
An Improvement on Acceleration of Distributed SMT Solving

Leyuan Liu, Weiqiang Kong, Takahiro Ando, Hirokazu Yatsu, and Akira Fukuda

Graduate School of Information Science and Electrical Engineering
Kyushu University, Japan

Email: leyuan@f.ati.kyushu-u.ac.jp, weiqiang@qito.kyushu-u.ac.jp,
{ando.takahiro, hirokazu.yatsu, fukuda}@ait.kyushu-u.ac.jp

Abstract—Satisfiability Modulo Theories-based Bounded Model
Checking consists of two primary tasks: (1) encoding a bounded
model checking problem into a propositional formula that rep-
resents the problem, and (2) using a SMT solver to solve the
formula. Solving the formula (namely, SMT solving) involves
computation-intensive processes and is thus time-consuming. The
target of this paper is to improve the distributed SMT solving
techniques we previously proposed in [1] for further enhancing
the effectiveness of SMT-based BMC. To this end, we improve the
file dispatching scheme and reform the communication protocols
in our previous work. In this paper, we describe the amelioration
details and give a series of experiments to show the effectiveness of
our improvement. Experimental results show that the improved
implementation outperform the previous one. In addition to
solving 8 groups of benchmarks by increasing the number of
clients, we also make a preliminary experiment on increasing
Central Processing Unit cores to investigate the influence.

Keywords–Satisfiability Modulo Theories; Distributed Solving;
Acceleration; MPI; OpenMP.

I. Introduction

Bounded Model Checking (BMC) is a restricted form of
model checking [2] that analyzes if a desired property hold in
bounded execution/behaviors of a system. In a nutshell, BMC
can be explicit-state based BMC such as the methods described
in [3] and symbolic-based BMC such as Binary Decision
Diagram (BDD)-based [4], Boolean Satisfiability (SAT)-based
[5] or SMT-based [6] BMC. It has been reported in [7] that
symbolic-based methods perform better than explicit-based
methods for verifying general Linear Temporal Logic (LTL)
[2] properties. Among the symbolic-based BMC methods, the
Satisfiability Modulo Theories (SMT)-based method is more
expressible (thanks to its rich background theories) and is able
to generate more compact formulas, and therefore, is more and
more adopted by researchers and engineers.

SMT-based BMC consists of two primary tasks: (1) encod-
ing a bounded model checking problem into a propositional
formula that represents the problem, and (2) using a SMT
solver to solve the formula, that is, finding a set of variable
assignments that makes the formula true. Solving the formula
(namely, SMT solving) involves computation-intensive pro-
cesses and is thus time-consuming. Furthermore, as the model-
checking bound increases, the encoded formulas become larger
in size and harder to solve. The computational complexity
of most SMT problems is very high [8], [9]. For all that, it
is difficult to accelerate the SMT solving procedure for the
engineers engaged in model checking. We have conducted
[1] an implementation of using distributed computation and

utilizing the power of multi-cores Central Processing Unit
(CPU), multi-CPUs, and/or even cloud computing, to acceler-
ate SMT solving. Although a series of experiments has shown
the effectiveness of our implementation on increasing the
solving efficiency, there still exist shortcomings which prevent
the distributed solving to take advantage of CPU cores as
much as possible. For example, the communication protocols
could be reformed in order to reduce the unnecessary usage of
network communication. In this paper, we describe our work
on improving the distributed SMT solving by changing the
file dispatching schemes that consider work load balance, and
by reforming the communication protocols. We change file
dispatching from coarse-grained to fine-grained, which can
help in increasing the usage of CPU cores. Some unnecessary
steps in the communication protocols are removed or merged.
We have discussed the effectiveness of our improvement theo-
retically. We repeat the experiments conducted in our previous
work [1] to make comparisons between these two schemes.
We also conduct an experiment by increasing the CPU cores
used in parallel SMT solving to investigate the influence in a
microscopic view. The experimental results demonstrate the
feasibility and efficiency of our improved implementation.
However, we have also found, for a given target benchmark,
that increasing CPU cores involved in computing will not
always increase the solving speed.

The rest of this paper is structured as follows. Section II
provides necessary preliminary knowledge and a brief intro-
duction of the tools and techniques that are used in our work.
Section III describes our previous work about distributed SMT
solving. Section IV shows our methods used to improve the
distributed SMT solving. Section V presents the experiments
to evaluate the improvement and discusses the results. Finally,
Section VI mentions possible extension (application scenarios)
of our work and concludes the paper.

