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Abstract—We present a new method for network 
configuration and management in pervasive computing systems 
inspired by the Chemical Affinity theory. We coined our 
approach C2A2: Chemistry-inspired, Context-Aware, and 
Autonomic management system for networked objects. The 
hypothesis behind C2A2 is that by paralleling the model of 
interaction that takes place between atoms during a chemical 
reaction, a form of collective intelligence emerges among system 
components enabling them to achieve a common global objective 
while relying primarily on preferences expressed at the individual 
level. In C2A2, both physical and logical entities in the network are 
modeled as atoms with varying levels of affinity toward each 
other. Network reconfiguration is realized by breaking existing 
bonds between atoms and establishing new ones based on inter-
atom affinities, which change continuously in response to context 
dynamics. Context is seen as having either a catalytic or inhibiting 
effect on reactions and is used to guide bond creation in favor of 
reactions that are most suitable to the situation at hand. Bonds 
are established by exchanging messages between atoms using a 
protocol that leverages the Affinity Propagation algorithm, which 
is used in C2A2 as a reaction execution engine. Finally, we use 
simulation to evaluate the performance of C2A2 in clustering and 
task assignment in wireless sensor networks. 

Keywords-affinity propagation; bio-inspired computing; 
chemical affinity; context awareness; Internet-of-Things; networked 
objects; pervasive computing. 

I. INTRODUCTION 
In this paper we propose a new approach to network 

configuration and management in pervasive computing 
systems inspired by the Chemical Affinity theory, which was 
the key concept in the development of the idea of chemical 
equilibrium. The hypothesis behind our work is that by 
paralleling the model of interaction that takes place among 
atoms during a chemical reaction, we enable a form of 
collective intelligence to emerge among nodes, enabling them 
to achieve a common global objective while relying primarily 
on local decisions. 

The objective of our work is to enable effective multi-
mission Smart Cyber-Physical Spaces (CPSs) that are context-
aware, adaptable, autonomic, and efficient. This would 
eventually allow for self-managing CPSs capable of hosting 
multiple applications operating in different contexts with 
competing demands, whereby for each context the system 
optimizes its different parameters to the situation at hand. We 
have coined our system C2A2 (short for Chemistry-inspired, 
Context-Aware, and Autonomic management system for 
networked objects). In C2A2, context-awareness goes beyond 
affecting the operational state of the system to guiding its self– 
management, configuration, and optimization. Chemical 

Affinity and Affinity Propagation [3] –inspired techniques for 
self-management make the ability to serve multiple concurrent 
goals efficiently an intrinsic property of the network – one that 
doesn’t require special handling. 

The motivation behind our work stems from the observation 
that a certain degree of congruence exists between the 
structure and interaction dynamics in a pervasive computing 
system and their analogues in several natural ecologies. 
Adding to that the possibility of modeling ecology dynamics 
using chemical reactions – which, as pointed out in [31], has 
been proven in [9] and [10] – this motivated us to explore the 
possibility of using the concept of chemical affinity to model 
different interaction patterns that take place in a pervasive 
computing system. The heterogeneous nature and rapidly 
changing structure of networks that underlie future pervasive 
computing environments require individual system 
components to posses a high degree of autonomy and 
adaptability. We believe that by incorporating the concepts of 
chemical affinity, affinity profiles, and affinity propagation as 
outlined in the remainder of this document, we can achieve a 
system that possesses such qualities. The notion of chemical 
affinity emphasizes the individuality of each system 
component, allowing it to freely express the services it can 
offer to the rest of the system, as well as what it needs to 
consume from other components in order for it to function 
properly. This emphasis on individuality is essential in a 
ubiquitous environment where the relationship between 
different actors in the system is often based on a supply and 
demand model. Moreover, the flexibility provided by allowing 
each entity in the system to dynamically vary its affinities 
toward other entities allows for fine-grained adaptation and 
provides a means for subsuming context dynamics into system 
operation. Finally, the utilization of affinity propagation 
permits the system to explore different solutions concurrently 
in the search space of any given problem, allowing for a sort of 
collective intelligence to emerge as individual entities take 
local decisions that serve high-level objectives. 

The contributions of this work lie in the utilization of the 
following techniques in order to realize the aforementioned 
system characteristics: 
• Chemical affinity –inspired collective intelligence: we 

introduce the notion of perceiving a CPS as a dynamic 
chemical solution and utilize the concept of chemical 
affinity to model the interactions between its components. 
Each node in C2A2 is governed by a mutable affinity profile, 
which determines its affinity to other entities in the system, 
such as events, tasks, users, or other nodes. Affinity profiles 
allow nodes to take individual decisions that ultimately 
serve a global system objective, and they serve to provide a 
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flexible interconnection framework, which plays a central 
role in realizing self-organization. 

• Affinity propagation: we reutilize the Affinity Propagation 
clustering algorithm [3] as a reaction execution engine, 
which we then use for executing different network 
configuration and management tasks. Affinity Propagation 
is a clustering algorithm that relies on exchanging messages 
between data points to compute pair-wise similarities, which 
are then used to recursively combine similar points together. 
The algorithm need not be initialized with exemplar points, 
which is advantageous in dynamic environments where new 
resources might join or leave the system at any time. 
The remainder of this paper is organized as follows. Section 

II provides some background on the chemical affinity theory 
and presents an overview of the related work in literature. 
Section III discusses the C2A2 system. Section IV presents a 
number of case studies and an experimental evaluation of the 
system performance. Finally, Section V concludes the paper 
and discusses future work. 

