
 

 

Assessment of MVAR Injection in Power Optimization for a Hydrocarbon Industrial 

Plant Using a Genetic Algorithm 

 

M.  T.  Al-Hajri                                                M. A. Abido                                     M. K. Darwish                                         
Computer & Electronic Eng. Dept.                         Electrical Engineering Department.      Computer & Electronic Eng. Dept. 

Brunel University                                                    King Fahad University (KFUPM)         Brunel University, U.K.                                   

Uxbridge, United Kingdom                                     Dhahran, Kingdom of Saudi Arabia      Uxbridge, United Kingdom  

e-mail:muhammad.al-hajri@brunel.ac.uk              e-mail:mabido@kfupm.edu.sa                e-mail:mohamed.darwish@brunel.ac.uk            
   

 

Abstract- In this paper, a genetic algorithm (GA) is considered 

for assessing the effect of Million Volt-Ampere Reactive 

(MVAR) power injection via shunt capacitors in optimizing the 

electrical power loss for a real hydrocarbon industrial plant. 

The subject plant electrical system consists of 275 buses, two 

gas turbine generators, two steam turbine generators, large 

synchronous motors, and other rotational and static loads. The 

minimization of power losses objective is used to guide the 

optimization process, and, consequently, the injected power in 

the grid is monitored. First, the optimal locations of MVAR 

injection will be identified using a voltage stability index. The 

potential of power loss optimization with and without MVAR 

injection versus the base case will be discussed in the results. 

The results obtained demonstrate the potential and 

effectiveness of the proposed approach to optimize the power 

consumption in both scenarios (with and without MVAR 

injection). Also, in this paper a cost appraisal for the potential 

daily, monthly and annual cost saving in both scenarios will be 

addressed. 

 
     Keywords-genetic algorithm, power loss optimization, 

electrical submersible pump, hydrocarbon facility, British thermal 

unit (BTU), millions of standard cubical feet of gas (MMscf).  

 

I. INTRODUCTION 

Since 2009, an environment of urgency was created to 

deal with the exponential increase of the domestic energy 

used in the kingdom of Saudi Arabia. All stockholders since 

then are working together in many initiatives sponsored by 

the government of the kingdom to address the optimization 

and the efficiency improvement of energy in all utility 

sectors, especially, the electrical generation sector. The 

kingdom international commitment to reduce the CO2 

emission was another driver for energy optimization in the 

kingdom.  Optimizing the oil usage for electrical generation 

is also for the benefits of the oil producing countries.  The 

optimization of the energy sector will support the 

development of downstream petrochemical industries and 

other very promising industries. In addition, the need of 

shaping the high annual rate increase of energy demand 

becomes a major concern for most of the developing 

countries. For example, in Saudi Arabia, the annual electric 

demand increase is around 8% [1]. All these pressing critical 

issues push many countries to develop nationwide strategies 

for enhancing the electricity generation efficiency, reduce 

loss and invest in the renewable energy development.  

In light of the aforementioned challenges and others, GA 

was addressed in literature for optimizing the electrical 

power  

system loss. Optimizing the power loss of virtual IEEE 

system models, improving the performance of the GA by 

adapting different crossover and mutation techniques and 

creating a hybrid GA by combining it with other techniques, 

such as the swarm particles and Fuzzy logic, were among the 

many techniques addressed in literature. None of the 

previous studies addressed the application of GA in 

optimizing the power loss of real h hydrocarbon facility with 

small system footprint, shorter lines, large machines, 

combined cycle’s generation and large load.  [2]-[9].  

Generally, there are three approaches to solve the real 

power loss optimization problem by optimizing the reactive 

power flow. The first approach applies sensitivity analysis 

and gradient-based optimization algorithms by linearizing 

the objective function and the system constrains around 

operating points [10]. The gradient-based methods are 

usually subjected to be trapped in local minima which makes 

the obtained solution not optimal. Moreover, sensitivity 

factors calculation is a time consuming process.  The second 

approach uses a nonlinear programming technique [11]. This 

approach has many disadvantages such as long execution 

time, insecure convergence properties and algorithmic 

complexity. The third approach utilizes heuristic methods to 

search the solution space for the optimal solution. This 

approach is promising as it can overcome the possibility of 

trapping in local minima [9]. 

