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Abstract—In the recent past, several fuzzy extensions of the
popular pure logic language Prolog have been designed in order
to incorporate on its core new expressive resources for dealing
with uncertainty in a natural way. Following this trail, during the
last decade we have developed our Fuzzy LOgic Programming
Environment for Research (FLOPER) for providing a practical
support to programs coded with an interesting flexible language
emerged into the Fuzzy Logic Programming arena. As an exam-
ple, our system has recently served us for developing a real-world
application devoted to the flexible management of eXtensible
Markup Language (XML) documents by means of a fuzzy
variant of the popular XPath language. Nowadays, FLOPER is
useful on computer platforms for compiling (to standard Prolog
code), executing and debugging (by drawing execution trees)
fuzzy programs, and it is ready for being extended in the near
future with powerful transformation and optimization techniques
designed in our research group during the last five years. In
order to increase the portability of the system, in this paper,
we initiate a research path devoted to accommodate its core on
Android platforms. Nowadays, the environment accepts lattices
modeling truth-degrees beyond the simpler crisp case {true; false}
together with a wide range of user-defined fuzzy connectives for
manipulating such truth degree. Moreover, the tool is able to
manage fuzzy program rules whose syntax is very close to the one
of Prolog clauses but admitting on their bodies elements coming
from the lattice of truth degrees. Executing fuzzy programs into
an Android environment is now possible after using our tool for
compiling the fuzzy code to standard Prolog clauses and then
using any one of the currently available Prolog interpreters for
Android systems.
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I. INTRODUCTION

Fuzzy logic programming is the area of computing intended
to introduce fuzzy logic [1] into logic programming [2], i.e.,
to formally address the vagueness and imprecision found in
human reasoning. The DEC-Tau research group of the Uni-
versity of Castilla-La Mancha is immersed on this topic since
2006, when the first prototype of FLOPER was developed
(see [3], [4], and [5]). FLOPER is able to interpret a very
general fuzzy logic language called Fuzzy Aggregators and
Similarity into a Logic Language (FASILL), as described in
[6] and [7]. FLOPER has been enterely developed using the
Prolog language (see Figure 1), which it is a natural basis
for supporting fuzzy logic programming. Figure 2 shows an
screenshot of the graphical interface of FLOPER. We wish
to remark here that, as illustrated in Figure 3, the system has
served us for developing the so called FuzzyXPath language
[14] (both the interpreter and the debugger associated to this
real-world application can be freely downloaded an even tested
on-line via the web page presented in [15]).

The FLOPER tool was originally thought to be executed
in the environment of a personal computer or an equivalent
machine. However, as time goes on mobile devices have spread
and made computation ubiquitous. Our objective now is to
update FLOPER to be present in those devices.

In this paper, we adapt fuzzy logic programming to mobile
devices (smartphones, tablets, etc.), by presenting a version
of the experimental prototype of FLOPER for the Android
operating system. The objectives of this work include: 1)
to make known logic programming to an increasing number
of people, and 2) to ease the development of fuzzy logic
programs.

There is no standard fuzzy logic programming language.
Furthermore, there are two main trends (not necessarily op-
posing) to fuzzify logic programming (and, in particular, the
standard logic programming language, Prolog):

1) One family, that includes languages like Likeness in
Logic (LIKELOG) [8], replaces the syntactic unifica-
tion mechanism by some fuzzy unification algorithm.
This unification algorithm can be based on different
theoretical frameworks, of which one of the most
successful is the use of similarity relations. In this
family of languages, resolution remains basically
unaltered, while unification is modified to consider
that two different symbols (both predicates or both
functions of the same arity) are “equal” at some
degree defined by the established similarity relation.
In this framework, programs are accompanied by a
definition of a similarity relation, that may be in the
form of a set of similarity equations, as is the case
of BOUSI∼PROLOG [9], developed in the DEC-Tau
group.

Figure 1. Lattice of truth degrees modeled in Prolog for being used by the
FLOPER environment.
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Figure 2. When installed on a computer, programmers can comfortably interact with the FLOPER system thanks to its improved graphical interface.

SLD-Resolution (“Selective Linear Definite clause
resolution”) + Fuzzy (similarity) unification

2) In the other approach, programs are fuzzy subsets
of formulae, where the membership degree of a
formula to the subset is called its truth degree, and
represents the confident the program has on that rule.
Truth degrees are propagated through the modified
resolution principle, while the unification mechanism
remains unaltered. One example of these languages
is Multi-Adjoint Logic Programming (MALP) [10].