II. BACKGROUND AND RELATED WORK 
A common feature among most – if not all – natural 

computing models that draw their inspiration from the 
chemical reaction metaphor, is that the system state is 
represented as a fluid in which reagents of different types 
move freely and interact with each other according to 
predefined reaction rules. Developing concrete applications 
based on this concept requires mature models of computation 
that can be used to encode real-life problems using the 
chemical formalism and describe programs to solve them, as 
well as runtime systems that can actually execute these 
programs. The former field of study has seen significant 
research activity, ushered by the Γ language by Banatre et al 
[18] and continued through various other works such as the 
Chemical Abstract Machine by Berry et al [1], the Molecular 
Dynamics model by Bergstra et al [19], Membrane Computing 
(P Systems) by Păun [2], and more recently in the Biochemical 
Tuple Spaces model by Viroli et al [20]. Some of these works 
contributed incremental improvements over previous models 
while others offered entirely new approaches, but all have 
served to present the chemical metaphor as a mature and viable 
option for modeling computational processes, especially for 
applications where concurrency and self-organization are two 
necessary characteristics. However, despite the progress on 
this front, not as much attention has been given to the runtime 
systems on which chemical computing models can be executed 
[21]. 

The earliest runtime system for a chemical machine is 
perhaps the one described in [18], where an implementation of 
the Γ language on a massively parallel machine (aka the Γ-
machine) is proposed. In order to evaluate a Γ program, the 
runtime system has to perform two tasks: (a) search for 
reagents that satisfy reaction conditions (in other words, 
determine which reactions to fire), and (b) applying the actions 
associated with fired reactions on the system. It can easily be 
shown that a roughly similar breakdown of tasks would also 
apply to any other runtime, not just the Γ-machine. The first 
task requires solving an NP-hard optimization problem, and 
with C2A2, we attempt to put forward a practical, efficient, and 
scalable solution to this problem. 

Existing runtime systems employ different approaches to 
address this problem. One approach can be described as the 
search-and-match approach, and it usually relies on some data 
structure that stores information about reagents and reaction 
rules where a search algorithm is then used to find reagents 
that satisfy the left-hand side conditions of any given reaction. 
The implementation proposed for the Γ-machine in [18] falls 
under this category. However, it can be considered more of a 
proof of concept as it assumes a number of processors equal to 
the number of reagents, which would be faced by strict 
scalability limits in reality. Additionally, it only considers one 
form of reactions (more specifically, reactions that take exactly 
two input values and produce two output values), which would 
impose further constraints on the practicality of this approach. 
More efficient methods belonging to this category have also 
been proposed, such as The Chemical Machine by Rajcsányi et 
al [22], which relies on the more sophisticated RETE pattern-
matching algorithm [23]. 

Another approach that is mainly used for simulation but is 
also used in some runtime systems is the computational 
chemistry approach. Methods belonging to this category rely 
on algorithms that have long been used by theoretical chemists 
to solve many quantitative chemical problems using simulation 
with acceptable accuracy. Several algorithms have been 
developed under this category and which have been improving 
in efficiency over time, such as Gillespie’s First Reaction 
Method [24], the Next Reaction Method by Gibson et al [25], 
Slepoy et al’s constant-time Monte Carlo algorithm for 
simulating biochemical reaction networks [26], ALCHEMIST 
[27] and others. These methods offer a statistically correct 
depiction of the evolution of species concentration in a 
chemical solution over time, which is necessary in applications 
that rely on accurate simulation of the laws of chemical 
kinetics. 

These two approaches have different points of strength and 
weakness. The search-and-match approach can be used to 
model the behavior of a self-organizing system in terms of 
microscopic interactions among its lowest-level components, 
which makes it a more versatile tool for modeling a wide range 
of applications. On the downside, it offers limited control on 
the macroscopic behavior of the whole system [28]. The 
computational chemistry approach on the other hand offers 
greater control over the macroscopic behavior of the system, 
which allows for better overall stability and predictability, but 
only if the target application lends itself easily to this 
approach, such as the case studies given in [27, 29, 30, and 28]. 
With C2A2, we aim to combine some of the advantages of 
these two approaches. 

III. THE C2A2 SYSTEM 
Before we’re able to utilize the chemical metaphor in our 

target domain, we must first map some key elements that 
would allow us to mirror the more complex operations that 
require interaction and cooperation among such elements. At 
the lowest level, the most basic building block of interest to us 
is the atom, which is paralleled by an individual entity in the 
modeled system (e.g. network node, event, user, etc.). Atoms 
from different elements possess distinct qualities, resulting in 
different affinities toward atoms from other substances. When 
an atom combines with other atoms, either from the same or 
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different substance, a molecule is formed, which represents a 
higher-order structure. The counterpart in the network would 
be a group of cooperating nodes that are structurally less 
attached to the rest of the network – for instance, a cluster 
within a clustered network, or a group of nodes assigned to a 
particular task. A molecule can be defined as a specific 
configuration of bonds among atoms of particular elements. In 
the network, such bonds are paralleled by network 
connections, where connections between nodes belonging to 
the same cluster (intra-cluster) mirror the intra-molecular 
forces holding a molecule together, and connections among 
different clusters (inter-cluster) would be similar to the weaker 
inter-molecular forces that exist between different molecules. 

The objective of the network is to restructure itself by 
optimizing bond selection between nodes in order to better 
serve the tasks presented to it. The network is described as 
stable if no such bonds are in the process of being formed. By 
establishing all necessary bonds, the node groups (molecules) 
required to serve all present tasks are constructed, which 
parallels the state of chemical equilibrium. An important 
realization regarding the state of chemical stability, or 
equilibrium, is that despite the apparent steadiness of the 
system, the potential for dissolution and thereby the formation 
of new bonds between different reactants is always present. 
This possibility emanates from the fact that the state of 
stability is in reality the result of a balance between 
antagonistic forces that never cease to exist as long as the 
reactants themselves exist. Whenever a change is introduced in 
the system – as in the addition or removal of a reactant or a 
change in system conditions – existing affinity forces become 
unsettled and they compete again until equilibrium is gradually 
regained, possibly resulting in new products being formed. 
This latent potential, even under a stable or steady state, 
provides the system with a high degree of dynamism in the 
face of change. 

