

Chemistry-inspired, Context-Aware, and Autonomic Management System for
Networked Objects

Mahmoud ElGammal and Mohamed Eltoweissy
Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg, Virginia, USA
{gammal,toweissy}@vt.edu

Abstract—We present a new method for network
configuration and management in pervasive computing systems
inspired by the Chemical Affinity theory. We coined our
approach C2A2: Chemistry-inspired, Context-Aware, and
Autonomic management system for networked objects. The
hypothesis behind C2A2 is that by paralleling the model of
interaction that takes place between atoms during a chemical
reaction, a form of collective intelligence emerges among system
components enabling them to achieve a common global objective
while relying primarily on preferences expressed at the individual
level. In C2A2, both physical and logical entities in the network are
modeled as atoms with varying levels of affinity toward each
other. Network reconfiguration is realized by breaking existing
bonds between atoms and establishing new ones based on inter-
atom affinities, which change continuously in response to context
dynamics. Context is seen as having either a catalytic or inhibiting
effect on reactions and is used to guide bond creation in favor of
reactions that are most suitable to the situation at hand. Bonds
are established by exchanging messages between atoms using a
protocol that leverages the Affinity Propagation algorithm, which
is used in C2A2 as a reaction execution engine. Finally, we use
simulation to evaluate the performance of C2A2 in clustering and
task assignment in wireless sensor networks.

Keywords-affinity propagation; bio-inspired computing;
chemical affinity; context awareness; Internet-of-Things; networked
objects; pervasive computing.

I. INTRODUCTION
In this paper we propose a new approach to network

configuration and management in pervasive computing
systems inspired by the Chemical Affinity theory, which was
the key concept in the development of the idea of chemical
equilibrium. The hypothesis behind our work is that by
paralleling the model of interaction that takes place among
atoms during a chemical reaction, we enable a form of
collective intelligence to emerge among nodes, enabling them
to achieve a common global objective while relying primarily
on local decisions.

The objective of our work is to enable effective multi-
mission Smart Cyber-Physical Spaces (CPSs) that are context-
aware, adaptable, autonomic, and efficient. This would
eventually allow for self-managing CPSs capable of hosting
multiple applications operating in different contexts with
competing demands, whereby for each context the system
optimizes its different parameters to the situation at hand. We
have coined our system C2A2 (short for Chemistry-inspired,
Context-Aware, and Autonomic management system for
networked objects). In C2A2, context-awareness goes beyond
affecting the operational state of the system to guiding its self–
management, configuration, and optimization. Chemical

Affinity and Affinity Propagation [3] –inspired techniques for
self-management make the ability to serve multiple concurrent
goals efficiently an intrinsic property of the network – one that
doesn’t require special handling.

The motivation behind our work stems from the observation
that a certain degree of congruence exists between the
structure and interaction dynamics in a pervasive computing
system and their analogues in several natural ecologies.
Adding to that the possibility of modeling ecology dynamics
using chemical reactions – which, as pointed out in [31], has
been proven in [9] and [10] – this motivated us to explore the
possibility of using the concept of chemical affinity to model
different interaction patterns that take place in a pervasive
computing system. The heterogeneous nature and rapidly
changing structure of networks that underlie future pervasive
computing environments require individual system
components to posses a high degree of autonomy and
adaptability. We believe that by incorporating the concepts of
chemical affinity, affinity profiles, and affinity propagation as
outlined in the remainder of this document, we can achieve a
system that possesses such qualities. The notion of chemical
affinity emphasizes the individuality of each system
component, allowing it to freely express the services it can
offer to the rest of the system, as well as what it needs to
consume from other components in order for it to function
properly. This emphasis on individuality is essential in a
ubiquitous environment where the relationship between
different actors in the system is often based on a supply and
demand model. Moreover, the flexibility provided by allowing
each entity in the system to dynamically vary its affinities
toward other entities allows for fine-grained adaptation and
provides a means for subsuming context dynamics into system
operation. Finally, the utilization of affinity propagation
permits the system to explore different solutions concurrently
in the search space of any given problem, allowing for a sort of
collective intelligence to emerge as individual entities take
local decisions that serve high-level objectives.

The contributions of this work lie in the utilization of the
following techniques in order to realize the aforementioned
system characteristics:
• Chemical affinity –inspired collective intelligence: we

introduce the notion of perceiving a CPS as a dynamic
chemical solution and utilize the concept of chemical
affinity to model the interactions between its components.
Each node in C2A2 is governed by a mutable affinity profile,
which determines its affinity to other entities in the system,
such as events, tasks, users, or other nodes. Affinity profiles
allow nodes to take individual decisions that ultimately
serve a global system objective, and they serve to provide a

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

flexible interconnection framework, which plays a central
role in realizing self-organization.

• Affinity propagation: we reutilize the Affinity Propagation
clustering algorithm [3] as a reaction execution engine,
which we then use for executing different network
configuration and management tasks. Affinity Propagation
is a clustering algorithm that relies on exchanging messages
between data points to compute pair-wise similarities, which
are then used to recursively combine similar points together.
The algorithm need not be initialized with exemplar points,
which is advantageous in dynamic environments where new
resources might join or leave the system at any time.
The remainder of this paper is organized as follows. Section

II provides some background on the chemical affinity theory
and presents an overview of the related work in literature.
Section III discusses the C2A2 system. Section IV presents a
number of case studies and an experimental evaluation of the
system performance. Finally, Section V concludes the paper
and discusses future work.

II. BACKGROUND AND RELATED WORK
A common feature among most – if not all – natural

computing models that draw their inspiration from the
chemical reaction metaphor, is that the system state is
represented as a fluid in which reagents of different types
move freely and interact with each other according to
predefined reaction rules. Developing concrete applications
based on this concept requires mature models of computation
that can be used to encode real-life problems using the
chemical formalism and describe programs to solve them, as
well as runtime systems that can actually execute these
programs. The former field of study has seen significant
research activity, ushered by the Γ language by Banatre et al
[18] and continued through various other works such as the
Chemical Abstract Machine by Berry et al [1], the Molecular
Dynamics model by Bergstra et al [19], Membrane Computing
(P Systems) by Păun [2], and more recently in the Biochemical
Tuple Spaces model by Viroli et al [20]. Some of these works
contributed incremental improvements over previous models
while others offered entirely new approaches, but all have
served to present the chemical metaphor as a mature and viable
option for modeling computational processes, especially for
applications where concurrency and self-organization are two
necessary characteristics. However, despite the progress on
this front, not as much attention has been given to the runtime
systems on which chemical computing models can be executed
[21].

