
Program Optimization Strategies to Improve the

Performance of SpMV-Operations

Rudolf Berrendorf∗, Max Weierstall∗, Florian Mannuss†

∗ Computer Science Department, Bonn-Rhein-Sieg University, Sankt Augustin, Germany

e-mail: rudolf.berrendorf@h-brs.de, max.weierstall@h-brs.de
† EXPEC Advanced Research Center, Saudi Arabian Oil Company, Dhahran, Saudi Arabia

e-mail: florian.mannuss@aramco.com

Abstract—The SpMV operation – the multiplication of a sparse
matrix with a dense vector – is used in many simulations in
natural and engineering sciences as a computational kernel.
This kernel is quite performance critical as it is used, e.g., in
a linear solver many times in a simulation run. Such per-
formance critical kernels of a program may be optimized on
certain levels, ranging from using a rather coarse grained and
comfortable single compiler optimization switch down to utilizing
architecural features by explicitly using special instructions on
an assembler level. This paper discusses a selection of such
program optimization techniques in this spectrum applied to the
SpMV operation. The achievable performance gain as well as the
additional programming effort are discussed. It is shown that low
effort optimizations can improve the performance of the SpMV
operation compared to a basic implementation. But further than
that, more complex low level optimizations have a higher impact
on the performance, although changing the original program and
the readability / maintainability of a program significantly.

Keywords–Sparse Matrix Vector multiply (SpMV); Single In-
struction Multiple Data (SIMD); OpenMP, unrolling; intrinsics.

I. INTRODUCTION

Sparse matrices are widely used in many areas of natural
and engineering sciences [1], escpecially in simulations. An
often used operation on such matrices is the multiplication of
a sparse matrix with a dense vector (SpMV). This operation
is often the most time consuming operation in iterative solvers
(e.g., CG, GMRES [1]), which are the most time consuming
operations in many simulations. Therefore, much attention
has been given to optimize this operation. One point in an
optimization discussion is the choice of an appropriate storage
format for the sparse matrix [2]–[6], which depends mainly on
the given matrix stucture (e.g., high / low matrix bandwidth,
etc.) and the target architecture, e.g., multicore CPU, multipro-
cessor system, Graphics Processor Unit (GPU). Compressed
Sparse Row (CSR) [1] is a general storage format for sparse
matrices that performs quite good, especially on CPU-based
systems. But even for a fixed storage format like CSR, there are
opportunities for program optimization on different abstraction
levels.

CPUs and memory systems are optimized for specific
workloads in programs. Other than utilizing the memory
hierarchy, instruction pipelining and vector units in processors
can have a significant influence on a program’s performance.
For instruction pipelining, large basic blocks are favorable in a
program. All recent processors have also some implementation
of vector registers and related vector instructions [7] that can

significantly speed up computations that exploit this architec-
tural feature. Compilers can optimize code with large basic
blocks with much room for optimizations and by vectorizing
loops [8]–[12], as long as all data dependencies are respected
[13].

Some high level programming models, especially designed
for parallel (and therefore resource intensive) computing, have
some notations to give hints to a compiler concerning vector
operations. For example, OpenMP [14] as the de facto standard
for shared memory parallelism has got in the recent revision 4
some annotations to guide a compiler in using vector units in
a processor. But vectorizing compilers and directives to give a
compiler hints existed already before OpenMP [15].

Other than leaving every optimization to a compiler, there
are program optimization techniques known that allow to
restucture a program to optimize certain operations (that a
compiler may not detect). This restructuring of source code
can be done by an expert programmer or by a sophisticated
tool [16] [17] [10].

And, in a third way, if for example a compiler is not
able to generate fast code because for example complex index
expressions exist, a programmer may use vector intrinsics on
a rather low abstraction level to program the hardware directly
on a more or less assembler level [18]. For some high level
language like C / C++, this can be accomplished by using
compiler extensions called intrinsics that look like functions
calls in the programming language and correspond to one or
few assembler instructions.