This paper considers an existing real life hydrocarbon 

central processing facility electrical power system model for 

assessing the potential of system loss minimization using the 

GA for two scenarios: without and with MVAR injection. In 

section 2 of the paper the problem will be formulated as 

optimization problem with equality and inequality 

constrains. Also, the voltage stability index will be 

introduced. In section 3, the GA will be employed to solve 

this problem. In section 4, the paper study scenarios will be 

developed. Finally, in section 5 the results technically and 

economically will be evaluated. 
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II. PROBLEM FORMULATION 
 

The problem formulation consists of three parts: the 

development of the objective functions, the identification of 

the system electrical constrains to be met; equality and 

inequality constrains; and the calculation of all load buses 

stability index (L-Index).  

 

A. Problem Objective Functions 

 

The objective function is to minimize the real power loss 

J1 (PLoss) in the transmission and distribution lines. This 

objective function can be expressed in term of the power 

follow loss between two buses i and j as follows: 

           J1 = PLoss = ∑  𝒈𝒌 [ 𝑽𝒊
𝟐 + 𝑽𝒋

𝟐 − 𝟐  𝑽𝒊𝑽𝒋 𝐜𝐨𝐬(𝜹𝒊 − 𝜹𝒊)] 
𝒏𝒍

𝒌=𝟏
            (1) 

 

Where nl is the number of transmission and distribution 

lines; gk is the conductance of the k
th

 line, Vi i  and Vj j   

are the voltage at end buses i and j of the k
th

 line, 

respectively  [12] [13]. 

 

The real power injected (PRInject) in the utility grid at Bus# 

1 was monitored as J1 evolves. It is expected that PRInject will 

be maximized since it is inversely proportional to J1; a 

decrease in the J1 results in an increase in PRInject.  

 

B. Problem Equality and Inequality Constrains  

 

The system constrains are divided into two categories: 

equality constrains and inequality constrains [9][13]. Details 

are as follows: 

 

B.1  Equality Constrains 

 

These constrains represent the power load flow 

equations. The balance between the active power injected 

PGi, the active power demand PDi and the active power loss 

Pli at any bus i is equal to zero. The same balance apply for 

the reactive power QGi, QDi , and  Qli. These balances are 

presented as follows: 

 

                                 PGi− PDi −  Pli = 0                                            (2) 
 

                                 QGi− QDi −  Qli = 0                                          (3) 

 

The above equations cane be detailed as follow: 

  

PGi− PDi−𝑉𝑖 ∑  𝑽𝒋 [ 𝐺𝑖𝑗𝑐𝑜𝑠(𝛿𝑖 − 𝛿𝑗) + 𝐵𝑖𝑗 sin (
𝑵𝑩

𝒋=𝟏
𝛿𝑖 − 𝛿𝑗)] = 0        (4) 

 

QGi − QDi−𝑉𝑖 ∑  𝑽𝒋 [ 𝐺𝑖𝑗𝑠𝑖𝑛(𝛿𝑖 − 𝛿𝑗) − 𝐵𝑖𝑗 cos (
𝑵𝑩

𝒋=𝟏
𝛿𝑖 − 𝛿𝑗)] = 0    (5) 

 

where i = 1,2,…,NB;NB is the number of buses; PG and QG 

are the generator real and reactive power, respectively; PD 

and QD are the load real and reactive power, respectively; Gij 

and Bij are the conductance and susceptance between bus i and bus 

j, respectively.   

 

B.2  Inequality Constrains 

 

These constrains represent the system operating 

constrains posted in Table III and they are as follow:  

a. Generator and synchronous motor voltages; VG and 

VSynch; their reactive power outputs; QG and QSynch.  

b. The transformers taps. 

c. The load buses voltages VL.  

Combining the objective function and these constrains, the 

problem can be mathematically formulated as a nonlinear 

constrained single objective optimization problem as 

follows: 

 

Minimize J1   
Subject to: 

                                         g(x,u) = 0                                   (6) 

                                         |h(x,u)| ≤ 0                                  (7) 

where: 

x:   is the vector of dependent variables consisting of load  

bus voltage VL, generator reactive power outputs QG and 

the Synchronous motors reactive Power QSynch. As a 

result, x can be expressed as 

            x
T
= [VL1..VLNL, QGi…QGNG, QSynchi…QSynchNSynch]       

(6) 

u:  is the vector of control variables consisting of generator 

voltages VG, transformer tap settings T, and synchronous 

motors voltage VSynch. As a result, u can be expressed as 

                 u
T 

= [VG1..VGNL, T1…TNT, VSynch1..VSynchNL]             

(8) 

 

g: are the equality constrains. 

h: are the inequality constrains. 