The earliest runtime system for a chemical machine is
perhaps the one described in [18], where an implementation of
the Γ language on a massively parallel machine (aka the Γ-
machine) is proposed. In order to evaluate a Γ program, the
runtime system has to perform two tasks: (a) search for
reagents that satisfy reaction conditions (in other words,
determine which reactions to fire), and (b) applying the actions
associated with fired reactions on the system. It can easily be
shown that a roughly similar breakdown of tasks would also
apply to any other runtime, not just the Γ-machine. The first
task requires solving an NP-hard optimization problem, and
with C2A2, we attempt to put forward a practical, efficient, and
scalable solution to this problem.

Existing runtime systems employ different approaches to
address this problem. One approach can be described as the
search-and-match approach, and it usually relies on some data
structure that stores information about reagents and reaction
rules where a search algorithm is then used to find reagents
that satisfy the left-hand side conditions of any given reaction.
The implementation proposed for the Γ-machine in [18] falls
under this category. However, it can be considered more of a
proof of concept as it assumes a number of processors equal to
the number of reagents, which would be faced by strict
scalability limits in reality. Additionally, it only considers one
form of reactions (more specifically, reactions that take exactly
two input values and produce two output values), which would
impose further constraints on the practicality of this approach.
More efficient methods belonging to this category have also
been proposed, such as The Chemical Machine by Rajcsányi et
al [22], which relies on the more sophisticated RETE pattern-
matching algorithm [23].

Another approach that is mainly used for simulation but is
also used in some runtime systems is the computational
chemistry approach. Methods belonging to this category rely
on algorithms that have long been used by theoretical chemists
to solve many quantitative chemical problems using simulation
with acceptable accuracy. Several algorithms have been
developed under this category and which have been improving
in efficiency over time, such as Gillespie’s First Reaction
Method [24], the Next Reaction Method by Gibson et al [25],
Slepoy et al’s constant-time Monte Carlo algorithm for
simulating biochemical reaction networks [26], ALCHEMIST
[27] and others. These methods offer a statistically correct
depiction of the evolution of species concentration in a
chemical solution over time, which is necessary in applications
that rely on accurate simulation of the laws of chemical
kinetics.

These two approaches have different points of strength and
weakness. The search-and-match approach can be used to
model the behavior of a self-organizing system in terms of
microscopic interactions among its lowest-level components,
which makes it a more versatile tool for modeling a wide range
of applications. On the downside, it offers limited control on
the macroscopic behavior of the whole system [28]. The
computational chemistry approach on the other hand offers
greater control over the macroscopic behavior of the system,
which allows for better overall stability and predictability, but
only if the target application lends itself easily to this
approach, such as the case studies given in [27, 29, 30, and 28].
With C2A2, we aim to combine some of the advantages of
these two approaches.

III. THE C2A2 SYSTEM
Before we’re able to utilize the chemical metaphor in our

target domain, we must first map some key elements that
would allow us to mirror the more complex operations that
require interaction and cooperation among such elements. At
the lowest level, the most basic building block of interest to us
is the atom, which is paralleled by an individual entity in the
modeled system (e.g. network node, event, user, etc.). Atoms
from different elements possess distinct qualities, resulting in
different affinities toward atoms from other substances. When
an atom combines with other atoms, either from the same or

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

different substance, a molecule is formed, which represents a
higher-order structure. The counterpart in the network would
be a group of cooperating nodes that are structurally less
attached to the rest of the network – for instance, a cluster
within a clustered network, or a group of nodes assigned to a
particular task. A molecule can be defined as a specific
configuration of bonds among atoms of particular elements. In
the network, such bonds are paralleled by network
connections, where connections between nodes belonging to
the same cluster (intra-cluster) mirror the intra-molecular
forces holding a molecule together, and connections among
different clusters (inter-cluster) would be similar to the weaker
inter-molecular forces that exist between different molecules.

The objective of the network is to restructure itself by
optimizing bond selection between nodes in order to better
serve the tasks presented to it. The network is described as
stable if no such bonds are in the process of being formed. By
establishing all necessary bonds, the node groups (molecules)
required to serve all present tasks are constructed, which
parallels the state of chemical equilibrium. An important
realization regarding the state of chemical stability, or
equilibrium, is that despite the apparent steadiness of the
system, the potential for dissolution and thereby the formation
of new bonds between different reactants is always present.
This possibility emanates from the fact that the state of
stability is in reality the result of a balance between
antagonistic forces that never cease to exist as long as the
reactants themselves exist. Whenever a change is introduced in
the system – as in the addition or removal of a reactant or a
change in system conditions – existing affinity forces become
unsettled and they compete again until equilibrium is gradually
regained, possibly resulting in new products being formed.
This latent potential, even under a stable or steady state,
provides the system with a high degree of dynamism in the
face of change.

A. Abstract System View
We now present an abstract view of the system we propose.

The system is seen as a pool of networked resources with
different roles, capabilities, and other attributes of different
degrees of relevance according to hosted applications – such as
function, geographic location, resource levels, and so forth.
Throughout the lifetime of the system, it is presented with
events that can be categorized into three classes: application
events, system events, and circumstantial events. An example
for application events is user queries, while an example for
system events is change in resource levels, and an example for
circumstantial events is any change in the conditions within
which the system operates. The system is programmed to
respond to each event by executing a set of tasks. In order to
do that, a group of resources with appropriate capabilities must
be selected and assigned to each task. This process involves
optimizing resource selection, configuring selected resources,
and reorganizing the pool of resources by establishing the
required connections among its members.