II. Preliminary Knowledge

A. Bounded Model Checking

BMC was first proposed by Biere et al. in [10]. At
the early days, BMC is based on SAT solving [11]. It is
commonly acknowledged as an complementary technique to
BDD based symbolic model checking [5]. Recent years, with
the development of modern efficient SMT solvers like Z3 [12]
and CVC4 [13] etc., there is a trend to use SMT solvers instead
of SAT solvers in BMC for better expressiveness. The basic
idea of BMC is to search for counterexamples (i.e., design
bugs) in transitions (state space) whose length is restricted by

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

an integer bound k. If no bug is found, then k is increased by
one and the procedure repeats until either a counterexample is
found or the pre-defined upper bound is reached.

B. Satisfiability Modulo Theories

SMT is a research topic that concerns with the satisfiability
of formulas with respect to some background theories [14].
The development of SMT can be traced back to early work
in the late 1970s and early 1980s. In the past two decades,
SMT solvers have been well researched in both academic and
industry, and achieved significant improving on performance
and capability. Therefore, it has become possible to use SMT
solver in BMC problem solving.

SMT is an extension of propositional satisfiability (SAT),
which is the most well-known constraint-satisfaction problem
[9]. SMT generalizes boolean satisfiability (SAT) by adding
equality reasoning, arithmetic, fixed-size bit-vectors, arrays,
quantifiers, and other useful first-order theories. An SMT
solver is a tool for deciding the satisfiability (or dually the
validity) of formulas in these theories [12]. In analogy with
SAT, SMT procedures (whether they are decision procedures
or not) are usually referred to as SMT solvers [15].

BMC(M, P, k) = I0 ∧
k−1∧
i=0

Ti ∧ (¬P) (1)

In BMC, states and transitions among them are encoded to
logic formulas like (1). Then the encoded formula is sent to
a SMT solver. Solving the formula (namely, SMT solving)
involves computation-intensive processes and is thus time-
consuming. Furthermore, as the model-checking bound in-
creases, the encoded formulas become larger in size and harder
to solve. In certain circumstances, the time in solving the
formula may be unacceptably long. Therefore, an acceleration
is needed for this procedure.

III. PreviousWork

A. Overview

We have done some preliminary work in [1] on accelerating
SMT solving procedure by using Message Passing Interface
(MPI) [16], [17] and Open Multi-Processing (OpenMP) [18].
Our attempt is distributed SMT solving. MPI is used to imple-
ment distributed computing (i.e., multi-CPUs) and OpenMP
is used for multi-cores parallel computing. As mentioned in
Section I, there are two primary tasks in SMT-based BMC.
Acceleration techniques applicable to either task can increase
the whole solving efficiency. In our implementation, we choose
to accelerating the second task – SMT solving procedure.

We have implemented distributed SMT solving in C lan-
guage, using Z3 SMT solver for satisfiability verification. The
system has a Client/Server (C/S) architecture. The topology of
the network is shown in Figure 1. All clients are connected to
a center server. Data is transmitted between server and clients.
The server responds to requests for acquiring files from clients.
If there exist enough SMT files, then the files will be sent to
the target client. The SMT solving procedure happens on the
clients after receiving SMT files from the server. OpenMP is
used to create multiple threads, each thread invokes a Z3 SMT

Server

Client 3

Client n

...

Client 2

Client 4

Client 1

Figure 1: Network Topology

solver to solve specific SMT files. The solving procedure will
be finished until the server has no file to send.

We conducted a series of experiments on six groups of
benchmarks downloaded from the Satisfiability Modulo Theo-
ries Library (SMT-LIB) [19] that conform to version 2.0 of the
SMT-LIB format. The benchmarks are AUFNIRA, QF UFLRA,
AUFLIA, QF UFLIA, QF LRA-1, and QF LRA-2. The re-
sults shown in Table I and II are exciting. In Table I, the
four benchmarks are easy problems, which means that SMT
files can be solved in a short time. In addition, benchmarks in
Table II are time consuming problems. The second column of
the two tables shows the runtime which is obtained by applying
sequential SMT solving. The third to fifth columns show the
time of distributed SMT solving. The number of PCs (client)
connected to the server is increased by one each time from 1
to 3 clients. The results in Table I show that the distributed
solving strategy are proved effective for easy problems. We
can obtain more than three times faster than serial solving in
most benchmarks. The results, which are shown in Table II,
are more positive when hard problems are considered. In the
best case, the solving speed was raised by 36 times (3 clients
are connected) comparing to the serial solving.