A. Abstract System View 
We now present an abstract view of the system we propose. 

The system is seen as a pool of networked resources with 
different roles, capabilities, and other attributes of different 
degrees of relevance according to hosted applications – such as 
function, geographic location, resource levels, and so forth. 
Throughout the lifetime of the system, it is presented with 
events that can be categorized into three classes: application 
events, system events, and circumstantial events. An example 
for application events is user queries, while an example for 
system events is change in resource levels, and an example for 
circumstantial events is any change in the conditions within 
which the system operates. The system is programmed to 
respond to each event by executing a set of tasks. In order to 
do that, a group of resources with appropriate capabilities must 
be selected and assigned to each task. This process involves 
optimizing resource selection, configuring selected resources, 
and reorganizing the pool of resources by establishing the 
required connections among its members. 

B. C2A2 Abstraction Domains 
One of the fundamental challenges that manifest themselves 

when embarking on the task of designing a pervasive 
computing system is the heterogeneity of its elements. 

Ubiquity is a highly desirable feature in all but the most 
narrowly scoped of such systems, and this immediately entails 
the involvement of a host of highly diverse real-life entities. 
Such entities play different roles in the system in terms of 
whether they produce or consume information, the type of 
information they produce or consume, the tasks they partake 
during information processing, and the depth of their impact 
on how the system is configured and the selection of its short-
term objectives. Accordingly, this implies that such entities 
would possess extremely heterogeneous and non-normalized 
characteristics, and consequently interaction models. It is then 
only imperative that an appropriate abstraction tool be utilized 
so as to normalize and homogenize such diverse elements of 
the system for it to be able to deal with them uniformly and 
efficiently. As illustrated in Fig 1, C2A2 can be perceived at 
three levels of abstraction, or as having parallel manifestations 
in three different domains, which are discussed below. 

1) The Physical Domain 
In the first – and lowest – level, lies the physical domain, 

which encompasses all the elements of the system in their real-
life representation. These are heterogeneous physical and 
logical entities that are either among the system stakeholders 
or are necessary for its operation. The physical entities can be 
categorized into active and passive ones. Active entities are 
those that participate in imposing the (short-term) functional 
objectives of the system, in addition to elements that partake in 
the execution of such objectives. An example of the former is 
system users, whether they are human users or software 
agents, while an example of the latter is the various hardware 
components that carry on the execution of requests generated 
by users. These components can either be infrastructural (e.g. 
communication devices, generic processing devices, network 
health monitoring hardware, etc.) or application-specific, 
which are customized and properly equipped to generate, 
collect, and process the exact information needed by the 
possibly different applications running on the system. Passive 
entities in the physical domain are necessary for proper 
operation of the system, but they play a role that is rather 
assistive, as they mainly comprise resources that handle 
storing and managing network state and application data, 
deploying and distributing middleware updates, and 
overseeing the knowledgebase responsible for defining and 
formulating the system response to various events. The third 
and final element in the physical domain is the different types 
of events that constitute contextual information. 

2) The Logical Domain 
In the next level lies the logical domain, which constitutes 

the first level of abstraction. In this domain traditional object-
oriented software modeling techniques are applied in order to 
represent all entities in the physical domain as well as their 
respective interrelationships. Each entity is represented by a 
proxy object that serves three purposes: (1) it provides a 
faithful depiction of the characteristics of its corresponding 
real-life object in the physical domain, represented using a 
normalized form that permits and simplifies manipulation via 
software, (2) it acts as an observer of its physical counterpart, 
and as an upstream channel that propagates any changes to its 
state to the higher layers of the system, and (3) it acts as a 
surrogate that provides access to the physical entity, allowing 
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control and configuration commands to flow downstream 
through the system to be finally effected in the physical 
domain. 

3) The Chemical Domain 
The third and final level is the chemical domain, which adds 

homogeneity to the normalized representation attained in the 
previous level. Semantic mapping is used to reduce the high 
dimensionality of the OOP representation, and produce a 
homogenous model where all entities are represented 
uniformly and their different characteristics are abstracted via 
different quantification techniques. Each entity is represented 
as an atom with an associated affinity profile. Events 

constituting the context are represented as either catalysts or 
inhibitors, which according to each atom’s affinity profile, 
either attract or repel an atom with a certain strength. This is 
used as a platform for executing reaction rules that emulate 
chemical reactions with the objective of reorganizing and 
reconfiguring the system, taking into consideration user-
generated requests, the internal state of the system, as well as 
contextual information. In the rest of this document, we will be 
focusing more onto the components of this layer, which will be 
referred to as the Chemical Abstraction Layer (CAL), and 
discuss the various operations that take place therein. 

 
Figure 1.  C2A2 at different levels of abstraction. 

C. The Chemical Abstraction Layer (CAL) 
In chemical-inspired systems (e.g. CHAM [1]), the state of a 

system is like a chemical solution in which floating reactants 
can interact with each other according to specific reaction 
rules. A certain stirring mechanism is responsible for causing 
motion within the solution, allowing for possible contacts 
between reactants. A solution can be heated to break complex 
molecules into smaller ones up to ions. Conversely, a solution 
can be cooled to rebuild heavy molecules from simpler 
reactants. Furthermore, to make it possible to model and solve 
problems of hierarchical structure, a molecule is allowed to 
contain a sub-solution enclosed in a membrane, which can be 
somewhat porous to allow communication between the 
encapsulated solution and its environment [1]. In this section 
we show how all of these concepts are realized in C2A2. 