 

C. Voltage Stability Index (L-Index)  

 

 The L indicator varies in the range between 0 (the no 

load case) and 1, which corresponds to voltage collapse. This 

indicator uses the bus voltage and network information 

provided by the power flow program to measure the stability 

of the system. The L indicator can be calculated as given in 

[14]. For a multi-node system 

 

                                 
bus bus bus

I Y V                           (9) 

 

By segregating the load buses (PQ) from generator buses 

(PV), (8) can be written as: 
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      [
𝑰𝑳

𝑰𝑮
] =  [

𝒀𝟏 𝒀𝟐

𝒀𝟑 𝒀𝟒
]  [

𝑽𝑳

𝑽𝑮
]                        (10) 

 

       [
𝑽𝑳

𝑰𝑮
] =  [

𝑯𝟏 𝑯𝟐

𝑯𝟑 𝑯𝟒
]  [

𝑰𝑳

𝑽𝑮
] =  [

𝒁𝑳𝑳 𝑭𝑳𝑮

𝑲𝑮𝑳 𝒀𝑮𝑮
]  [

𝑰𝑳

𝑽𝑮
]       (11) 

 

where  

VL , IL are load buses voltages and currents 

VG , IG are Generator buses voltages and currents 

H1 ,H2 ,H3 ,H4 are submatrices generated from Ybus Partial 

Inversion 

ZLL ,FLG , KGL ,YGG  are submatrices of H-matrix 

 

Therefore, a local indicator Lj can be worked out for each 

node j similar to the line model 

 

                                  Lj = |𝟏 −
∑  𝑭𝒋𝒊𝒊  𝑮  𝑽𝒊

𝑽𝒋
|              (12) 

 

For a stable situation the condition Lj ≤ 1 must not be 

violated for any of the nodes j. Hence, a global indicator L 

describing the stability of the whole system is given by: 

                     Lmax= MAXjL |𝟏 −
∑  𝑭𝒋𝒊𝒊  𝑮  𝑽𝒊

𝑽𝒋
|         (13) 

 

where L is the set of load buses and G is the set of 

generator buses.  

 
III. THE PROPOSED APPROACH 

A. Electrical System Model Data Collection  

 

The research electrical models system parameters were 

gathered and categorized in tables to be ready for developing 

the simulation model of the system. The gathered parameters 

include the followings: 

a. Generators type, voltage and capacity, including active 

and reactive capacity curves reflecting the operation 

limitations such as stator and rotor thermal limitations. 

b. The Generators BTU/kW equation and cost equation. 

c. Utility power system parameters (swing bus); bus voltage 

and short circuit MVA. 

d. System buses voltage constrains.  

e. Lines parameters, including the lines resistance, 

reactance, capacitance, length and voltage.  

f. Transformers parameters including primary voltage, 

secondary voltage, voltage taps, size and impedance. 

g. The large synchronous motor parameters, including 

active and reactive power curve reflecting the operation 

limitations such as stator and rotor thermal limitations. 

h. The large induction motor and the electrical submersible 

pumps (ESPs) parameters such as the active and reactive 

power demands. 

i. The lumped load Thousand Voltage-Ampere (KVA) 

rating. All loads except the motor rated > 5000 Horse 

Power (HP) and the ESP are modeled as lumped load. 

B. Optimal Locations of the Shunt Capacitors  

 

The L index described in (13) was employed to identify 

the most sensitive load buses with regard to voltage stability. 

These most sensitive load buses were selected for shunt 

capacitors connection.  

C. Generic Algorithm Implementation    

 

The implementation of the developed GA technique can 

be summarized in the following steps: 

1) Generate initial populations of chromosomes; each 

chromosome consists of genes and each of these genes 

represents either transformer tap settings, synchronous 

motors voltages, the generators voltages or shunt 

capacitors MVAR values. 

2) Assign fitness to each chromosomes as follows; 

a. Use the Newton-Raphson method to calculate the real 

power losses for each population [15]. 

b. Identify if the voltage constrains are satisfied.  

c. Identify if the Synchronous machines (generators and 

motors) capacity limitations are met.  

d. Assign fitness values to the populations that meet the 

voltage constrains; the population best power loss 

value (J1) divided by the base case power loss value. 

e. Assign penalty values to those populations that do not   

meet the voltage constrains; constant value (0.05). 

3) Identify the best population with its associated 

chromosomes that has the best objective function value 

and store it.  

4) Identify the chromosomes parents that will go to the 

mating pool for producing the next generation via the 

Random Selection method. This method works by 

generating two random integer numbers (each represents 

a chromosome). Then, these two randomly selected 

chromosomes fitness values are compared and the one 

with the better fitness value will go into the mating pool. 