B. C2A2 Abstraction Domains
One of the fundamental challenges that manifest themselves

when embarking on the task of designing a pervasive
computing system is the heterogeneity of its elements.

Ubiquity is a highly desirable feature in all but the most
narrowly scoped of such systems, and this immediately entails
the involvement of a host of highly diverse real-life entities.
Such entities play different roles in the system in terms of
whether they produce or consume information, the type of
information they produce or consume, the tasks they partake
during information processing, and the depth of their impact
on how the system is configured and the selection of its short-
term objectives. Accordingly, this implies that such entities
would possess extremely heterogeneous and non-normalized
characteristics, and consequently interaction models. It is then
only imperative that an appropriate abstraction tool be utilized
so as to normalize and homogenize such diverse elements of
the system for it to be able to deal with them uniformly and
efficiently. As illustrated in Fig 1, C2A2 can be perceived at
three levels of abstraction, or as having parallel manifestations
in three different domains, which are discussed below.

1) The Physical Domain
In the first – and lowest – level, lies the physical domain,

which encompasses all the elements of the system in their real-
life representation. These are heterogeneous physical and
logical entities that are either among the system stakeholders
or are necessary for its operation. The physical entities can be
categorized into active and passive ones. Active entities are
those that participate in imposing the (short-term) functional
objectives of the system, in addition to elements that partake in
the execution of such objectives. An example of the former is
system users, whether they are human users or software
agents, while an example of the latter is the various hardware
components that carry on the execution of requests generated
by users. These components can either be infrastructural (e.g.
communication devices, generic processing devices, network
health monitoring hardware, etc.) or application-specific,
which are customized and properly equipped to generate,
collect, and process the exact information needed by the
possibly different applications running on the system. Passive
entities in the physical domain are necessary for proper
operation of the system, but they play a role that is rather
assistive, as they mainly comprise resources that handle
storing and managing network state and application data,
deploying and distributing middleware updates, and
overseeing the knowledgebase responsible for defining and
formulating the system response to various events. The third
and final element in the physical domain is the different types
of events that constitute contextual information.

2) The Logical Domain
In the next level lies the logical domain, which constitutes

the first level of abstraction. In this domain traditional object-
oriented software modeling techniques are applied in order to
represent all entities in the physical domain as well as their
respective interrelationships. Each entity is represented by a
proxy object that serves three purposes: (1) it provides a
faithful depiction of the characteristics of its corresponding
real-life object in the physical domain, represented using a
normalized form that permits and simplifies manipulation via
software, (2) it acts as an observer of its physical counterpart,
and as an upstream channel that propagates any changes to its
state to the higher layers of the system, and (3) it acts as a
surrogate that provides access to the physical entity, allowing

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

control and configuration commands to flow downstream
through the system to be finally effected in the physical
domain.

3) The Chemical Domain
The third and final level is the chemical domain, which adds

homogeneity to the normalized representation attained in the
previous level. Semantic mapping is used to reduce the high
dimensionality of the OOP representation, and produce a
homogenous model where all entities are represented
uniformly and their different characteristics are abstracted via
different quantification techniques. Each entity is represented
as an atom with an associated affinity profile. Events

constituting the context are represented as either catalysts or
inhibitors, which according to each atom’s affinity profile,
either attract or repel an atom with a certain strength. This is
used as a platform for executing reaction rules that emulate
chemical reactions with the objective of reorganizing and
reconfiguring the system, taking into consideration user-
generated requests, the internal state of the system, as well as
contextual information. In the rest of this document, we will be
focusing more onto the components of this layer, which will be
referred to as the Chemical Abstraction Layer (CAL), and
discuss the various operations that take place therein.

Figure 1. C2A2 at different levels of abstraction.

C. The Chemical Abstraction Layer (CAL)
In chemical-inspired systems (e.g. CHAM [1]), the state of a

system is like a chemical solution in which floating reactants
can interact with each other according to specific reaction
rules. A certain stirring mechanism is responsible for causing
motion within the solution, allowing for possible contacts
between reactants. A solution can be heated to break complex
molecules into smaller ones up to ions. Conversely, a solution
can be cooled to rebuild heavy molecules from simpler
reactants. Furthermore, to make it possible to model and solve
problems of hierarchical structure, a molecule is allowed to
contain a sub-solution enclosed in a membrane, which can be
somewhat porous to allow communication between the
encapsulated solution and its environment [1]. In this section
we show how all of these concepts are realized in C2A2.

1) Affinity Profiles
One of the goals that we attempt to achieve in C2A2 is

adaptability. In order to optimize the system under changing
circumstances and varying tasks, the system configuration
should be easily and dynamically adaptable to both external
and internal stimuli. Several factors must be considered when
assigning tasks, allocating resources, or carrying out any

network configuration operation. For instance, in a network of
heterogeneous nodes, the decision to allocate a node to a
certain task must take into consideration the compatibility
between such task and the capabilities of the selected node.
Other factors may also affect the decision, such as node
location, its residual power, whether the node is allocated to
another task with a higher priority, and so forth. We use the
concept of affinity to express the strength of such
compatibility.

In our proposed scheme, we would like each node to behave
as independently as possible in order to minimize the
communication overhead, but without compromising the
functionality of the network as a whole. In other words, we
would like to guide nodes to take local decisions that
collectively serve global goals. Each real-life entity, be it
physical or logical, is represented in CAL as a reactant (atom
or molecule) with the capacity to interact with other reactants
to establish new bonds and possibly disband existing ones. In
C2A2 this capacity is expressed using an affinity profile. An
affinity profile is akin to atomic valence, which determines the
ability of an atom to form bonds with other atoms. Unlike
valence, however, affinity profiles are mutable. In CAL,
affinity between two reactants might change over time due to
changes in context or in the internal state of the physical

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

domain counterpart of either reactant. This allows us to
incorporate context dynamics in the system configuration loop
and adapt each individual component accordingly.