1) Affinity Profiles 
One of the goals that we attempt to achieve in C2A2 is 

adaptability. In order to optimize the system under changing 
circumstances and varying tasks, the system configuration 
should be easily and dynamically adaptable to both external 
and internal stimuli. Several factors must be considered when 
assigning tasks, allocating resources, or carrying out any 

network configuration operation. For instance, in a network of 
heterogeneous nodes, the decision to allocate a node to a 
certain task must take into consideration the compatibility 
between such task and the capabilities of the selected node. 
Other factors may also affect the decision, such as node 
location, its residual power, whether the node is allocated to 
another task with a higher priority, and so forth. We use the 
concept of affinity to express the strength of such 
compatibility. 

In our proposed scheme, we would like each node to behave 
as independently as possible in order to minimize the 
communication overhead, but without compromising the 
functionality of the network as a whole. In other words, we 
would like to guide nodes to take local decisions that 
collectively serve global goals. Each real-life entity, be it 
physical or logical, is represented in CAL as a reactant (atom 
or molecule) with the capacity to interact with other reactants 
to establish new bonds and possibly disband existing ones. In 
C2A2 this capacity is expressed using an affinity profile. An 
affinity profile is akin to atomic valence, which determines the 
ability of an atom to form bonds with other atoms. Unlike 
valence, however, affinity profiles are mutable. In CAL, 
affinity between two reactants might change over time due to 
changes in context or in the internal state of the physical 
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domain counterpart of either reactant. This allows us to 
incorporate context dynamics in the system configuration loop 
and adapt each individual component accordingly. 

An affinity profile can be modeled mathematically as a 
vector Pi = 〈fij〉, where fij is the affinity of reactant i toward 
reactant j. Affinities are expressed as real numbers where 
maximum affinity, minimum affinity, and neutrality are 
denoted by ∞, -∞, and 0 respectively. One advantage of this 
representation is its neutrality to the application-specific 
interpretation of affinity values, which provides a flexible and 
generic tool to carry out various system configuration tasks. 
CAL is absolutely agnostic to application semantics, and thus, 
the process of assigning initial affinities and updating them as 
different events occur during system operation is handled 
independently via a semantic mapping mechanism that resides 
between the logical layer and CAL. Such mechanism is 
cognizant of application semantics, contextual information, as 
well as the precise state of the entities being mapped, which is 
made possible by its access to their representation in the 
logical domain. Affinities are not necessarily symmetrical; i.e. 
fij and fji don’t have to be equal, which allows for more 
independence for reactants to bond with the most suitable peer. 
As will be shown in the examples in Section IV, each entity 
independently controls its initial affinity toward other entities, 
and it is up to the reaction execution mechanism to resolve 
conflicts that arise between them. Initial affinities can be 
computed using a variety of ways that can be as plain or as 
elaborate as the system permits. For instance, neural networks 
can be used to produce the affinity values based on arbitrary 
inputs, including, but not restricted to, context parameters. 
This would provide a means for incorporating machine 
learning techniques, which can be used to retrain the neural 
networks in order to produce affinities that optimize system 
performance over time. 

2) Context Representation 
In CAL, context is seen as having either a catalytic or 

inhibiting effect on ongoing reactions. A catalyst is a 
substance that causes or accelerates a reaction without itself 
being consumed, while an inhibitor has the opposite effect. In 
addition to its congruity with the chemical frame of reference 
employed herein, we also find that this perception of context is 
in accordance with how context information is used in a 
context-aware system, where the presence of a certain context 
element (also referred to as parameter, variable or dimension) 
typically triggers an adaptational response where the system 
incorporates the newly sensed context information into the 
process of deciding how the system configuration should be 
changed to best serve the task at hand. The catalytic or 
inhibiting effect owing to the presence of a specific context 
parameter is exhibited at two levels. At a high level, it controls 
the overall attraction force by which a reaction rule pulls 
reactants. This has the effect of regulating the rate at which 
each reaction takes place by controlling the amount of 
reactants consumed by it. At a lower level, context is used to 
mutate the affinity profiles of individual reactants, leading to 
different bonding choices than what would have taken place in 
absence of contextual influence. Both effects are modeled as a 
multiplicative factor that either strengthens or weakens the 

affinity between a rule and a reactant or between two reactants 
that are potentially to be consumed by the same reaction. 

Now that we have discussed the role of affinity profiles, 
which is one of the key factors in determining the behavior of 
reactants in CAL and the influence of context on them, we 
now turn our attention to the final factor that constitutes the 
driving force behind reaction execution in CAL. 

3) Affinity Propagation 
Affinity propagation (AP) is a clustering algorithm that 

operates by exchanging messages between data points [3]. In 
essence, AP is a heuristic approach for finding an approximate 
solution to the maximization problem in graphs, which is 
known to be NP-hard [14]. AP relies on the max-product belief 
propagation algorithm [12, 13] to optimize an objective 
function that aims to maximize the sum of similarities between 
nodes and their exemplars. Despite being conceived as a 
clustering algorithm, AP is utilized in this work as the reaction 
execution engine in CAL, where it is responsible for 
exchanging affinities between reactants and updating them 
iteratively during the course of a reaction until final bonds are 
established. In order to explain how this is achieved, we first 
need to discuss how AP works in slightly more detail. 