Obviously, in this way, not only the capacity/scalability,
but also the solving speed of bounded model checking can be
increased significantly. However, our strategy can not increase
solving speed in all circumstances. When the problems to be
solved are all small and easy solved, the efficiency boost is
very limited. In the worst case, the speed only increased by
two times even 3 clients are used.

TABLE I: MEASUREMENTS OF EASY PROBLEMS
(SECOND)

Benchmarks Serial 1 Client 2 Clients 3 Clients

QF UFLRA 191.10 52.36 23.81 17.41

AUFNIRA 31.30 30.64 10.55 6.65

AUFLIA 105.80 88.87 41.90 50.48

QF UFLIA 114.52 72.58 31.65 25.84

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

TABLE II: MEASUREMENTS OF HARD PROBLEMS
(SECOND)

Benchmarks Serial 1 Client 2 Clients 3 Clients

QF LRA1 2465.78 1976.71 470.93 366.55

QF LRA2 14796.03 11265.31 558.64 409.28

0

5

10

15

20

25

30

AUFNIRA QF_UFLRA AUFLIA QF_UFLIA QF_LRA-2 QF_LRA-1

R
at
io

Benchmarks

proper

improper

Figure 2: Comparison of Proper/Improper Task Dispatch

B. Shortcoming

Although our attempt gains significant improvement on
solving performance, there are still some shortcomings of our
previous work. The first is load balance, which is the core
problems in the development of distributed model checker [20].
It means that our previous file distribution strategy is inefficient
for scenarios where the hard problems or the combination of
the easy and hard problems are considered. By hard problems,
we mean problems that consume, e.g., 600 seconds or more
per file in our experiment. The easy problems often take less
than 1 second per file. In our previous work, the files are sent
to clients by group. That means 4 files as a group are sent to a
client after one file request. The server chooses files randomly.
In other words, a client may receive easy problems as well
as hard problems. For instance, there are four tasks named
Task1, Task2, Task3 and Task4. Task4 is a hard problem
and takes more time to solve. In a client, the 4 tasks are solved
in parallel on different CPU cores. After Task1 - Task3 are
finished, Task4 is still being handled. In this case, 3 CPU cores
are idle and no new tasks is assigned to them until Task4 is
finished. The best case is that all files have the same solving
hardness. The more different the computing divergences are,
the longer the total solving time is. A primitive experiment
has been done to demonstrate this shortcoming. The result is
shown in Figure 2. The two lines denote time-improvement
ratio of distributed solving to serial solving. The blue solid line
denotes the results where the workload is dispatched evenly
to all clients (called proper case) while the red dash line
denotes uneven dispatching (called improper case). It is clear
that the proper dispatching gains higher improvement ratio
than the improper case. It should be noted that this experiment
is a trivial one just for demonstrating the importance of task
dispatch. To summarize, an improper task dispatching can slow
down the whole solving procedure.

The second shortcoming is that there are some unnecessary
communication between the server and clients during file
transfer. In our previously proposed file transferring protocol,
which is shown in Figure 3, when we try to transfer one
file to a client, a 3-time communication is needed (step 4

TABLE III: MEANING OF THE SIGNAL power[0]

power[0] Meanings

0
Request files from a client or server has
files to be send.

1 This client will be terminated.
2 No file in the server.

Client

3. send the number of the files

Server

2. power[0] = 0, power[1] = 0

4. send the file name

5. send the file size

6. send the file

7. couterexample

Repeat

1. Require Files

Figure 3: File Transferring Protocol

to step 6). Actually it is unnecessary to send two messages
in step 3 and step 4. If we did so, we have to spend more
time on establishing connections. In Table I (recall that all
tasks in this table are easy ones that can be solved less
than 1 second), when we increase the number of clients, the
improvement are limited. One of the reasons is that the delays
brought by establishing connections and the data transmission
overwhelm the superiority gained by distributed computing.
In addition, not only the file transferring stage but also other
unnecessary communication between the server and clients
could be reduced. In Figure 3, the array power[] is used to
send controlling signals. The first element power[0] stores
the signal’s type. The second element power[1] is used to
indicate the source of a message. The values and the meaning
represented by the value are shown in Table III.

IV. Improvement on Previous Distributed SMT Solving

The purpose of our distributed SMT solving is increasing
the solving performance by leveraging computing resources
of multiple computers as much as possible. In Section III, we
have discussed two main shortcomings in our previous work.
These shortcomings prevent our distributed implementation
from further enhancing the performance of the distributed solv-
ing. We try to improve the utilization of computing resources
in the following two aspects.