An affinity profile can be modeled mathematically as a
vector Pi = 〈fij〉, where fij is the affinity of reactant i toward
reactant j. Affinities are expressed as real numbers where
maximum affinity, minimum affinity, and neutrality are
denoted by ∞, -∞, and 0 respectively. One advantage of this
representation is its neutrality to the application-specific
interpretation of affinity values, which provides a flexible and
generic tool to carry out various system configuration tasks.
CAL is absolutely agnostic to application semantics, and thus,
the process of assigning initial affinities and updating them as
different events occur during system operation is handled
independently via a semantic mapping mechanism that resides
between the logical layer and CAL. Such mechanism is
cognizant of application semantics, contextual information, as
well as the precise state of the entities being mapped, which is
made possible by its access to their representation in the
logical domain. Affinities are not necessarily symmetrical; i.e.
fij and fji don’t have to be equal, which allows for more
independence for reactants to bond with the most suitable peer.
As will be shown in the examples in Section IV, each entity
independently controls its initial affinity toward other entities,
and it is up to the reaction execution mechanism to resolve
conflicts that arise between them. Initial affinities can be
computed using a variety of ways that can be as plain or as
elaborate as the system permits. For instance, neural networks
can be used to produce the affinity values based on arbitrary
inputs, including, but not restricted to, context parameters.
This would provide a means for incorporating machine
learning techniques, which can be used to retrain the neural
networks in order to produce affinities that optimize system
performance over time.

2) Context Representation
In CAL, context is seen as having either a catalytic or

inhibiting effect on ongoing reactions. A catalyst is a
substance that causes or accelerates a reaction without itself
being consumed, while an inhibitor has the opposite effect. In
addition to its congruity with the chemical frame of reference
employed herein, we also find that this perception of context is
in accordance with how context information is used in a
context-aware system, where the presence of a certain context
element (also referred to as parameter, variable or dimension)
typically triggers an adaptational response where the system
incorporates the newly sensed context information into the
process of deciding how the system configuration should be
changed to best serve the task at hand. The catalytic or
inhibiting effect owing to the presence of a specific context
parameter is exhibited at two levels. At a high level, it controls
the overall attraction force by which a reaction rule pulls
reactants. This has the effect of regulating the rate at which
each reaction takes place by controlling the amount of
reactants consumed by it. At a lower level, context is used to
mutate the affinity profiles of individual reactants, leading to
different bonding choices than what would have taken place in
absence of contextual influence. Both effects are modeled as a
multiplicative factor that either strengthens or weakens the

affinity between a rule and a reactant or between two reactants
that are potentially to be consumed by the same reaction.

Now that we have discussed the role of affinity profiles,
which is one of the key factors in determining the behavior of
reactants in CAL and the influence of context on them, we
now turn our attention to the final factor that constitutes the
driving force behind reaction execution in CAL.

3) Affinity Propagation
Affinity propagation (AP) is a clustering algorithm that

operates by exchanging messages between data points [3]. In
essence, AP is a heuristic approach for finding an approximate
solution to the maximization problem in graphs, which is
known to be NP-hard [14]. AP relies on the max-product belief
propagation algorithm [12, 13] to optimize an objective
function that aims to maximize the sum of similarities between
nodes and their exemplars. Despite being conceived as a
clustering algorithm, AP is utilized in this work as the reaction
execution engine in CAL, where it is responsible for
exchanging affinities between reactants and updating them
iteratively during the course of a reaction until final bonds are
established. In order to explain how this is achieved, we first
need to discuss how AP works in slightly more detail.

AP takes as input the initial measures of similarity between
each pair of data points and simultaneously considers all data
points as potential exemplars to each other. These values also
include self-similarities, or preferences [3], which express the
a priori willingness of individual points to become exemplars.
Message exchange then takes place between data points until a
high quality set of exemplars and corresponding clusters
gradually emerge. In this paper, we use the binary variable
model formulation of AP presented in [11] because of its ease
of extension. In this model, cluster affiliations are obtained by
computing an N×N array of binary variables hij using the
factor graph shown in Fig 2, where i, j ∈ {1..N} and N is the
number of data points. hij = 1 if j is the exemplar of i,
otherwise hij = 0. As pointed out in [11], in order for exemplar
assignments to be valid, two constraints must hold in the
solution obtained by the factor graph:

Figure 2. Factor graph for
computing cluster affiliation
between nodes i and j [11].

	

• 1-of-N Constraint: Each node i must select exactly one
exemplar (i.e. ∀i ∈ [1,N]: ℎ!" =!

!!! 1), which can be i itself
if it is an exemplar node (in which case hii = 1).
• Exemplar consistency constraint: A node i may only choose
j as its exemplar if j has chosen itself as an exemplar (i.e. ∀i ≠
j, hij = 1 → hjj = 1).

It can easily be seen that any solution satisfying the two
constraints above would be correct, although not necessarily
optimal. There are three function nodes that contribute to the
value of hij, which are shown in the factor graph in Fig 2: Sij
represents the similarity between nodes i and j, while Ii and Ej
correspond to the two constraints above, respectively. Cluster
affiliations are found by executing the max-sum (or log-

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

domain max-product) algorithm on the graph, which works by
exchanging the five messages shown in Fig 2:
• sij is a scalar that expresses how similar node i is to node j. In
this formulation of AP, this value also subsumes i's
preference.

• Responsibility messages (ρij) are sent from a node i to a
candidate exemplar j, and they represent the accumulated
evidence for how well suited point j is to serve as an
exemplar for point i.

• Availability messages (αij) are sent from j to i, reflecting the
accumulated evidence of how appropriate it would be for
point i to choose j as its exemplar, given the support j has
from other candidate cluster members. Together with ρij,
these two messages are used to verify the fulfillment of
constraint Ej.

• Similarly, βij and ηij are used to test whether constraint Ii is
violated for node i.

The derivation of these messages is given in detail in [11]. If
either constraint is violated, its corresponding factor assumes a
value of −∞, otherwise it is set to 0. The objective function
being maximized by the algorithm is given in (1). The function
maximizes the sum of intra-cluster similarities but also ensures
that invalid cluster assignments are discarded by incorporating
the constraints, which would cause the function to yield -∞ if
either constraint is violated for any node.