In a summary, there are certain levels on which a time
consuming operation may be speed up. In this paper, the
question will be answered for the SpMV operation what the
programming effort is needed for an optimization and what
performance improvement one can get, if any.

The paper is structured as follows. Section II gives an
overview on related work. After that, Section III discusses
some program optimization techniques that are used for the
investigations in this paper. Section IV describes the test
environment for our evaluation. Section V shows and discusses
performance results. The paper is summarized in Section VI.

II. RELATED WORK

Compiler writers give hints in user’s guides [8] and tech-
nical notes [19] how to optimize programs and how to write
programs in a way such that a compiler can apply optimiza-
tions. Further than that, there exists optimization guides with

34Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

a detailed description of hardware features that a programmer
can use [20] [21].

Dedicated to the SpMV operation many papers were pub-
lished describing performance related program optimizations
of various types (e.g., register blocking) that were applied in
[22]–[25].

In [26], Wende discusses the use of SIMD functions
(i.e., vector intrinsics) to impove the performance on Intel
Xeon processors and Xeon Phi coprocessors [27] escpecially
for branching and conditional functions calls. He found that for
this special application scenario there are only rare situations
with a performance improvement by using vector intrinsics.
This was mostly the case if the ratio of arithmetic operations
to control logic is low.

III. PROGRAM OPTIMIZATIONS

Nowadays, processor and memory architecures are rather
complex. Many architectural optimitations have been done
in last decade’s processor architectures that may improve
the performance of programs significantly. Such architectural
improvements include multi scalarity, out-of-order execution,
pipelining and many others [7]. For all enumerated hardware
optimizations it is favorable to have large basic blocks (code
without any branches). Unfortunately, the SpMV has a rather
small loop body for many storage formats. A well-known
technique called loop unrolling [10] [11] enlarges the basic
block of a loop body.

A significant performance boost for many applications is
the use of vector registers / units that are available in almost
all recent processor architectures [28]–[30]. These vector archi-
tectures follow the well-known SIMD principle [31] that one
instruction is applied to several operands at the same time. For
a vector width of n data elements, this may result in a speedup
of up to n. Recent processors eligible in High Performance
Computing (HPC) have a vector register / unit width of up to
256 bits, corresponding 4 double precision elements, each 64
bits. Recent announcements show [32] that the vector width
will double in the near future with a nominal floating point
performance increase of a factor of two.

The enlargement of basic blocks in a loop body and the
use of vector registers can be used to speed up an SpMV
operation. There are now certain levels of abstraction on which
a programmer may influence these (and other) optimizations.

A. Compiler Flags

A simple strategy is to leave any optimization to a compiler.
A programmer may specify on a rather coarse level some
general compiler optimization level (i.e., -O2, -O3) leaving
any decisions and optimization strategies solely to the compiler
according to the specified optimization level. Specifying an
optimization level of 2 instructs many compilers to enable
many optimization techniques that have no influence on the
semantics of a program, i.e., no optimizations are applied that
may change the meaning of a program as for example using
a faster floating point artithmetic.

Additionally on a finer level, special compiler options
can be used to include certain optimization techniques or
to utilize certain architectural features. An example for that
is to allow the generation of code that utilizes the latest
additions in the instruction set. For example, the compiler

#pragma omp simd reduction(+:s)

for(int i==; i<n; i++)

s += a[i];

Figure 1. Example code for the use of an OpenMP pragma.

option -march=haswell of the GNU compiler g++ [33] al-
lows the generation of advanced instructions only available
on Haswell processors. Alternatives would be for the pre-
vious generations of Intel processors -march=ivybridge or
-march=sandybridge. The code may be no longer executable
on processors of generations previous to the one specified.
Other compilers have the same possibilities but with a dif-
ferent syntax of such an option. Without the specification of
such an architectural option the compiler generates code with
an instruction set that corresponds by default to rather old
processors to allow the compiled program to run on many
systems, even older ones.