A. Fine-grained Dispatching Scheme

The first considered aspect is changing file dispatching
grain from coarse-grain to fine-grain. Our previous file dis-
patching scheme is coarse-grained. That means the minimum
unit to assign workload is client which realized by one MPI
process even 4 threads running in it. The client (process)
sends request to the server and receives returned files. After
it receives files from the server, the client dispatches files to
different threads where the SMT solving is done in a parallel
way. This procedure is shown in Figure 4. In this figure, the
part boxed by a dash rectangles denotes a client connected
to the server. The whole procedure starts from sending file
requirement from a client to the server for the first time. If

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

there exits at least one file on the server, they will be sent to the
client. Then the control flow enters the parallel solving stage.
After the parallel solving, all four threads need to synchronize
with each other before a new require-receiving round. The
synchronization shown in Figure 4 means that threads which
have finished their tasks in current round have to wait for other
threads which are still in solving to finish their tasks. After
the synchronization, the client will request new files again and
the procedure will be repeated. The synchronization is needed
because the file is dispatched to a client not thread. From the
macroscopic view, the work load is dispatched to a client on
process-level and the synchronization of threads will cause the
shortcoming we discussed in the above section.

Server

1. Request

2. Send Files

4. Parallel

SMT solving

3. Dispatch files

to threads

Synchronize

T
h

re
a

d
 1

T
h

re
a

d
 2

T
h

re
a

d
 3

T
h

re
a

d
 4

S
M

T
 s

o
lv

in
g

S
M

T
 s

o
lv

in
g

S
M

T
 s

o
lv

in
g

S
M

T
 s

o
lv

in
g

5. Back to Process Start point and

Synchronize

Request &

Receive files

A Client

Figure 4: Previous File Dispatching Scheme

We change the dispatching scheme described above so that
the synchronization between threads is removed after finishing
one solving round. The improved scheme is shown in Figure 5.
In our new scheme, the client starts from sending initial request
to the server and receiving the first file set. It should be noted
that this requesting-receiving round is executed only once.
Then the received files are solved by 4 threads respectively
in parallel. After that, 4 threads (in one client) will send file
requests to the server separately when they need new files. The
following receiving procedure is conducted by these threads
also. If new files were received, threads will enter parallel SMT
solving procedure again until a counterexample is founded
or no files in the server. All four threads conduct the same
procedures so that we admitted the detail of Thread 2 to
Thread 3 in Figure 5. At this point, no synchronization is
needed. Threads in a client are more independent than the
previous scheme. The function of requiring and receiving files
is implemented in thread level. Each thread can obtain new
tasks from the server by itself. It is no longer necessary to
wait for other threads to finish their solving tasks.

In our implementation with the new designed fine-grained
dispatching scheme, the architecture is still C/S. The server
runs in a loop to receive the messages sent by the clients

Server
Thread 1

Thread 2

Thread 3

Thread 4

SMT

solving
Request Files

Request Files &

Dispatch

1. Initial Request

2. Initial Receive

3. Initial Dispatch

Receive Files

(Thread 2 to Thread 4 do the same process

as Thread 1 and are admitted here.)
Client

Figure 5: New File Dispatching Scheme

Algorithm 1. Newly Designed Client Procedure

1. Process n (int process id) {
2. Initialization and definition of variables;
3. MPI Send (request files, to process 0);
4. MPI Recv (file existence condition from server);
5. if (no file is founded)
6. return 0;
7. j = 0;
8. while (j < file num) {
9. MPI Recv(file information from server);

10. MPI Recv(file from server);
11. fwrite (file to local HDD);
12. rename(file);
13. Clear receiving buffers;
14. j++;
15. }
16. invoke parallel solving(char *working path);
17. clean local files;
18. MPI Send(finish signal to server);
19. return 0;
20. }

and prepare files for them. So we only expand the length of
the control message power[] without any other changes. A
major change comes up on the client side so we present it
here in Algorithm 1. The argument process id is an unique
int number to distinguish a process which is running as a
client. At the beginning, the client sends a request to the server
(Line 3) and receives the file existence condition. The function
MPI Send() is a message sending function supplied by MPI
[16]. It is a basic blocking message send operation. Routine
returns only after the application buffer in the sending task
is free for reuse. The function MPI Recv(), which also is a
MPI supplied function, receives a message and block until
the requested data is available in the application buffer in
the receiving task. The two functions must be used in as a
pair. Otherwise, a dead block will happen. If file exists, an
initial receiving and dispatching procedure will be done (Line
8 to Line 15). The initial dispatching is done by a client in
our design because at the beginning, all CPU cores are idle,
there is no need to consider the load balance problem at that
time. The parallel SMT solving will take place by invoking
the function parallel solving() with the parameter char
*working path which indicates the local path where the
target files are saved in.