ℱ {ℎ!"} = 𝑠!"ℎ!"!,! + 𝐼!(ℎ!:)! + 𝐸!(ℎ:!)! (1)
Evidently, (1) is only suitable for clustering. However, [11]

shows how this formulation of AP can be extended to solve
other problems, such as the Facility Location [15] and
Maximum Bipartite Matching [16] problems. Shamaiah et al.
[17] also apply the same technique to develop distributed
routing mechanisms for networks. In C2A2 we utilize the
extensibility of the binary AP model to produce cluster
affiliations that obey the reaction rules defined in CAL. More
precisely, we modify the factor graph and objective function
above by manipulating node similarities and defining different
constraints such that the resulting clusters would resemble the
structure of molecules produced by the reaction rules. We now
describe how this was achieved in detail.

4) Utilizing AP as a reaction execution engine in CAL
CAL is an implementation of a restricted P System [2]

where reactions can only take one form in either direction.
Reactions in the forward direction take the form ca → cu,
while reverse directions take the form cu → ca. In both forms,
c is an optional catalyst, and a and u are multisets such |a|>1
and |u|=1. The forward form is used to compose complex
molecules from multisets of atoms and/or simpler molecules,
while the reverse form is used to dissolve molecules produced
previously by forward reactions to their simpler components,
thereby returning them back to the environment. Both forms
may optionally require the presence of a catalyst as a condition
to be triggered. Reactions of different forms that produce an
arbitrary number of outputs are not allowed.

Under this restriction, the problem of assigning reactants to
forward reactions can be seen as a clustering problem in which
reaction rules play the role of exemplars while reactants
(atoms and molecules) play that of cluster members. However,

one property of P Systems necessitates a slight departure from
traditional clustering, which is that reactions must be
performed in a maximally parallel way. This means that
reactants are assigned to rules until no further assignments are
possible, which imposes the consequence that a single rule
may assume exemplarity of multiple cluster instances, all of
identical structure, where the members of each instance have a
one-to-one correspondence to the elements in the left-hand
side multiset in the forward reaction form, a.

This reformulated clustering problem can be solved by
constructing a factor graph as the one shown in Fig 3. In this
graph, we assume that the system contains N reactants and R
reaction rules, and the goal is to match subsets of these N
reactants with reaction rules such that each subset (or reactant
group) is congruent with the left-hand side multiset of the
reaction it is matched with (the multiset a in the forward
reaction form), and no single reactant is involved in more than
one reaction. One important practical consideration to note is
that even though multiple instances of the same reactant type
might exist simultaneously in the system, their inclination to
partake in the same reaction may differ due to application
semantics. Similarly, if the left-hand side multiset of a reaction
consists of two reactant types, r1 and r2, where multiple
instances exist of the former but only one exists of the latter,
the different r1 instances are not to be considered
interchangeable, but rather, the one with the highest affinity to
the r2 instance should be picked if possible. This is important
because it might not be preferable for the physical entities that
correspond to the reactant instances to communicate with each
other for any reason, such as being physically separated by a
large distance. Because of this, the input provided to the
algorithm consists of similarities between reactants and
reaction rules as well as reactants and each other, where the
latter is based entirely on application semantics, while the
former is based additionally on whether the reactant appears in
the left-hand side multiset of the rule. If it does not, then the
two are incompatible and their similarity is set to -∞. In this
scheme, self-similarities (or preferences) have no significance
for reactants, whereas for reaction rules, they represent the
context influence.

Figure 3. Factor graph of reformulated clustering problem for executing

reactions in CAL.

As illustrated in Fig 3, the factor graph is 2-dimensional and
is constructed such that reaction rules are organized
horizontally and are indexed by the variable j ∈ {1..R}, while

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

symbols representing reactant groups are organized vertically
and are indexed by the variable i ∈ {1..G}. Reactant groups
represent the elements of the power set over all reactants,
which has a size of 2N. Obviously, this can be prohibitively
expensive. In practice, however, reactant groups that don’t
appear in any reaction rules as well as those that don’t satisfy a
minimum similarity threshold among its members can be
eliminated, reducing the size of the set by several orders of
magnitude. Similar to the original AP formulation, assigning a
value of 1 to hij indicates that the reactant group i is to be
consumed by reaction rule j. Due to the fact that a single
reactant may belong to multiple groups, if group i is assigned
to a rule (i.e. ∃ j s.t. hij = 1), we must guarantee that all
reactants in group i are not assigned to any other rule. This is
achieved by adding the single-assignment constraint factors
(labeled 𝐸{!..!} in the graph), one for each reactant, which
collectively guarantee that if hij=1 then all other variables that
appear in rows corresponding to groups that share any
reactants with i are set to 0. Finally, the Ii factors represent the
1-of-N constraint, which plays the same role as in the standard
AP problem.

Figure 4. Factor graph fragment
for computing the affiliation of
reactant group i with reaction
rule j.

	

A fragment of the factor graph for computing a single

variable is shown in Fig 4, which is similar to that of AP (Fig
2) except that the exemplar consistency constraint 𝐸! is now
replaced by a varying number of single-assignment constraints
𝐸!! (the notation stands for the constraint in 𝐸{!..!} that
corresponds to the kth reactant in group i). The number of
single-assignment constraints imposed on each hij variable is
equal to the number of reactants in group i, and each constraint
is connected to all other ℎ!"| (!,!)!(!,!) where reactant group g
includes the reactant associated with the constraint. As shown
in (2) and (3), the 1-of-N constraint is satisfied only if each
reactant group is assigned to at most one reaction rule, while
the single assignment constraint is satisfied if no more than
one of the hij variables linked to the constraint is set to 1. The
objective function in (4) is similar to that of AP, where the
sought solution maximizes the sum of similarities between
reactant groups and reaction rules while satisfying all
constraints.

𝐼! ℎ!: =
0 ∶ 𝑖𝑓 ℎ!" ≤ 1!

!!!
−∞ ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)	

	
 	

𝐸! ℎ∷! = 0 ∶ 𝑖𝑓 ℎ!"