The PGI compiler [34] offers an option to instruct the
compiler to generate vector code utilizing vectors of a specific
size. For example the option -tp=haswell -Mvect=simd:256

directs the compiler to generate code for Haswell processor,
i.e., utilizing the Advanced Vector Extensions 2 (AVX2) in-
struction extensions, and to work with vectors of up to 256
bits.

B. Language Directives

Sometimes, a compiler may not be able to recognize that
certain optimization techniques could be applied to a code
sequence. For example, this may be the case because the
compiler can not know at compile time the value of certain
variables, the alignment of variables or cannot exclude data
dependencies because of complex index expressions. But, if
a programmer can assure that for example a certain variable
is always larger than 100 the compiler could optimize this
program code. There exist program annotations for exactly
these situations to tell a compiler some additional semantic
information. Dependend on the programming language this
may be done in different ways.

An example is OpenMP [14] where in the fourth version
of this standard certain extensions were added that allow a
programmer to specify (among parallelism, which is the main
focus of OpenMP) that certain parts of a program should be
vectorized by the compiler, including hints how to do that or
assumptions that a compiler can rely on at that point of the
program.

A small example for that is the piece of code shown in
Figure 1. Here, the pragma tells the compiler to vectorize the
loop and to handle the variable s as a reduction variable with
a special treatement (this is necessary due to the loop carried
data dependence on s).

The simd directive requests to vectorize that part of a pro-
gram that is in the scope of this directive. For the simd directive
there are additional clauses beside the shown reduction clause
possible mainly assuring certain program properties. Among
them are:

• aligned specifies that the specified data objects are
aligned to a certain byte boundary.

35Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

double haddSum(__m256d tmp) {

// vecA := (x2 , x1)

const __m128d vecA = _mm256_castpd256_pd128(tmp);

// vecB := (x4 , x3)

const __m128d vecB = _mm256_extractf128_pd(tmp,1);

// vecC := (x4+x3 , x2+x1)

const __m128d vecC = _mm_hadd_pd(vecA,vecB);

// vecS := (x4+x3+x2+x1 , x4+x3+x2+x1)

const __m128d vecS = _mm_hadd_pd(vecC,vecC);

// returns x4+x3+x2+x1 as double

return mm_cvtsd_f64(vecS);

}

Figure 2. Example code for the use of compiler intrinsics.

• safelen guaranties that n consecutive iterations can
be executed in parallel / are independent.

• linear tells the compiler that the loop variable has a
linear increase.

Similar compiler directives simd (vectorize code) and
ivdep (ignore vector dependencies) outside of the OpenMP
standard are known to several compilers with a similar mean-
ing. We have seen no large differences in results for these
alternatives.

An (non-OpenMP) directive that many compilers recognize
in one or the other notation is the hint to unroll a loop [10].
This can be favorable if the loop body is rather small (as with
the SpMV operation) and therefore the instruction pipeline
runs soon out of instructions. Additionally, with a larger basic
block a compiler may have more opportunities to optimize,
e.g., to keep reused values in registers.

C. Vector Intrinsics

A compiler needs to generate special vector instructions to
utilize the vector units in a processor. Sometimes a compiler
may not be able to detect an appropriate situation because the
data dependence analysis in a compiler cannot safely exclude
any dependencies. Or a compiler generates sub-optimal code
for that situation. In such situations, a programmer may
himself “generate“ vector instructions by using so called vector
intrinsics.

Vector intrinsics [18] are available with some widely used
compilers, e.g., GNU g++ [33], Intel compiler icpc [8]. With
these intrinsics a programmer has more or less direct access
to vector instructions of the underlying hardware. But please
be aware that this functionality is on the level of assembler
intructions where one has to manage vector registers and vector
instructions directly.

The example in Figure 2 shows how to add 4 values
using vector intrinsics. __m128d and __256d are special vector
types and _mm... are function calls that correspond to vector
instructions. This small example makes it very clear that using
intrinsic functionality makes a program hard to read / under-
stand because hardware features are programmed embedded
within a high level language like C or C++.

