and Distributed Systems, 2006, pp. 1-8.

[6] L. Eschenauer and V. D. Gligor, "A Key-Management
Scheme for Distributed Sensor Networks," in 9th ACM Conf.
Computer and Communications Security, Washington, DC,
2002, pp. 41-47.

[7] H. Chan, A. Perrig, and D. Song, "Random Key
Predistribution Schemes for Sensor Networks," in IEEE
Symposium on Security and Privacy, Berkeley, CA, 2003,
pp. 1-17.

[8] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney, "A
Pairwise Key Predistribution Scheme for Wireless Sensor
Networks," in 10th ACM Conf. Computer and
Communications Security, Washington, DC, 2003, pp. 42-
51.

[9] D. Liu and P. Ning, "Establishing Pairwise Keys in
Distributed Sensor Networks," in 10th ACM Conf. Computer
and Communications Security, Washington, DC, 2003, pp.
52-61.

[10] R. Blom, "An Optimal Class of Symmetric Key Generation,"
in Conference on the Theory and Applications of
Cryptographic Techniques, Paris, Fr, 1984, pp. 231-236.

[11] C. Blundo, A. D. Santis, A. Herzberg, S. Kutten, U. Vaccaro,
and M. Yung, "Perfectly-Secure Key Distribution for
Dynamic Conferences," in 12th Annual International
Cryptology Conference on Advances in Cryptology, Santa
Barbara, CA, 1992, pp. 471-486.

[12] X. Hai-tao, "A Cluster-Based Key Management Scheme for
MANET," in 3rd Int'l Workshop on Intelligent Systems and
Applications, Wuhan, China, 2011, pp. 1-4.

[13] R. PushpalLakshmi, R. Rahul, and A. Kumar, "Mobile Agent
Based Composite Key Management Scheme for MANET,"
in Int'l Conf. on Emerging Trends in Electrical and Computer
Technology, Nagercoil, India, 2011, pp. 964-969.

[14] F. Liu, X. Cheng, L. Ma, and K. Xing, "SBK: A Self-
configuring Framework for Bootstrapping Keys in Sensor
Networks," IEEE Transactions on Mobile Computing, vol. 7,
no. 7, July 2008 pp 1-11.

[15] P. Loree, K. Nygard, and X. Du, "Efficient Post-Deployment
Key Establishment Scheme for Heterogeneous Sensor
Networks," in IEEE GLOBECOM, Honolulu, HI, 2009, pp.
1-6.

[16] P. Loree, "Post-deployment Key Management in
Heterogeneous Sensor Networks," North Dakota State
University, Fargo, ND, 2010, pp. 1-63.

[17] X. Zhao, Y. Lv, T. H. Yeap, and B. Hou, "A Novel
Authentication and Key Agreement Scheme for Wireless
Mesh Networks," in IEEE 5th Int'l Joint Conf. on INC, IMS,
and IDC, 2009, pp. 471-474.

[18] A. Boukerche, Y. Ren, and S. Samarah, "A Secure Key
Management Scheme for Wireless and Mobile Ad Hoc
Networks Using Frequency-Based Approach: Proof and
Correctness," in IEEE Global Telecommunications Conf.,
2008, pp. 1-5.

[19] K. K. Chauhan and S. Tapaswi, "A Secure Key Management
System in Group Structured Mobile Ad hoc Networks," in
IEEE Int'l Conf. on Wireless Communications, Networking
and Information Security, Beijing, China, 2010, pp. 307-311.

[20] L. Lu, Z. Wang, W. Liu, and Y. Wang, "A Certificateless Key
Management Scheme in Mobile Ad Hoc Networks," in 7th
Int'l Conf. on Wireless Communications, Networking and
Mobile Computing, Wuhan, China, 2011, pp. 1-4.

[21] H. Dahshan and J. Irvine, "A Trust Based Threshold
Cryptography Key Management for Mobile Ad Hoc
Networks," in IEEE 70th Vehicular Technology Conf., 2009,
pp. 1-5.

[22] U. Sehgal, K. Kaur, and P. Kumar, "Security in Vehicular
Ad-hoc Networks," in 2nd International Conference on
Computer and Electrical Engineering, 2009, pp. 485-488.

[23] M. Rabin, "Digitalized Signatures and Public-Key Functions
as Intractable as Factorization," Cambridge, MA, 1979, pp.
1-20.

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