Fuzzy SLD-Resolution + (syntactic) unification
3) The last two approaches have been amalgamated in

the form of the FASILL language, which modi-
fies both the resolution principle and the unification
mechanism of the original languages without intro-
ducing important changes on the final syntax.

Fuzzy SLD-Resolution + Fuzzy (similarity)
unification

In this paper, we focus on the implementation of a program-
ming environment based on fuzzy logic over Android, with the
aims of compiling, visualizing, editing, creating and saving
fuzzy logic programs in FASILL and their associated lattices

of truth degrees. This environment has been implemented
as an Android application using the Java language and the
Eclipse Integrated Development Environment (IDE) in its
kepler version.

The syntax of FASILL is similar to Prolog in the way
functions and predicates are built, but it includes the advances
of the multi-adjoint logic. Each program rule is accompanied
by a truth degree that is an element of the associated lattice.
Rules have an atomic head and a body, which is built up
from atoms and truth degrees linked by connectives. Those
connectives can be conjunctions, disjunctions or hybrid oper-
ators called aggregators, and can be defined by the logics of
Gödel, Łukasiewicz, Product, or any other logic defined by
the programmer. Furthermore, notice that all that is required
for truth degrees is that belong to the multi-adjoint lattice
associated to the program, so this framework goes beyond the
[0, 1] domain that limits the majority of fuzzy logic languages
(see again Figure 1).

In this work, we provide a solution based on three main
classes: a lexical analyzer for the new language containing
the definition of its lexical categories; a syntactic analyzer that
parses the grammar of FASILL; and a translator that produces
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Figure 3. An on-line session with the FuzzyXPath debugger developed with FLOPER.

an object program from a source program following the rules
that we detail in the next sections. As part of our goal, our
platform have to report possible errors in the source program
detected in the lexical or syntactic analysis. Those reports must
clarify where in the code is the error, its type and also a
possible cause of it.

The structure of this paper is as follows. Section II resumes
the main elements involved in the construction of a compiler.
Next, Section III details the Android-based implementation of
our tool. Finally, in Section IV, we conclude by also proposing
several lines for future research.

II. LANGUAGE PROCESSORS

A compiler is a software tool such that one of its main
input data is a language, as explained in [11] and [12]. There
are many different kinds of language processors, including
compilers and interpreters. Compilers are programs which
can read a program written in a language (called the source
language) to translate it to an equivalent program in another
language (called the target language). The source program is
usually a high-level language and the target language is usually
a machine language.

Unlike a compiler, an interpreter is a language processor
which executes a source program to return the result of that
execution [11]. According to Louden [12] and Scott [13], the
target machine language program that produces a compiler is
usually faster than an interpreter at the moment of assigning
the inputs to the outputs, because a decision made by compile
time is a decision that does not need to be made at run time.
However, an interpreter may provide better diagnoses because
it executes the source program instruction by instruction.

Both of them, compilers and interpreters, are really com-
plex tools. They may have around ten thousand lines of code
[12]. Luckily, in spite of this complexity, as the knowledge
and the tools to structure them are known, the complexity is
reduced. The tasks of these kind of language processors are
explained below (see Figure 4):

1) Analysis: the analysis divides the program into com-
ponents and imposes a grammatical structure on
them. Then, it uses this structure to create an inter-
mediate representation of the source program. If the
analysis detects that the source program is malformed
in terms of syntax or semantics, then it must provide
messages for the user to correct it.

a) Scannings: the scanner, or lexical analyzer,
reads the stream of characters that make up
the source program and join them together
to produce tokens (each token is a charac-
ter string representing a unit of information
in the source program). These tokens are
classified into categories, which are defined
using regular expressions. Typical examples
of categories are reserved words, identifiers,
special symbols, constants, etc. When the
lexical analyzer finishes its analysis, it sends
those tokens to the parser in order to help it
to analyze the structure of the program.

b) Parsing: the parser, or syntax analyzer, uses
the tokens and grammatical rules of a
context-free grammar in order to build an in-
termediate representation in a tree which de-
scribes the grammatical structure of the flow
of tokens. The most common representation
is the Abstract Syntax Tree (AST), wherein
each internal node represents an operation
and its descendants represent the arguments
of the operation. An example of the abstract
syntax tree is seen in Figure 5.

c) Semantic analysis: the semantic analyzer
uses the syntax tree to check the semantic
consistency of the program. It checks that
semantic language restrictions are met. Some
examples may be unable to add a character
and an integer, or not to use a variable that
has not been previously declared.
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Figure 4. Translation stages.