This randomly selected chromosomes mechanism will be 

repeated until the population in the mating pool equals to 

the initial chromosomes population [16].   

5) Perform genes crossover for the mating pool parents via 

the Simple Crossover method [16]. In this method, the 

offspring chromosomes are generated by establishing a 

vertical crossover position for parent’s chromosomes and 

then crossover their genes.  

6) Perform gene mutation for the mating pool parents after 

they have been crossed over; the Random Mutation 

method was implemented [16]. In this method, the 

offspring chromosomes genes are mutated to new ones 

randomly from the genes domain. 
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7) Go to Step #2 and repeat the above steps with the new 

populations generated from the original chromosome 

parents after being crossed over and mutated.  

8) Each time, identify the best population and compare its 

fitness value with the stored one; if it is better (meeting 

the objective function), replace the best chromosomes 

with the new ones. 

9) The loop of generation is repeated until the best 

population with its associated chromosomes, in terms of 

minimum real power loss, is identified or the maximum 

number of generations is met. The flow chart of the 

proposed approach implemented is shown in Figure 1. 
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Figure 1.  The GA algorithm evolution process flowchart 

IV. STUDY SCENARIOS 

In this paper, three scenarios were studied: the base case 

scenario (system as usual), the optimal case scenario without 

MVAR injection, and the optimal case scenario with MVAR 

injection. In the optimal cases the best system parameters 

(chromosomes) that meet the minimum objective function 

(J1) are obtained. 

A.  Base Case Scenario 

 

Normal system operation mode was simulated to be 

benchmarked with the two optimal scenarios. Following are 

some of the normal system operation mode parameters: 

1) The utility bus and generators terminal buses were set at 

unity p.u. voltage. 

2) All the synchronous motors were set to operate very 

close to the unity power factor.   

3) All downstream distribution transformers and the captive 

synchronous motors transformers; off-load tap changers; 

were put on the neutral tap. 

4) The causeway substations main transformers taps were 

raised to meet the very conservative voltage constrains at 

these substations downstream buses; ≥ 0.95 p.u. Refer to 

Table I below. 

TABLE I 

 THE SELECTED FEASIBLE TRANSFORMERS TAPS VALUE 

Substation Number Transformer Tap 

Causeway Substation#1 +3 (1.019 p.u.) 

Causeway Substation#2 Neutral (1.0 p.u.) 

Causeway Substation#3 +3 (1.019 p.u.) 

Main Substation Transformers +1 (1.006 p.u.) 

 

B. Optimal Case Scenario without MVAR injection 

 

To optimize the elevation process time the unfeasible 

transformers tap values (genes) were not selected. In other 

words, the genes values were limited to certain taps around 

the neutral taps out of the all taps full range; ±16 taps. Table 

II below posts the selected range of the transformers tap 

values and the percentage of the voltage change for each tap. 

 
TABLE II 

 THE SELECTED TRANSFORMER TAP FEASIBLE GENES VALUE 

Description Upper Tap Lower Tap 

Main Transformers +8 (0.625% ) -4 (0.625%) 

Causeway Main Transformers +8 (0.625%) -3 (0.625%) 

Captive Motors/Distribution Transformers +1 (2.5%) -1 (2.5%) 

Generator Step-up Transformers +5 (1.25%) -4 (1.25%) 

 

An initial 200 populations of feasible chromosomes 

(individuals) which meet both the buses voltage and 

synchronous machine reactive power constrains were 

identified. These feasible populations are associated with the 

first optimal scenario; without MVAR injection. The feasible 

populations with their associated chromosomes were subject 

to the GA evolutionary process of 20 generations guided by 

the objective function J1. The PRInject was monitored as J1 

evolved.  The GA process was set with 90% crossover 

probability and 10% mutation probability. The system 

parameters and the objective function value associated with 

the optimal solution of this scenario were identified. 

 

C. Optimal Case Scenario with MVAR injection 

 

The evolutionary process was optimized via the same 

method employed in the second case scenario. Another 

initial 300 populations of feasible individuals were identified 

in for the second optimal scenario; with MVAR injection. In 

this scenario, MVAR shunt capacitors are connected to the 

preselected buses; refer to Table IV. In this case, the MVAR 

chromosomes are extended to include MVAR injection 

considered as control variables. The feasible populations 

with their associated chromosomes were subject to 20 

generation of GA evolutionary process. The crossover and 
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mutation probability were set equal to those in the scenario 

without MVAR injection: 90% and 10%, respectively.  