!
!,! ! ≤ 1

 −∞ ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)	

	
 	
 ℱ {ℎ!"} = 𝑠!"ℎ!"!
!!!

!
!!! + 𝐼!(ℎ!:)!

!!! + 𝐸!(ℎ∷!)!
!!! (4)	

	
 	
 Messages passed between nodes in the modified graph have
the same semantics as in the original AP formulation.
However, due to the varying number of constraints imposed on
each variable and their slightly different roles in our problem,
the equations for computing the values of these messages must

be rederived. The binary formulation of AP simplifies this
process, as it lets us derive the formula for each message by
calculating its value for each setting of the hidden binary
variable hij then taking the difference [11]. We now discuss the
derivation of the five message types shown in Fig 4:
• sij : this message is independent of hij and it represents the
initial affinity between reactant group i and reaction rule j. If
reactants of group i match those of rule j, then the value of
the message is set to the average similarity between each
reactant in the group and the reaction rule, multiplied by the
preference value of the rule. Otherwise, the pair is not a
candidate for matching and the message is assigned a value of
-∞. In the former case, the average is taken as a normalization
mechanism for countering the fact that the number of
reactants (and subsequently constraints) may vary from one
reactant group to another. Multiplying by the preference
value is used as a means for adjusting the rate at which the
reaction takes place as a result of contextual influence.

• βij and ηij have the same role as in AP, which is to enforce the
1-of-N constraint, and thus their formulas are unchanged,
except that the average over the α messages is taken for the
same reason explained earlier.

• 𝛼!"! : this message represents the accumulated evidence of
how appropriate it would be for the kth reactant in group i to
partake in reaction rule j. To calculate its value, we fix the
value of hij to 1 or 0, then we find an optimal assignment for
the other variables associated with the same reaction. When
hij = 1, this means that the kth reactant (and all of group i) is
assigned to rule j, and thus all other variables that correspond
to reactant groups that contain the same reactant must be set
to 0, yielding 𝛼!"! 1 = avg(!,!)! { 𝜌!"! 0 }(!,!)!(!,!). For hij =
0, the other variables are unconstrained and the maximum
over both configurations should be taken, resulting in
𝛼!"! 0 = avg(!,!)! { max!!" 𝜌!"

! ℎ!" }(!,!)!(!,!). We obtain
𝛼!"! by taking the difference between 𝛼!"! (1) and 𝛼!"! (0) where
we end up with the formula in (8), in which we have relied on
the fact that 𝑥 −max 𝑥, 𝑦 = min (0, 𝑥 − 𝑦).

• 𝜌!"! : this message represents the accumulated evidence for
how well suited reaction j is to consume the kth reactant in
group i, and it has a similar formula as that of AP but takes
into consideration the availabilities of the other reactants
involved in the group. A summary of the formulas for all
messages is given in (5) – (9):

𝑠!" =
𝑝! ∙ avg

!
 𝑠𝑖𝑚 𝑘! , 𝑗 ∶ 𝑖𝑓 𝑖 ≡ 𝑟𝑢𝑙𝑒 𝑗

−∞ ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

 𝛽!" = 𝑠!" + avg!! {𝛼!"
! } (6)

 𝜂!" = −max!!! 𝛽!" (7)
 𝛼!"! = avg(!,!)! { min 0, 𝜌!"! }

!,! !(!,!)
 (8)

 𝜌!"! = 𝑠!" + 𝜂!" + avg!! { 𝛼!"
! }!!! (9)

 When the algorithm terminates, decoding the final solution
is straightforward. Reaction rules with any variables set to 1 in
their respective columns are considered to have been triggered.
Those reactions are denoted by j s.t. ℎ!" ≥!

!!! 1. Similarly, a

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

reactant group i is considered to have been consumed by a rule
if one of the variables in its row is set to 1, i.e. ℎ!" >!

!!! 0.
Individual reactants within each such group are substituted by
a molecule that represents the whole group in the system,
while all other reactants are remain unaffected.

IV. EVALUATION
We now provide a number of examples where we put the

concepts behind C2A2 to use. This serves to elucidate how such
concepts can be applied in a concrete application and also to
gauge their feasibility and efficiency in a practical setting.

A. Clustering in Wireless Sensor Networks
The first application we use to present C2A2 is clustering in

wireless sensor networks (WSNs). In WSNs, clustering is
often used to increase the longevity of the network and ensure
balanced resource utilization. In its most basic form, WSN
clustering involves just two parameters: node location and
residual energy. In this model, each node is represented as an
atom with an affinity profile that specifies its affinity toward
other nodes in the network. The affinity profile can be sparse,
where missing values are taken to mean −∞, indicating that the
two nodes can never be in the same cluster (due to their being
too far from each other, for instance). Messages exchanged
between nodes are calculated using the equations (10) – (13),
which are a slight variation from the original AP formulas:
(a) Similarities between each pair of nodes are calculated

according to (10), which in this model is designed to
minimize the sum of squared error (i.e. the distance
between each node and its exemplar).

(b) Availability of a node i to serve as an exemplar for another
node j is initialized as shown in (11), which takes into
consideration the exponential increase in communication
cost as the distance between the two nodes increases. In
subsequent iterations, availabilities are updated using (12)
which takes into account the accumulated evidence that
node j should be chosen as an exemplar in addition to the
positive responsibilities received by j from other nodes.

(c) Responsibility of a node j to serve as an exemplar for a
node i (from the latter’s point of view) is calculated using
(13), which relies on the similarity between the two nodes
but also taking into consideration the suitability of i to be
chosen as an exemplar by other nodes.

	
 𝑠 𝑖, 𝑗 = 𝑐! ∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)! (10)
	

𝑎! 𝑖, 𝑗 = 𝑐! ∙
!"#$%&'(_!"#$%(!)
!"#$%&'((!,!)!