D. How to Choose the Right Program Optimization Strategy?

This spectrum of optimization techniques shown above
has consequences for programmers. The first approach (use
a compiler switch) leaves any decision and optimization to the

compiler. This is a possibility that is quite comfortable for a
programmer and does not require any sophisticated skills from
a programmer.

The next possibility is to leave many things to the compiler
but to give additional hints to the compiler using pragmas /
directives. A compiler bases its decision concerning vector-
izability (and many other optimizations) on data dependency
information [13]. When a compiler cannot decide if a part of
a program is optimiziable / vectorizable, the opportunities that
a hardware architecture gives to dispose cannot be utilized.
But with this approach a programmer needs experience and
expert knowledge how a compiler works and what information
it may miss in certain program parts. If a programmer assures
wrong properties (e.g., safe distance of iterations) a compiler
may even generate wrong code. If a programmer uses such
directives the programming effort (additional lines of code) is
rather small.

The last option is to allow a programmmer direct access
to the functionality a hardware provides. This allows to utilize
the available funcionality in an efficient way. Performance-
aware programmers are used to such things. But this has
severe consequences. One point is that the programming level
is quite low and the resulting program is therefore hard to write
and read. Additionally, programming is now getting platform
specific, i.e., a program kernel developed and optimized for an
Intel Haswell system is not executable on / not optimized for
an older Ivy Bridge / Sandy Bridge system. This means, that
any company using such advanced features has to provide an
expert that is aware of all technological feature of hardware
generations in use and how to use them.

Comfortability to the programmer is one aspect of consid-
eration. If this would be the only aspect it is clear that the
approach would be used to leave everything to the compiler.
Many simulations in natural science run for hours, days or even
weeks. Often a large part of the runtime is executed in rather
small parts of the program, computationally intense program
kernels like the above mentioned SpMV operation. For such
really performance critical parts of a program all possibilities
are analyzed that may lead to a decrease in runtime, even on
the intrinsic level.

Therefore, the question is whether and if yes how much
can a program benefit from programming techniques? Or is an
optimizing compiler able to deliver the same (or even better)
performance?

IV. EXPERIMENTAL SETUP

To answer these questions we used the (rather small)
compute intensive SpMV program kernel. We used our own
implementation of the SpMV operation in C/C++ using the
CSR storage format [1]. The basic implementation we use in
our subsequent comparism is shown in Figure 3 (here shown
in a rather simplified and compact version).

We used four different versions (as an information in
parentheses the number of lines of code to realize that):

• normal: the unmodified version similar to the above
shown (7 lines)

• unroll: the compiler was told with a directive to unroll
the loop four times (8 lines)

• simd: the compiler was told with a directive to vector-
ize the code / to generate vector instructions (8 lines)

36Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

void SparseMatrixCSR::SpMV(Vector &v, Vector &u) {

// iterate over all rows of the matrix

for(int i=0; i<nRows; i++)

// handle all non-zero elements in a row

for(int j=rowStart[i]; j<rowStart[i+1]; j++)

u[i] += values[j] * v[columnIndex[j]];

}

Figure 3. Basic code version for the SpMV operation (simplified).

TABLE I. SYSTEMS USED.

system name SB Haswell

instruction set AVX AVX2

architecture Sandy Bridge EP Haswell EP

processor (Intel Xeon) E5-2670 E5-2680 v3

cyle time in GHz (TurboBoost) 2,6 2,5

• intrinsics: our own implementation using vector intrin-
sics (97 lines). The code contains a distinction, which
vector instruction set AVX or AVX2 should be used
and different intrinsics must be used in some parts of
the program, dependent on the instruction set.

To measure performance numbers we use systems of
different generations of Intel processors (Intel Sandy Bridge
and Haswell). Table I gives an overview of relevant sys-
tem parameters and systems names. The older Sandy Bridge
generation supports only the AVX instruction set, in newer
Haswell systems additional features are available in the AVX2
instruction set.