2) Synthesis (compilers): it builds the desired target
program using the intermediate representation.

3) Execution (interpreters): it executes the program us-
ing the intermediate representation and returns the
results.

The aim of compilers is to obtain a translation from a
source language to an object language, while the aim of
interpreters consists only in the program execution and getting
the outcomes (within this investigation a compiler has been
developed, but the functions of an interpreter will be added in
the following versions).

Figure 5. Abstract syntax tree.

III. IMPLEMENTATION BASED ON ANDROID

In this section, we detail how this compiler was developed,
explaining the implementation of the lexical analyzer and the
parser in detail. It has not been necessary to implement a
semantic analyzer because the grammar of this compiler only
admits Horn clauses. But first, we briefly explain the main
reasons why Android has been selected as the operating system
and in particular Android tablets for the implementation of this
compiler.

The first reason is that many people use this operating
system in their daily life; it is also really easy to get a device
that works with Android. In addition, tablets have been selected
as the target device because of their advantages. A tablet offers
better mobility than other devices such as computer towers
and laptops. Also, tablets have a better display than mobiles,

TABLE I. SPECIFICATION OF LEXICAL CATEGORIES.

Lexical category Pattern Attributes
Identifier [a-z][_a-zA-Z0-9]* Lexeme, line and column
Variable [A-Z][_a-zA-Z0-9]* Lexeme, line and column
Number [0-9]+(.[0-9]+)? Lexeme, line and column

Comment %(.)* Lexeme, line and column
Connective [@&|] Lexeme, line and column
LPAREN [(] Line and column
RPAREN [)] Line and column
WHITE [ \t\r] Line and column

NL [\n] Line and column
COMMA [,] Line and column
PERIOD [.] Line and column
FROM (<-) Line and column

which could improve the interactions between the user and the
application in order to make them more comfortable. Finally,
tablets are more powerful than mobiles, which is very useful
for a programming environment.

Before proceeding with the implementation of the compiler
in Android, it must be clarified that in this version of the
compiler is the syntax analyzer which requests the tokens to
the lexical analyzer when it needs them. This is known as a
translation guided by the syntax.

A. Analysis

As it was mentioned in the section of Language Processors,
this is the stage in which the AST corresponding to the source
program is obtained.

Below we detail the development of the lexical analyzer
and the parser, showing the lexical categories and the rules
which have been implemented to the language of the compiler.

1) Lexical Analysis: As it was mentioned before, in this
stage the input is split up in tokens to be clasified in lexical
categories later. Also, these tokens contain attributes which
could be useful to following stages.

Table I shows the different lexical categories which have
the compiler. It is easy to see patterns or regular expressions,
which are used to define them, besides the attributes of
the categories. Line and column attributes are used to give
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Figure 6. DDM associated to the language of the compiler.

information about the position of an error, either a lexical error
or a syntax error, while the lexeme attribute is used to store
the value of a token, which is used in the stage of synthesis.

To be able to perform the lexical analysis, a Deterministic
Discriminating Machine (DDM) has been built. It splits the
input up into individual characters and acts on them repeatedly,
starting each time on a different point, but it always starts in
its initial state.

The DDM follows a greedy strategy. This means that it
searches the biggest token that belongs to a lexical category
on the portion of input that has not been analyzed yet. Thus,
splitting the input exactly matches that expected.

This DDM has been developed by Java code using the if-
else sentence to compare patterns with the current character of
the input. Below, the DDM associated to the language of the
compiler will be shown in Figure 6.

2) Parsing: As it was commented before, the syntax
analyzer is in charge of discovering the structures of the
code using context-free grammars and the tokens which are
sent from the lexical analyzer. These grammars have enough
expressive power to represent most of the constructs that are

in the compiler. Also, they are easy to develop and lead to a
very efficient analysis.

From tokens and the context-free grammar defined for
this compiler, the syntax analyzer builds a parse tree, which
contains information about how to make the input using
grammatical rules.

The syntax analysis is a descendent process. This means
that the tree is built from the root to the leaves. This process
is needed to predict what the next tokens are going to be; this
is why it is also known as predictive analysis.