 (11)
	
 𝑎 𝑖, 𝑗 = 𝑚𝑖𝑛 0, 𝑟 𝑗, 𝑗 + max {0, 𝑟(𝑘, 𝑗)}!:!∉{!,!} (12)
	
 𝑟 𝑖, 𝑗 = 𝑠 𝑖, 𝑗 −𝑚𝑎𝑥!:!!! 𝑎 𝑖, 𝑘 + 𝑠(𝑖, 𝑘) (13)
	
 In this experiment we used ns-2 [8] to compare our results to

those obtained using two widely used WSN clustering
protocols; generalized LEACH [4] and Average Minimum
Reachability Power (AMRP) HEED [5]. The simulation
parameters are identical to those used in [5], and the
experiments were carried out using ns-2 [8]. The sensors are
deployed randomly in a 100×100 m2 area with a base station
located at (50,175). During each TDM frame, each node
collects data and sends a data packet to its cluster head, and
each cluster head fuses these packets into one message and

sends it to the base station. Clustering is triggered at the end of
each round, where a round is 5 TDM frames.

The simulation results are shown in Fig 5, which shows the
ratio of the total number of messages to the total number of
nodes. The ratio seems to follow a logarithmic curve, where
the overhead is inversely proportional to the number of nodes,
approaching an asymptote of 1. The effect of this on network
longevity is illustrated in Fig 6, where WSN clustering using
C2A2 can be seen to outperform both LEACH and HEED
clustering algorithms in terms of the number of clustering
rounds that can be performed under identical conditions.

Figure 5. The ratio of the total number of messages exchanged during
each clustering round is inversely proportional to the number of nodes

with an asymptote of 1.

Figure 6. Number of clustering rounds until power depletion for different

deployment sizes.

B. Constrained Task Assignment
The next case study we utilize to demonstrate C2A2 is the

problem of constrained task assignment in a network of
heterogeneous nodes, which has been formulated in several
works in the literature, such as [6] and [7]. The problem can be
stated as follows: given a set of tasks T and a set of nodes N,
where each task t ∈ T is associated with a demand vector d(t),
and each node n ∈ N is associated with a supply vector p(n), it
is required to find an assignment M(N→T) such that:
(a) For each task t ∈ T, M must contain an assignment

associating t with a set of nodes whose aggregate supply
satisfies d(t).

(b) The assignment M should be selected such that the
objective function 𝑓 = 𝑤 𝑡 −!∈! 𝑐 𝑚!→!!∈! is
maximized, where w(t) is the reward gained by the system
for executing task t, and c(mn→t) is the cost incurred by the
system for assigning node n to task t.

This problem is known to be reducible to the sub-graph
isomorphism problem, which is NP-Complete, and therefore
finding an optimal solution (denoted henceforth as f*) could be
prohibitively expensive for large inputs. However, the problem

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

is particularly suited for C2A2 since it is aligned with the
system’s ability to reconfigure network resources into separate
taskforces. The goal is to approximate f* better than typical
greedy solutions while keeping the cost of obtaining the
solution within the same order of magnitude. We would like
each taskforce to be represented in CAL as a molecule that has
an atom (corresponding to a task) in its center with bonds
linking it to a number of atoms representing the nodes
assigned to the task. The formation of such bonds depends on
the mutual affinity between a task and a node, which is based
on matching the demand and supply vectors, and gauging the
reward gained and the cost incurred by the system. It is
important to note that a single node atom might be involved in
two molecules, which could happen if the supply vector of the
node can satisfy the demand of more than one task. The AP
parameters we use to achieve this can be calculated as follows:
(a) To ensure that bonds are only created between task atoms

and node atoms (and not between two tasks or two nodes),
the similarity between two tasks or two nodes is set to -∞,
indicating absolute dissimilarity.

(b) To guide bond formation such that task atoms are always in
the center of molecules and node atoms are always
peripheral, the preference (or self-similarity) of a task atom
is set to +∞ while that of a node atom is set to -∞ (as
mentioned previously, the self-similarity parameter
determines the willingness of a data point to become an
exemplar).

(c) Since we want all task atoms to be exemplars and all node
atoms to be followers, the responsibility of a task atom and
the availability of a node atom are both set to -∞. The
justification of this is that no atom should be responsible –
in AP terms – toward a task atom, since the latter is always
an exemplar. Similarly, a node atom is never available to
any other atom, since it should never be an exemplar.

(d) Similarity between a node and a task is based on the
compatibility between their respective supply and demand
vectors, as reflected in (14), which also considers the
reward associated with the task.

(e) Availability messages sent from a task to a node are
initialized according to (15), which takes into account the
cost associated with the node in addition to its ability to
satisfy the demand of the task.

(f) Availabilities and responsibilities are updated using the
same equations shown in (12) and (13), respectively.

	
 	
 𝑠 𝑛, 𝑡 = 𝑐! ∙ 𝑤(𝑡) ∙ {𝑖: 𝑝 𝑛 𝑖 ≥ 𝑑 𝑛 𝑖 } (14)
	
 	

𝑎! 𝑛, 𝑡 = 𝑐! ∙
{!:! ! ! !! ! ! }

!(!!→!)
 (15)

	
 	
 The efficiency of our task assignment solution in
approximating f* is shown in Fig 7, where the obtained results
are compared to the optimal solution as well as a greedy
solution for different combinations of node and task counts. In
an average of 100 runs, our approach consistently outperforms
the greedy solution, and is a very close approximation of f*.
Moreover, the average number of AP iterations required was
below 10 in our experiments, which means that the
improvement over the greedy solution does not come at the
expense of a much higher time complexity, as seen in Fig 8
which shows a logarithmic scale of the time complexity of the
three methods. Our solution is slightly more costly that the

greedy solution, but lies within the same order of magnitude.
Both algorithms, however, are significantly faster than the
optimal one.

Figure 7. Normalized f* vs. C2A2 and greedy approximations.

Figure 8. Time complexity (logarithmic scale).