We used matrices as data sets with different properties that
may influence performance, e.g., the distribution of non-zero
values in a row. In total, 110 matrices were used. The matrices
are taken form the Florida Sparse Matrix collection [35] and
from the Society of Petroleum Engineers (SPE) challenge [36].

We used two compilers in recent versions:

• g++: GNU g++ vesion 5.2.0 [33]

• icpc: Intel icpc version 15.0.1 [8]

To filter accidental effects that may happen on any system
each measurement was repeated 100 times and the median was
taken as the measurement value.

V. EVALUATION

We discuss each optimization independently and summa-
rize with an overall comparism. We give statistical values
over all 110 matrices and additionally give a single absolute
value for the SPE matrix spe5Ref_a, which shows often a
similar behaviour compared to many other matrices and is used
therefore as a representative.

A. Influence of Compilers and Compiler Levels

Both compilers in use provide compiler switches to turn
on certain global optimization levels: -O0 up to -O3. The
optimization level 0 should be used for debugging only and
not for production runs. The Intel compiler provides further
an additional level -fast and the GNU compiler the option
-Ofast to additionally turn on processor specific optimizations
as well as interprocedural optimizations for the Intel compiler.
But with this option the code eventually runs no longer on
processors of previous generations while with the option -O3

TABLE II. RUNTIMES IN MILLISECONDS FOR VARIOUS COMPILER
OPTIMIZATION LEVELS FOR THE EXAMPLE MATRIX spe5Ref_a.

g++ icpc

optimization option SB Haswell SB Haswell

-O0 342 295 379 308

-O1 173 139 150 139

-O2 96 87 150 137

-O3 93 82 150 136

-(O)fast 93 82 139 83

TABLE III. EFFECT OF UNROLLING (SEE TEXT FOR EXPLANATION
OF ITEMS).

g++ icpc

SB Haswell SB Haswell

% instances better 80 72 22 14

runtime exa. matrix [ms] 90 81 153 162

minimum speedup 0.736 0.790 0.548 0.723

maximum speedup 1.129 1.700 1.293 1.111

average speedup 1.011 1.027 0.967 0.966

standard deviation 0.061 0.101 0.081 0.052

the code is still runnable on all recent systems. The default
value for g++ is no optimization, the default for icpc is level
2.

Table II shows as a representative example the results
for the matrix spe5Ref_a on the Sandy Bridge and Haswell
system. The results are transferable to the other matrices and
are therefore general statements concerning our SpMV imple-
mentation. The performance of the GNU compiler generated
code increases with each level while the performance of the
Intel compiler is more or less good and nearly the same for all
levels other than 0. The option -fast with the Intel compiler
produces (processor specific) code that is significantly faster
than the code of the other optimization levels. It should be
noted that these results are specific to this program kernel and
results may be different for other program kernels dependend
on the source code and for other/future compiler versions.

As the compiler run itself does not take any significant
amount of time for any optimization level it is recommandable
always to invoke the compiler with a high optimization level.
As there are no semantic problems with our code with level
3, we use this level in all following discussions and name it
the base case.

B. Unrolling Loops

The next optimization technique we looked at is loop
unrolling to enlarge basic blocks. This should optimize register
usage and reduce the loop overhead for small loop bodies (as
in our case). As already discussed, this can be used rather
comfortable with directives specifying before a loop that this
loop should be unrolled and giving an unroll factor. We found
out empirically that an unroll factor of 4 performed best.