AP takes as input the initial measures of similarity between 
each pair of data points and simultaneously considers all data 
points as potential exemplars to each other. These values also 
include self-similarities, or preferences [3], which express the 
a priori willingness of individual points to become exemplars. 
Message exchange then takes place between data points until a 
high quality set of exemplars and corresponding clusters 
gradually emerge. In this paper, we use the binary variable 
model formulation of AP presented in [11] because of its ease 
of extension. In this model, cluster affiliations are obtained by 
computing an N×N array of binary variables hij using the 
factor graph shown in Fig 2, where i, j ∈ {1..N} and N is the 
number of data points. hij = 1 if j is the exemplar of i, 
otherwise hij = 0. As pointed out in [11], in order for exemplar 
assignments to be valid, two constraints must hold in the 
solution obtained by the factor graph: 

Figure 2. Factor graph for 
computing cluster affiliation 
between nodes i and j [11]. 

	
  
• 1-of-N Constraint: Each node i must select exactly one 
exemplar (i.e. ∀i ∈ [1,N]: ℎ!" =!

!!!  1), which can be i itself 
if it is an exemplar node (in which case hii = 1). 
• Exemplar consistency constraint: A node i may only choose 
j as its exemplar if j has chosen itself as an exemplar (i.e. ∀i ≠ 
j, hij = 1 → hjj = 1). 

It can easily be seen that any solution satisfying the two 
constraints above would be correct, although not necessarily 
optimal. There are three function nodes that contribute to the 
value of hij, which are shown in the factor graph in Fig 2: Sij 
represents the similarity between nodes i and j, while Ii and Ej 
correspond to the two constraints above, respectively. Cluster 
affiliations are found by executing the max-sum (or log-
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domain max-product) algorithm on the graph, which works by 
exchanging the five messages shown in Fig 2: 
• sij is a scalar that expresses how similar node i is to node j. In 
this formulation of AP, this value also subsumes i's 
preference. 

• Responsibility messages (ρij) are sent from a node i to a 
candidate exemplar j, and they represent the accumulated 
evidence for how well suited point j is to serve as an 
exemplar for point i. 

• Availability messages (αij) are sent from j to i, reflecting the 
accumulated evidence of how appropriate it would be for 
point i to choose j as its exemplar, given the support j has 
from other candidate cluster members. Together with ρij, 
these two messages are used to verify the fulfillment of 
constraint Ej. 

• Similarly, βij and ηij are used to test whether constraint Ii is 
violated for node i. 

The derivation of these messages is given in detail in [11]. If 
either constraint is violated, its corresponding factor assumes a 
value of −∞, otherwise it is set to 0. The objective function 
being maximized by the algorithm is given in (1). The function 
maximizes the sum of intra-cluster similarities but also ensures 
that invalid cluster assignments are discarded by incorporating 
the constraints, which would cause the function to yield -∞ if 
either constraint is violated for any node. 

ℱ {ℎ!"} = 𝑠!"ℎ!"!,! + 𝐼!(ℎ!:)! + 𝐸!(ℎ:!)!   (1) 
Evidently, (1) is only suitable for clustering. However, [11] 

shows how this formulation of AP can be extended to solve 
other problems, such as the Facility Location [15] and 
Maximum Bipartite Matching [16] problems. Shamaiah et al. 
[17] also apply the same technique to develop distributed 
routing mechanisms for networks. In C2A2 we utilize the 
extensibility of the binary AP model to produce cluster 
affiliations that obey the reaction rules defined in CAL. More 
precisely, we modify the factor graph and objective function 
above by manipulating node similarities and defining different 
constraints such that the resulting clusters would resemble the 
structure of molecules produced by the reaction rules. We now 
describe how this was achieved in detail. 

4) Utilizing AP as a reaction execution engine in CAL 
CAL is an implementation of a restricted P System [2] 

where reactions can only take one form in either direction. 
Reactions in the forward direction take the form ca → cu, 
while reverse directions take the form cu → ca. In both forms, 
c is an optional catalyst, and a and u are multisets such |a|>1 
and |u|=1. The forward form is used to compose complex 
molecules from multisets of atoms and/or simpler molecules, 
while the reverse form is used to dissolve molecules produced 
previously by forward reactions to their simpler components, 
thereby returning them back to the environment. Both forms 
may optionally require the presence of a catalyst as a condition 
to be triggered. Reactions of different forms that produce an 
arbitrary number of outputs are not allowed. 

Under this restriction, the problem of assigning reactants to 
forward reactions can be seen as a clustering problem in which 
reaction rules play the role of exemplars while reactants 
(atoms and molecules) play that of cluster members. However, 

one property of P Systems necessitates a slight departure from 
traditional clustering, which is that reactions must be 
performed in a maximally parallel way. This means that 
reactants are assigned to rules until no further assignments are 
possible, which imposes the consequence that a single rule 
may assume exemplarity of multiple cluster instances, all of 
identical structure, where the members of each instance have a 
one-to-one correspondence to the elements in the left-hand 
side multiset in the forward reaction form, a. 

This reformulated clustering problem can be solved by 
constructing a factor graph as the one shown in Fig 3. In this 
graph, we assume that the system contains N reactants and R 
reaction rules, and the goal is to match subsets of these N 
reactants with reaction rules such that each subset (or reactant 
group) is congruent with the left-hand side multiset of the 
reaction it is matched with (the multiset a in the forward 
reaction form), and no single reactant is involved in more than 
one reaction. One important practical consideration to note is 
that even though multiple instances of the same reactant type 
might exist simultaneously in the system, their inclination to 
partake in the same reaction may differ due to application 
semantics. Similarly, if the left-hand side multiset of a reaction 
consists of two reactant types, r1 and r2, where multiple 
instances exist of the former but only one exists of the latter, 
the different r1 instances are not to be considered 
interchangeable, but rather, the one with the highest affinity to 
the r2 instance should be picked if possible. This is important 
because it might not be preferable for the physical entities that 
correspond to the reactant instances to communicate with each 
other for any reason, such as being physically separated by a 
large distance. Because of this, the input provided to the 
algorithm consists of similarities between reactants and 
reaction rules as well as reactants and each other, where the 
latter is based entirely on application semantics, while the 
former is based additionally on whether the reactant appears in 
the left-hand side multiset of the rule. If it does not, then the 
two are incompatible and their similarity is set to -∞. In this 
scheme, self-similarities (or preferences) have no significance 
for reactants, whereas for reaction rules, they represent the 
context influence. 