V. CONCLUSION
In this paper, we presented C2A2, a chemistry-inspired,

context–aware, and autonomic management system networked
objects. We proposed a framework for implementing a
pervasive computing environment built around the chemical
affinity theory. We presented an abstraction through which
network components can be mapped to the chemical domain,
allowing us to carry out several network operations by
simulating the interaction model that takes place between
atoms during a chemical reaction. We introduced the concept
of dynamic context-aware affinity profiles, which govern the
behavior of individual system components, ensuring
adaptability in response to context changes and other
interesting events. We also extended and repurposed the
Affinity Propagation clustering algorithm as a reaction
execution engine in our Chemical Abstraction Layer (CAL),
allowing distributed exchange of affinities among individual
nodes while steering them toward convergence on a common
goal. We used simulation to verify the efficacy of our
approach using the problems of clustering and constrained task
assignment in WSNs. As a natural extension to this work, we
are exploring the utilization of reinforcement learning
techniques and exploratory self-adaptation, where the system
associates past decisions with the monitored effect on
performance, thereby allowing the system to self-optimize in
anticipation of potential events expected to take place in the
future.

REFERENCES
[1] Berry, G. and G. Boudol (1992). "The Chemical Abstract Machine."

Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. POPL '90.

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

[2] Păun, G. (2003). "Membrane Computing." Fundamentals of
Computation Theory.

[3] Brendan Frey and Delbert Dueck (2007). “Clustering by passing
messages between data points.” Science.

[4] Heinzelman, W.R. and H. Balakrishnan (2000). “Energy-Efficient
Communication Protocol for Wireless Microsensor Networks.”
Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences.

[5] O. Younis, S. Fahmy, and P. Santi (2004). Robust communications
for sensor networks in hostile environments. Proceedings of the 12th
IEEE International Workshop on Quality of Service (IWQoS).

[6] Zhao, B., M. Wang, et al. (2008). "Topology-Aware Energy Efficient
Task Assignment for Collaborative In-Network Processing in
Distributed Sensor Systems." Distributed Embedded Systems:
Design, Middleware and Resources.

[7] Xu, S. (2010). "Energy-efficient task assignment of wireless sensor
network with the application to agriculture." Iowa State University
Digital Repository.

 [8] Network Simulator (ns-2):
http://nsnam.isi.edu/nsnam/index.php/User_Information

[9] Berryman, A. A. (1992). “The Origins and Evolution of Predator-
Prey Theory.” Ecology 73, 5 (October): 1530-1535.

[10] Gillespie, D. T. (1977). “Exact Stochastic Simulation Of Coupled
Chemical Reactions.” The Journal Of Physical Chemistry 81, 25:
2340–2361.

[11] Givoni, I. (2012). “Beyond Affinity Propagation: Message Passing
Algorithms for Clustering.” PhD Thesis, University of Toronto.

[12] Pearl, J. (1988). “Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference.”

[13] Kschischang, F.R. et al. (2001). “Factor Graphs and the Sum-Product
Algorithm.” IEEE Transactions on Information Theory 47, 2
(February): 498-519.

[14] Dueck, D. (2009). “Affinity Propagation: Clustering Data by Passing
Messages.” PhD Thesis, University of Toronto.

[15] Drezner, Z. (1995). “Facility location: a survey of applications and
methods.” Springer Verlag.

[16] Cormen, T. H. el al. (2001). “Introduction to Algorithms, Second
Edition.” The MIT Press.

[17] Shamaiah, M. et al. (2011). "Distributed routing in networks using
affinity propagation." IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2011: 3036-3039.

[18] J.-P. Banâtre et al. (1988). "A Parallel Machine for Multiset
Transformation and its Programming Style." Future Generation
Computer Systems 4(2): 133-144.

[19] Bergstra, J. and I. Bethke (2002). “Molecular Dynamics.” The Journal
of Logic and Algebraic Programming. 51: 193–214.

[20] Viroli, M. and M. Casadei (2009). "Biochemical Tuple Spaces for
Self-organising Coordination." Proceedings of the 11th International
Conference on Coordination Languages and Models
(COORDINATION 2009). 5521: 143-162.

[21] Kreyssig, P. and P. Dittrich (2011). “On the Future of Chemistry-
Inspired Computing.” Organic Computing — A Paradigm Shift for
Complex Systems. C. Müller-Schloer, H. Schmeck and T. Ungerer,
Springer Basel. 1: 583-585.

[22] Rajcsányi, V. and Z. Németh (2012). "The Chemical Machine: An
Interpreter for the Higher Order Chemical Language." Euro-Par
2011: Parallel Processing Workshops.

[23] Forgy, C. (1982). "Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem." Artificial intelligence.
19.

[24] Gillespie, D. T. (1977). “Exact Stochastic Simulation Of Coupled
Chemical Reactions.” The Journal Of Physical Chemistry 81, 25:
2340–2361.

[25] Gibson, M. and J. Bruck (2000). “Efficient Exact Stochastic
Simulation of Chemical Systems with Many Species and Many
Channels.” The Journal of Physical Chemistry. 104: 1876-1889.

[26] Slepoy, A., et al. (2008). "A constant-time kinetic Monte Carlo
algorithm for simulation of large biochemical reaction networks."
The Journal of Chemical Physics 128(20).

[27] Pianini, D., et al. (2013). “Chemical-oriented Simulation of
Computational Systems with Alchemist.” Journal of Simulation. 7:
202-215.

[28] Monti, M., et al. (2013). “Chemistry-Inspired Algorithm for Emergent
Distributed Consensus in WSNs.” Distributed Computing in Sensor
Systems, 2013 IEEE International Conference on.

[29] Meyer, T. (2010). “On Chemical and Self-healing Networking
Protocols.” PhD Thesis. University of Basel.

[30] Monti, M., et al. (2013). “Stability and Sensitivity Analysis of
Traffic-Shaping Algorithms Inspired by Chemical Engineering.”
Selected Areas in Communications, IEEE Journal on. 31: 1105-
1114.

[31] Viroli, M., M. Casadei, et al. (2011). "Spatial Coordination of
Pervasive Services through Chemical-Inspired Tuple Spaces." ACM
Transactions on Autonomous and Adaptive Systems 6(2).

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-389-6

FUTURE COMPUTING 2015 : The Seventh International Conference on Future Computational Technologies and Applications