Below is shown the grammar used to develop this compiler:
• 〈Program〉 = 〈Line〉 (NL 〈Line〉)*: programs are

composed by one or more lines separated by new lines.
• 〈Line〉 = 〈Rule〉|〈Goal〉|COMMENT: lines can be

rules, goals or comments. Unlike other compilers, in
this compiler comments are considered in the analysis
because it has been considered important that the
comments will appear in the translated program.

• 〈Goal〉 = GOAL 〈Body〉 PERIOD: despite of the ap-
plication not having the functionality of an interpreter,
it include the rules necessary to analyze goals.
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Figure 7. Screenshot of the “LatticeMaker” tool assisting the graphical design of a lattice of truth degrees.

• 〈Rule〉 = 〈Head〉 (FROM 〈BODY 〉)? PERIOD: rules
can be FASILL facts (rules without a body) or rules
with a head and a body.

• 〈Head〉 = 〈Atom〉: a head is an atom.
• 〈Atom〉 = 〈Predicate〉 (LPAREN 〈Terms〉

RPAREN)?: an atom is a predicate which could
contain a term list.

• 〈Terms〉 = 〈Term〉 (COMMA 〈Term〉)*: a term list
consist on terms separated by commas.

• 〈Term〉 = IDENTIFIER (LPAREN 〈Terms〉
RPAREN)?|VARIABLE: a term can be a function
(an identifier which in this case would be a function
symbol followed of a term list), a variable or a
constant (a single identifier).

• 〈Body〉 = 〈Atom〉 | 〈TruthDegree〉 | 〈Connective〉
LPAREN 〈ArgumentList〉 RPAREN: a body can
be an atom, a truth degree or a connective with an
argument list.

• 〈TruthDegree〉 = IDENTIFIER | NUMBER: a truth
degree can be an identifier or a number, depending on
how the lattice has been defined.

• 〈Connective〉 = CONNECTIVE IDENTIFIER?: con-
nectives consist on a connective symbol (@, & o |)
which can be followed of an identifier tag.

• 〈ArgumentList〉 = 〈Body〉 (COMMA 〈Body〉)*: an
argument list consist on bodies separated by commas.

B. Synthesis

In this stage, the program with the FASILL syntax is
translated to Prolog. A translation is generated from the tree
made in the stage of analysis. These are the rules that have
been used to generate the translation:

• Atoms: every atom written in FASILL is translated
to Prolog by adding a truth degree. In some cases it
will be a variable TVX (where X corresponds to an
index depending on the position of the atom) which
will contain the value and in other cases it will be the
value.

q(X, Y). ≡ q(X, Y, TV0).
• Facts: these atoms will be translated to Prolog by

adding the maximum truth degree of the lattice, as
a fact is always true in fuzzy logic.

q(X, Y). ≡ q(X, Y, 1).
• Rules with body: there are two different cases.

◦ The body is a truth degree: this case is very
simple to treat, because it is translated as a
Prolog fact with the truth degree added.

q(X, Y) <- 0.6. ≡ q(X, Y, 0.6).
◦ The body consists on a connective with argu-

ments: in this case atoms will be translated in
order, following the steps described above. The
translation of the connectives consists on an
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atom whose parameters are the variables of the
truth degrees of the atoms which it contained,
added to its own truth variable.
q(X, Y) <- &prod(0.6,p(X)). ≡ q(X, Y, TV0)

:- p(X,TV1), and_prod(0.6,TV1,TV0).

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have described the first prototype of
FLOPER for Android, which tries to facilitate the access
to fuzzy logic programming to the people.

Our application is still in an early stage of development and
can be improved in several ways, that will constitute our focus
of attention. We plan to implement the similarity management
present in the personal-computer version of FLOPER, as
well as an interpreter able to evaluate program goals. Fur-
thermore, we intend to introduce a mechanism to allow the
graphical design of lattices, which would greatly facilitate the
creation and visualization of truth degree lattices (in Figure 7
we show a preliminary tool that we have recently developed
in this sense for computers [16]).

Other possibilities concern system usability. We intend to
improve the error detection system in both the lexical and
syntactic levels, so as to provide more information related to
errors. Also, since smartphone and tablet keyboards are neither
easy nor comfortable to use, we intend to provide direct access
to the most commonly used symbols in FASILL programs,
like “<-”, “.”, “(“, “)”, etc. In this sense, we also plan to
introduce word completion for identifiers and variables in order
to gain ease of use.
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