Table III shows results for using unrolling. The first line
(% instances better) shows how many of the 110 matrices
in percent showed a better performance result using this
technique compared to the base case (with the same compiler).
The next row (runtime exa. matrix) gives the runtime for
the example matrix spe5Ref_a in milliseconds to be able to
compare results directly. Minimum and maximum give the
minimum / maximum speedup value compared to the base
value. For example, a value of 0.736 for the minimum speedup
means that the worst problem instance shows only 73.6 percent

37Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

TABLE IV. EFFECT OF simd DIRECTIVES (SEE TEXT ON
UNROLLING FOR EXPLANATIONS OF ITEMS).

g++ icpc

SB Haswell SB Haswell

% instances better 1 0 56 73

runtime ex. matrix [ms] 147 158 148 145

minimum speedup 0.584 0.486 0.532 0.535

maximum speedup 1.076 1.000 1.121 1.326

average speedup 0.698 0.602 0.969 1,034

standard deviation 0.095 0.100 0.100 0.147

TABLE V. EFFECT OF INTRINSICS (SEE TEXT ON UNROLLING FOR
EXPLANATIONS OF ITEMS).

g++ icpc

SB Haswell SB Haswell

% instances better 93 92 86 91

runtime ex. matrix [ms] 77 66 97 93

minimum speedup 0.805 0.631 0.565 0.622

maximum speedup 1.385 1.545 1.252 1.525

average speedup 1.153 1.184 1.093 1.237

standard deviation 0.107 0.145 0.128 1.196

of the performance of the base case. Average and standard
deviation are the average speedup and standard deviation of
the speedup over all 110 problem instances. An average of 1
and more means that the used technique performed in average
better that the base case.

The results show that for both compilers the performance
effect is more or less neglectable. The GNU compiler shows
in average a minimal improvement while the Intel compiler
shows instead a minimal performance degradation. This can
be explained because the compilers themself apply already
optimization techniques that make an explicit unrolling un-
favorable.

C. Using Vector Directives

Table IV shows results for the use of OpenMP simd direc-
tives to explicitly request a vectorization. Enabling OpenMP
vectorization with the GNU compiler results in a signif-
icant performance loss for nearly all problem instances.
This may be attributed to the fact that the support for this
OpenMP functionality is rather new in the compiler and causes
rather performance-worsening code generation compared to
the (good) optimization with the compiler level -O3 of the
base case. The Intel compiler shows in average rather similar
results compared to the base case.

D. Using Intrinsics

Table V shows results for the use of (processor specific)
intrinsics. The best absolute results were achieved for most
matrices with this version. Only with few test matrices a small
performance degradation could be seen as the matrix structure
could not take advantage out of vector processing. For the Intel
compiler there is a significant boost in performance as well.
But here it is fair to say that the Intel compiler option-fast
generates also processor specific code like with the intrinsics
and is even faster.

E. Summary

This section summarizes the results. Table VI summarizes
the absolute run times for the various optimizations on the
example matrix. Figure 4 shows the percentage of problem

TABLE VI. SUMMARY OF RUN TIMES IN MILLISECONDS FOR THE
EXAMPLE MATRIX.

g++ icpc

SB Haswell SB Haswell

-O0 342 295 379 308

-O1 173 139 150 139

-O2 96 87 150 137

-O3 93 82 150 136

-(O)fast 93 82 139 83

unrolling 90 81 153 162

simd 147 158 148 145

intrinsics 77 66 97 93

Figure 4. Percentage of instances that performed better than the base case.

instances that got a performance gain when applying an
optimization technique.

The first technique used was compiler flags. The addi-
tional effort and needed knowledge for using compiler flags
is minimal and no code change is necessary. The results
were twofold: The Intel compiler uses already optimization
techniques with lower optimization levels and has not shown
any further improvements with higher optimization levels.
Only the option -fast (producing processor specific code)
resulted in an additional performance boost. For the GNU
compiler, there was a steady performance increase with higher
optimization levels.

The unrolling technique did not show any major change
in runtime. Here, the compilers did already a good job. The
programming effort and necessary expertise to use it is quite
low.

Using the simd compiler directive to ask for vectorization
is easy to use but requires a deeper knowledge, e.g., on data de-
pendencies to avoid wrong code generation. The performance
reached with the GNU compiler on the beside the directive
unmodified code was worse compared to the base case. Using
the Intel compiler this directive has no significant influence.