 
Figure 3. Factor graph of reformulated clustering problem for executing 

reactions in CAL. 

As illustrated in Fig 3, the factor graph is 2-dimensional and 
is constructed such that reaction rules are organized 
horizontally and are indexed by the variable j ∈ {1..R}, while 
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symbols representing reactant groups are organized vertically 
and are indexed by the variable i ∈ {1..G}. Reactant groups 
represent the elements of the power set over all reactants, 
which has a size of 2N. Obviously, this can be prohibitively 
expensive. In practice, however, reactant groups that don’t 
appear in any reaction rules as well as those that don’t satisfy a 
minimum similarity threshold among its members can be 
eliminated, reducing the size of the set by several orders of 
magnitude. Similar to the original AP formulation, assigning a 
value of 1 to hij indicates that the reactant group i is to be 
consumed by reaction rule j. Due to the fact that a single 
reactant may belong to multiple groups, if group i is assigned 
to a rule (i.e. ∃ j s.t. hij = 1), we must guarantee that all 
reactants in group i are not assigned to any other rule. This is 
achieved by adding the single-assignment constraint factors 
(labeled 𝐸{!..!} in the graph), one for each reactant, which 
collectively guarantee that if hij=1 then all other variables that 
appear in rows corresponding to groups that share any 
reactants with i are set to 0. Finally, the Ii factors represent the 
1-of-N constraint, which plays the same role as in the standard 
AP problem. 

Figure 4. Factor graph fragment 
for computing the affiliation of 
reactant group i with reaction 
rule j. 

	
  
A fragment of the factor graph for computing a single 

variable is shown in Fig 4, which is similar to that of AP (Fig 
2) except that the exemplar consistency constraint 𝐸! is now 
replaced by a varying number of single-assignment constraints 
𝐸!!  (the notation stands for the constraint in 𝐸{!..!} that 
corresponds to the kth reactant in group i). The number of 
single-assignment constraints imposed on each hij variable is 
equal to the number of reactants in group i, and each constraint 
is connected to all other ℎ!"|  (!,!)!(!,!) where reactant group g 
includes the reactant associated with the constraint. As shown 
in (2) and (3), the 1-of-N constraint is satisfied only if each 
reactant group is assigned to at most one reaction rule, while 
the single assignment constraint is satisfied if no more than 
one of the hij variables linked to the constraint is set to 1. The 
objective function in (4) is similar to that of AP, where the 
sought solution maximizes the sum of similarities between 
reactant groups and reaction rules while satisfying all 
constraints. 

𝐼! ℎ!: =
0             ∶     𝑖𝑓   ℎ!" ≤ 1!

!!!
−∞       ∶     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

  (2)	
  

	
   	
  
𝐸! ℎ∷! =   0               ∶       𝑖𝑓   ℎ!"

!
!,! ! ≤ 1

    −∞         ∶       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3)	
  

	
   	
  ℱ {ℎ!"} = 𝑠!"ℎ!"!
!!!

!
!!! + 𝐼!(ℎ!:)!

!!! + 𝐸!(ℎ∷!)!
!!!   (4)	
  

	
   	
  Messages passed between nodes in the modified graph have 
the same semantics as in the original AP formulation. 
However, due to the varying number of constraints imposed on 
each variable and their slightly different roles in our problem, 
the equations for computing the values of these messages must 

be rederived. The binary formulation of AP simplifies this 
process, as it lets us derive the formula for each message by 
calculating its value for each setting of the hidden binary 
variable hij then taking the difference [11]. We now discuss the 
derivation of the five message types shown in Fig 4: 
• sij : this message is independent of hij and it represents the 
initial affinity between reactant group i and reaction rule j. If 
reactants of group i match those of rule j, then the value of 
the message is set to the average similarity between each 
reactant in the group and the reaction rule, multiplied by the 
preference value of the rule. Otherwise, the pair is not a 
candidate for matching and the message is assigned a value of 
-∞. In the former case, the average is taken as a normalization 
mechanism for countering the fact that the number of 
reactants (and subsequently constraints) may vary from one 
reactant group to another. Multiplying by the preference 
value is used as a means for adjusting the rate at which the 
reaction takes place as a result of contextual influence. 

• βij and ηij have the same role as in AP, which is to enforce the 
1-of-N constraint, and thus their formulas are unchanged, 
except that the average over the α messages is taken for the 
same reason explained earlier. 

• 𝛼!"!  : this message represents the accumulated evidence of 
how appropriate it would be for the kth reactant in group i to 
partake in reaction rule j. To calculate its value, we fix the 
value of hij to 1 or 0, then we find an optimal assignment for 
the other variables associated with the same reaction. When 
hij = 1, this means that the kth reactant (and all of group i) is 
assigned to rule j, and thus all other variables that correspond 
to reactant groups that contain the same reactant must be set 
to 0, yielding 𝛼!"! 1 = avg(!,!)!   {  𝜌!"! 0   }(!,!)!(!,!). For hij = 
0, the other variables are unconstrained and the maximum 
over both configurations should be taken, resulting in 
𝛼!"! 0 = avg(!,!)!   {  max!!" 𝜌!"