 
V.  RESULTS AND DISCUSSIONS 

 
The results from the three scenarios, base case, without 

MVAR injection and with MVAR injection, will be analyzed 

in two categories: the system parameters analysis and the 

economic analysis.  

 
A. System Parameters Analysis  

 

The hydrocarbon facility simplified electrical system 

model, which is studied in this paper, is shown in Figure 2. 

 

Figure 2.  Simplified electrical system of the hydrocarbon processing facilty 

 

The system inequality constrains are posted in Table III.  

 
TABLE III 

 SYSTEM INEQUALITY CONSTRAINS  

Description Lower Limit Upper 

Limit 

GTG Terminal Voltage (VGTG) 90% 105% 

STG Terminal Voltage (VSTG) 90% 105% 

GTG Reactive Power (QGTG) Limit  -62.123 
MVAR 

95.72 
MVAR 

STG-1 Reactive Power (QSTG) Limit -22.4 MVAR 20.92 

MVAR 

STG-2 Reactive Power (QSTG) Limit -41.9 MVAR 53.837 
MVAR 

Captive Synch. Motors Terminal Voltage  90% 105% 

Synch. Motors Terminal Voltage (VSychn) 90% 105% 

Causeway downstream Buses Voltage  95% 105% 

All Load Buses Voltage 90% 105% 

Main Transformer Taps +16 (+10% ) -16 (-10%) 

Generators Step-Up Transformer Taps +8 (+10% ) -8 (-10%) 

Base on the substation load buses stability index rank, the 

selected buses for shunt capacitors connection, together with 

the potential MVAR values, are posted in Table IV.  

   
TABLE IV 

 THE SELECTED BUSES FOR MVAR INJECTION 

Substation Number Bus Number Potential MVAR 

Substation#2 13 and 28  [8  8.5  9  9.5  10] 

Causeway Substation#1 102 and 113 [1.5 2 2.5 3 3.5] 

Causeway Substation#2 124 and 137 [2  2.5  3] 

Causeway Substation#3 148 and159 [2  2.5  3] 

 
The evolution of the objective function (J1) and PRInject 

values over the GA process is captured in Figure 3. The 

benchmark for the system real power loss and the injected 

power in the grid is demonstrated in Figure 4. There are 

0.202 Million Watts (MW) and 0.203 MW reduction in the 

system loss between the base case, the no MVAR and with 

MVAR optimal cases sequentially. The same amount of MW 

were injected in the grid for both scenarios.  

 
Figure 3.  J1 and PRInject value convergent for 10 generations 

 

The system for the two optimal cases demonstrates an 

improvement in the system buses p.u. voltage profile, which 

increases the robustness of the system (Figure 5).  

 

Figure 4. System power loss and injected power benchmark 
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Figure 5.  The main system buses’ voltage benchmark 

The paper shows there is not much power loss reduction 

associated with MVAR injection scenario compared to the 

no MVAR injection scenario [17] due to the system stiffness 

and its small footprint. 

 

B. Economic Analysis  

The avoided cost due to the optimization of the system 

power loss is demonstrated in Figure 6 at daily, monthly and 

annual bases. The annual cost avoidance based on natural 

gas cost of $3.5 per MMscf is around $60,300/year and 

$60,400/year for the no MVAR and with MVAR optimal 

cases sequentially when compared to the base case. 

 

Figure 6.  The system power loss cost 

 

The revenue due to the power injection in the grid at both 

scenarios is shown in Figure 7.  

 
Figure 7.  Revenue due to power injection in the grid 

 

The figure illustrates the potential of the optimal 

scenarios in increasing the revenue using $37.3 MWh tariff 

rate; $65,200/year for the no MVAR optimal case and 

$65,500/year for the with MVAR optimal case benchmarked 

to the base case.      

 
VI. CONCLUSION AND FUTURE WORK 
 

This paper presented the potential of minimizing the 

power system loss for a real-life hydrocarbon facility using 

the GA base approach considering no MVAR and with 

MVAR injection scenarios. Consequently, the increase in the 

injected power to the grid due to the loss optimization was 

also captured. The paper demonstrated that the reduction of 

power loss associated with MVAR injection is minimum. 

The economic advantages of the optimal scenarios modes 

versus the base mode were highlighted in this paper. The 

economic advantages of the with MVAR injection scenario 

compared to the no MVAR scenario did not support the 

shunt capacitor installations as the advantages are minimal. 

Improvement to the system buses voltage profile was shown 

to be a byproduct of the system power loss optimization. 

Future study may need to address the effectiveness of 

different selection, crossover and mutation methods in 

optimizing the system   loss through GA evolutionary 

process. 
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