To use intrinsics a deep understanding of a processor
architecture and the available instruction set is necessary.
Additionally the algorithm may be quite different to the normal
version when expressing it on an intrinsic level. The program
code is totally different to the original code and quite hard
to read and write, at least for a programmer who is not used
to intrinsics. But the overall best performance results were
reached with intrinsics.

In a nutshell, all optimizations other than simd directives
with the GNU compiler and loop unrolling with the Intel

38Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

compiler had a positive influence for most problem instances.
Using intrinsics resulted in 80% and more problem instances
for a performance improvement.

VI. CONCLUSIONS

SpMV is a time critical operation in many applications.
Optimizing this operation is a challenge. There are various
opportunities to tackle that problem on a program optimization
level, partially dependend on the compiler used.

In this paper, several optimization approaches were de-
scribed and compared to each other concerning programming
effort / required expert knowledge and achieved performance.
It was shown that using a simple compiler switch for the
highest level of optimization a compiler can often get near to
80% of the best performance reached with any other approach.
Unrolling is easy to use but did not show any significant
performance effect. Using OpenMP simd directives showed
only a small performance impact, although some problem
instances gained more performance. Using this directives with
the GNU compiler is currently not encouraged. Rewriting the
program kernel with vector intrinsics means a total rewrite of
the code, which is only acceptable for really compute intensive
and rather small program kernels. But the performance gain
can be substantially increased and this approach resulted in
the best performance for the SpMV operation.

ACKNOWLEDGEMENTS

Jan Ecker, Javed Razzaq and Simon Scholl at Bonn-Rhein-
Sieg University helped us in many discussions. We would also
like to thank the CMT team at Saudi Aramco EXPEC ARC
for their support and input. Especially we want to thank Ali
H. Dogru for making this research project possible. We would
like to thank the anonymous reviewers for their suggestions
and comments.

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM,
2003.

[2] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, “A
unified sparse matrix data format for efficient general sparse matrix-
vector multiply on modern processors with wide SIMD units,” SIAM
Journal on Scientific Computing, vol. 26, no. 5, 2014, pp. C401–423.

[3] W. Liu and B. Vinter, “CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proc. 29th Intl. Con-
ference on Supercomputing (ICS’15). ACM, 2015, pp. 339–350.

[4] K. Li, W. Yang, and K. Li, “Performance analysis and optimization for
SpMV on GPU using probalistic modeling,” IEEE Trans. Parallel and
Distributed Systems, vol. 26, no. 1, Jan. 2015, pp. 196–205.

[5] W. Liu and B. Vinter, “Speculative segmented sum for sparse
matrix-vector multiplication on heterogeneous processors,” preprint
arXiv:1504.06474v1, 2015.

[6] J. Wong, E. Kuhl, and E. Darve, “A new sparse matrix vector multiplica-
tion GPU algorithm designed for finite element problems,” Intl. Journal
for Numerical in Engineering, Jan. 2015, pp. 1–35.

[7] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach, 5th ed. Morgan Kaufmann Publishers, Inc., 2012.

[8] User and Reference Guide for the Intel C++ Compiler 15.0, https:
//software.intel.com/en-us/compiler 15.0 ug c ed., Intel Corporation,
2014, retrieved: February 2016.

[9] LLVM Project, The LLVM Compiler Infrastructure, http://llvm.org/,
retrieved: February 2016.

[10] R. Allen and K. Kennedy, Optimizing Compilers for Modern Architec-
tures. San Francisco: Morgan Kaufmann, 2002.

[11] K. D. Cooper and L. Torczon, Engineering a Compiler, 2nd ed.
Burlington, MA: Morgan Kaufmann, 2012.

[12] S. S. Muchnick, Advanced Compiler Design and Implementation. San
Francisco: Morgan Kaufmann, 1997.

[13] U. Banerjee, “An introduction to a formal theory of dependence
analysis,” The Journal of Supercomputing, vol. 2, 1988, pp. 133–149.

[14] OpenMP Application Program Interface, 4th ed., OpenMP Architecture
Review Board, http://www.openmp.org/, Nov. 2015, retrieved: February
2016.