! ℎ!"   }(!,!)!(!,!). We obtain 
𝛼!"!  by taking the difference between 𝛼!"! (1) and 𝛼!"! (0) where 
we end up with the formula in (8), in which we have relied on 
the fact that 𝑥 −max 𝑥, 𝑦 = min  (0, 𝑥 − 𝑦). 

• 𝜌!"!  : this message represents the accumulated evidence for 
how well suited reaction j is to consume the kth reactant in 
group i, and it has a similar formula as that of AP but takes 
into consideration the availabilities of the other reactants 
involved in the group. A summary of the formulas for all 
messages is given in (5) – (9): 

𝑠!" =   
𝑝! ∙ avg

!
   𝑠𝑖𝑚 𝑘! , 𝑗       ∶     𝑖𝑓  𝑖 ≡ 𝑟𝑢𝑙𝑒  𝑗

−∞                                                                   ∶       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 (5) 

  𝛽!" = 𝑠!" + avg!!   {𝛼!"
! }  (6) 

  𝜂!" = −max!!! 𝛽!"  (7) 
  𝛼!"! = avg(!,!)! {  min 0, 𝜌!"!   }

!,! !(!,!)
  (8) 

  𝜌!"! = 𝑠!" + 𝜂!" + avg!!   {  𝛼!"
!   }!!!  (9) 

  When the algorithm terminates, decoding the final solution 
is straightforward. Reaction rules with any variables set to 1 in 
their respective columns are considered to have been triggered. 
Those reactions are denoted by j s.t.    ℎ!" ≥!

!!!  1. Similarly, a 
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reactant group i is considered to have been consumed by a rule 
if one of the variables in its row is set to 1, i.e. ℎ!" >!

!!!  0. 
Individual reactants within each such group are substituted by 
a molecule that represents the whole group in the system, 
while all other reactants are remain unaffected. 

IV. EVALUATION 
We now provide a number of examples where we put the 

concepts behind C2A2 to use. This serves to elucidate how such 
concepts can be applied in a concrete application and also to 
gauge their feasibility and efficiency in a practical setting. 

A. Clustering in Wireless Sensor Networks 
The first application we use to present C2A2 is clustering in 

wireless sensor networks (WSNs). In WSNs, clustering is 
often used to increase the longevity of the network and ensure 
balanced resource utilization. In its most basic form, WSN 
clustering involves just two parameters: node location and 
residual energy. In this model, each node is represented as an 
atom with an affinity profile that specifies its affinity toward 
other nodes in the network. The affinity profile can be sparse, 
where missing values are taken to mean −∞, indicating that the 
two nodes can never be in the same cluster (due to their being 
too far from each other, for instance). Messages exchanged 
between nodes are calculated using the equations (10) – (13), 
which are a slight variation from the original AP formulas: 
(a) Similarities between each pair of nodes are calculated 

according to (10), which in this model is designed to 
minimize the sum of squared error (i.e. the distance 
between each node and its exemplar). 

(b) Availability of a node i to serve as an exemplar for another 
node j is initialized as shown in (11), which takes into 
consideration the exponential increase in communication 
cost as the distance between the two nodes increases. In 
subsequent iterations, availabilities are updated using (12) 
which takes into account the accumulated evidence that 
node j should be chosen as an exemplar in addition to the 
positive responsibilities received by j from other nodes. 

(c) Responsibility of a node j to serve as an exemplar for a 
node i (from the latter’s point of view) is calculated using 
(13), which relies on the similarity between the two nodes 
but also taking into consideration the suitability of i to be 
chosen as an exemplar by other nodes. 

	
    𝑠 𝑖, 𝑗 = 𝑐! ∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗)!  (10) 
	
    

𝑎! 𝑖, 𝑗 = 𝑐! ∙
!"#$%&'(_!"#$%(!)
!"#$%&'((!,!)!

  (11) 
	
    𝑎 𝑖, 𝑗 = 𝑚𝑖𝑛 0, 𝑟 𝑗, 𝑗 + max  {0, 𝑟(𝑘, 𝑗)}!:!∉{!,!}   (12) 
	
    𝑟 𝑖, 𝑗 = 𝑠 𝑖, 𝑗 −𝑚𝑎𝑥!:!!! 𝑎 𝑖, 𝑘 + 𝑠(𝑖, 𝑘)   (13) 
	
    In this experiment we used ns-2 [8] to compare our results to 

those obtained using two widely used WSN clustering 
protocols; generalized LEACH [4] and Average Minimum 
Reachability Power (AMRP) HEED [5]. The simulation 
parameters are identical to those used in [5], and the 
experiments were carried out using ns-2 [8]. The sensors are 
deployed randomly in a 100×100 m2 area with a base station 
located at (50,175). During each TDM frame, each node 
collects data and sends a data packet to its cluster head, and 
each cluster head fuses these packets into one message and 

sends it to the base station. Clustering is triggered at the end of 
each round, where a round is 5 TDM frames. 

The simulation results are shown in Fig 5, which shows the 
ratio of the total number of messages to the total number of 
nodes. The ratio seems to follow a logarithmic curve, where 
the overhead is inversely proportional to the number of nodes, 
approaching an asymptote of 1. The effect of this on network 
longevity is illustrated in Fig 6, where WSN clustering using 
C2A2 can be seen to outperform both LEACH and HEED 
clustering algorithms in terms of the number of clustering 
rounds that can be performed under identical conditions. 

 
Figure 5.  The ratio of the total number of messages exchanged during 
each clustering round is inversely proportional to the number of nodes 

with an asymptote of 1. 

 
Figure 6.  Number of clustering rounds until power depletion for different 

deployment sizes. 