[15] Cray Research Inc., CF90 Commands and Directives Reference Manual,
1995, sR-3901 2.0.

[16] R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, and D. Padua, “Re-
structuring Fortran programs for Cedar,” Concurrency - Practice and
Experience, vol. 5, no. 7, Oct. 1993, pp. 553–573.

[17] K. A. Tomko and S. G. Abraham, “Data and program restructuring of ir-
regular applications for cache-coherent multiprocessors,” in Proc. ACM
Int’l Conf. Supercomputing, Jul. 1994, pp. 214–225.

[18] Intel Intrinsics Guide, https://software.intel.com/sites/landingpage/
IntrinsicsGuide/ ed., Intel, 2015, retrieved: February 2016.

[19] M. Corden, Requirements for Vectorizable Loops, Intel, https://software.
intel.com/en-us/articles/requirements-for-vectorizable-loops/, 2012, re-
trieved: February 2016.

[20] Intel R© 64 and IA-32 Architectures Optimiza-
tion Reference Manual, Intel, http://www.intel.
com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html, Sep. 2014, retrieved:
February 2016.

[21] Intel R© 64 and IA-32 Architectures Software Developer’s
Manual. Volume 1: Basic Architecture, Intel, http://www.
intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf, Sep.
2014, retrieved: February 2016.

[22] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Understanding the performance of sparse matrix-vector multiplica-
tion,” in Proc. 16th Euromicro Intl. Conference on Parallel, Distributed
and Network-based Processing (PDP’08), 2008, pp. 283–292.

[23] E. Saule, K. Kaya, and U. V. Catalyrek, “Performance evaluation of
sparse matrix multiplication kernels on Intel Xeon Phi,” in Proc. Parallel
Processing and Applied Mathematics (PPAM 2013), 2013, pp. 559–570.

[24] R. W. Vuduc, “Automatic performance tuning of sparse matrix kernels,”
Ph.D. dissertation, University of California, Berkeley, 2003.

[25] R. Nishtala, R. W. Vuduc, J. W. Demmel, and K. A. Yelick, “Perfor-
mance modeling and analysis of cache blocking in sparse matrix vector
multiply,” University of California at Berkeley, EECS Department, Tech.
Rep. UCB/CSD-04-1335, 2004.

[26] F. Wende, “SIMD enabled functions on Intel Xeon Phi CPU and Intel
Xeon Phi coprocessor,” Konrad-Zuse Zentrum für Informationstechnik
Berlin, Tech. Rep. ZIB-Report 15-17, Feb. 2015.

[27] G. Chrysos, Intel R© Xeon PhiTM Coprocessor – The
Architecture, https://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-codename-knights-corner, 2012, retrieved:
February 2016.

[28] Intel, Intel R© 64 and IA-32 Architectures Optimization Reference Man-
ual, 2014.

[29] AMD64 Architecture Programmers Manual. Advanced Micro Devices,
2013, vol. 3: General-Purpose and System Instructions.

[30] ARM, ARM v8 Architecture Reference Manual, 2010.

[31] M. Flynn, “Some computer organizations and their effectiveness,” IEEE
Trans. Computers, vol. C-21, 1972, pp. 948–960.

[32] Skylake (microarchitecture), Wikipedia, http://en.wikipedia.org/wiki/
Skylake (microarchitecture), retrieved: February 2016.

[33] GNU GCC, “GCC, the GNU Compiler Collection,” retrieved: February
2016. [Online]. Available: https://gcc.gnu.org/

[34] PGI Compilers and Tools, https://www.pgroup.com/, retrieved: February
2016.

[35] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, Nov. 2010, pp.
1:1–1:25.

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

[36] SPE Comparative Solution Project, Society of Petroleum Engineers,
http://www.spe.org/web/csp/.

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-461-9

FUTURE COMPUTING 2016 : The Eighth International Conference on Future Computational Technologies and Applications