B. Constrained Task Assignment 
The next case study we utilize to demonstrate C2A2 is the 

problem of constrained task assignment in a network of 
heterogeneous nodes, which has been formulated in several 
works in the literature, such as [6] and [7]. The problem can be 
stated as follows: given a set of tasks T and a set of nodes N, 
where each task t ∈ T is associated with a demand vector d(t), 
and each node n ∈ N is associated with a supply vector p(n), it 
is required to find an assignment M(N→T) such that: 
(a) For each task t ∈ T, M must contain an assignment 

associating t with a set of nodes whose aggregate supply 
satisfies d(t). 

(b) The assignment M should be selected such that the 
objective function 𝑓 = 𝑤 𝑡 −!∈! 𝑐 𝑚!→!!∈!  is 
maximized, where w(t) is the reward gained by the system 
for executing task t, and c(mn→t) is the cost incurred by the 
system for assigning node n to task t. 

This problem is known to be reducible to the sub-graph 
isomorphism problem, which is NP-Complete, and therefore 
finding an optimal solution (denoted henceforth as f*) could be 
prohibitively expensive for large inputs. However, the problem 
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is particularly suited for C2A2 since it is aligned with the 
system’s ability to reconfigure network resources into separate 
taskforces. The goal is to approximate f* better than typical 
greedy solutions while keeping the cost of obtaining the 
solution within the same order of magnitude. We would like 
each taskforce to be represented in CAL as a molecule that has 
an atom (corresponding to a task) in its center with bonds 
linking it to a number of atoms representing the nodes 
assigned to the task. The formation of such bonds depends on 
the mutual affinity between a task and a node, which is based 
on matching the demand and supply vectors, and gauging the 
reward gained and the cost incurred by the system. It is 
important to note that a single node atom might be involved in 
two molecules, which could happen if the supply vector of the 
node can satisfy the demand of more than one task. The AP 
parameters we use to achieve this can be calculated as follows: 
(a) To ensure that bonds are only created between task atoms 

and node atoms (and not between two tasks or two nodes), 
the similarity between two tasks or two nodes is set to -∞, 
indicating absolute dissimilarity. 

(b) To guide bond formation such that task atoms are always in 
the center of molecules and node atoms are always 
peripheral, the preference (or self-similarity) of a task atom 
is set to +∞ while that of a node atom is set to -∞ (as 
mentioned previously, the self-similarity parameter 
determines the willingness of a data point to become an 
exemplar). 

(c) Since we want all task atoms to be exemplars and all node 
atoms to be followers, the responsibility of a task atom and 
the availability of a node atom are both set to -∞. The 
justification of this is that no atom should be responsible – 
in AP terms – toward a task atom, since the latter is always 
an exemplar. Similarly, a node atom is never available to 
any other atom, since it should never be an exemplar. 

(d) Similarity between a node and a task is based on the 
compatibility between their respective supply and demand 
vectors, as reflected in (14), which also considers the 
reward associated with the task. 

(e) Availability messages sent from a task to a node are 
initialized according to (15), which takes into account the 
cost associated with the node in addition to its ability to 
satisfy the demand of the task. 

(f) Availabilities and responsibilities are updated using the 
same equations shown in (12) and (13), respectively. 

	
   	
  𝑠 𝑛, 𝑡 = 𝑐! ∙ 𝑤(𝑡) ∙ {𝑖: 𝑝 𝑛 𝑖 ≥ 𝑑 𝑛 𝑖 }   (14) 
	
   	
  

𝑎! 𝑛, 𝑡 = 𝑐! ∙
{!:! ! ! !! ! ! }

!(!!→!)
  (15) 

	
   	
  The efficiency of our task assignment solution in 
approximating f* is shown in Fig 7, where the obtained results 
are compared to the optimal solution as well as a greedy 
solution for different combinations of node and task counts. In 
an average of 100 runs, our approach consistently outperforms 
the greedy solution, and is a very close approximation of f*. 
Moreover, the average number of AP iterations required was 
below 10 in our experiments, which means that the 
improvement over the greedy solution does not come at the 
expense of a much higher time complexity, as seen in Fig 8 
which shows a logarithmic scale of the time complexity of the 
three methods. Our solution is slightly more costly that the 

greedy solution, but lies within the same order of magnitude. 
Both algorithms, however, are significantly faster than the 
optimal one. 

 
Figure 7.  Normalized f* vs. C2A2 and greedy approximations. 

 
Figure 8.  Time complexity (logarithmic scale). 

V. CONCLUSION 
In this paper, we presented C2A2, a chemistry-inspired, 

context–aware, and autonomic management system networked 
objects. We proposed a framework for implementing a 
pervasive computing environment built around the chemical 
affinity theory. We presented an abstraction through which 
network components can be mapped to the chemical domain, 
allowing us to carry out several network operations by 
simulating the interaction model that takes place between 
atoms during a chemical reaction. We introduced the concept 
of dynamic context-aware affinity profiles, which govern the 
behavior of individual system components, ensuring 
adaptability in response to context changes and other 
interesting events. We also extended and repurposed the 
Affinity Propagation clustering algorithm as a reaction 
execution engine in our Chemical Abstraction Layer (CAL), 
allowing distributed exchange of affinities among individual 
nodes while steering them toward convergence on a common 
goal. We used simulation to verify the efficacy of our 
approach using the problems of clustering and constrained task 
assignment in WSNs. As a natural extension to this work, we 
are exploring the utilization of reinforcement learning 
techniques and exploratory self-adaptation, where the system 
associates past decisions with the monitored effect on 
performance, thereby allowing the system to self-optimize in 
anticipation of potential events expected to take place in the 
future. 
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