The parallel solving part is also changed. It is done inside
each client. We use OpenMP [18] to create 4 threads to
leverage computing capacity of clients as much as possible.
As we mentioned above every thread in a client now has the

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

Algorithm 2. Newly designed Function parallel solving()

1. parallel solving (char *working path) {
2. omp set num threads(m);
3. #pragma omp parallel
4. {
5. switch (omp get threadnum()) {
6. case 0:
7. {
8. Exploring all files in working path {
9. invoke Z3 to solve;

10. goto next file;
11. }
12. do{
13. Require and Receive files from the server;
14. if (no file is founded)
15. break;
16. receive all files in this round;
17. Exploring all files in working path t0 {
18. invoke Z3 to solve;
19. goto next file }
20. delete solved files in working path t0;
21. } while(server has files)
22. }
23. break;
24. ... // Case 1 to case 3 are mostly like case 0 and omitted here
25. }
26. }
27. return 0;
28. }

ability to request files from the server if necessary. Meanwhile,
the files sent by the server will be transferred to the thread to
achieve our fine-grained dispatching. We show the procedure
of function parallel solving() in Algorithm 2. In each
client, firstly, a thread resolves the files dispatched in the initial
step of the client. Then it enters a do {...} while() loop to
request and receive files until there is no file in the server. After
one receiving round, which means that a thread has received a
set of files from the server, the received files are solved by Z3
SMT solver. The number of files in a set is a variable and its
value is set to 2 by default. The argument working path t0
is generated from the argument working path to indicate
its own working path. Thread 0 to Thread 3 are running in
parallel and we omit the pseudo-code of thread 1 to thread
3 in Algorithm 2. If a counterexample is found in a solving
round, the thread will report to the server. This activity of
a counterexample finding and reporting is the same as our
previous one so that we omit it in this algorithm.

In practical implementation, the new scheme might be less
effective for the case which the solved problems are all easy
problem or easy problem dominated (most of files are easy
problems). In such case, the solving time of a single file is short
enough. In our previous scheme, the main time consuming is
the synchronization of threads. Even if the previous scheme is
used, the synchronization time is a short duration. It will not
effect the total solving time using the synchronization or not.
However, by using the new dispatching scheme, we expect to
get better performance for solving hard problems or combined
problems under the server’s random file dispatching strategy.

B. Communication Reduction

The second aspect to improve solving efficiency is by
reducing unnecessary communications between the server and
clients. In Figure 3, we can emerge step 2 with step 3 firstly.
We expand the control signal power[], which is an array with
two elements, to 3 elements. For instance, if the power[0] =

0 (means there exists files on the server), power[2] will be
the number of the files while power[1] denotes the source
of the message. If not, power[2] will set to 0 and power[0]
= 2. In the file sending stage, before sending file data, the
server will informs the file names and sizes, which are used
by the client to create a receiving buffer dynamically. We use
a struct, which consists of the name and size of the file to
be sent in the future, and the structure could be sent by using
MPI send() function once. The step 4 and step 5 in Figure
3 can be merged by using the new data structure.

Repeat
Client Server

2. power[0] = 0, power[1] = 0, power[2] = File Number

3. send the file info structure

4. send the file

5. couterexample

1. Require Files

Figure 6: New File Transferring Protocol

The reformed protocol is shown in Figure 6. The new File
transferring protocol needs one communication to send the
control information and two communications before sending
one single file, while the previous protocol needs two and
three communications, respectively. The first merging brings
an expansion of the array size from 2 to 3. In C language, one
int element consumes 2 Byte memory. For a modern PC and
Ethernet, 2 Byte is not an issue. In the second merging we
use a struct to store the file name and size. Comparing with
sending these information separately, it consumes more band-
width for one time sending. Even so, the increased bandwidth
overhead is noting to a 100M/1000M Ethernet.

Tpre = n∗ (s̄+ tname+ tsize)+ (tcontrol+ tnumber)∗n/number (2)

Tnew = n ∗ (s̄ + tstructure) + tcontrol ∗ n/number (3)

However, not every case can gain positive effect on pro-
moting solving performance. If the target problems are all
hard problems the communication overhead is not obvious
comparing with the solving time. But for easy problems, the
situation is opposite. The solving time of a easy problem is
much more shorter than establishing communication and trans-
fer control messages. The constitution of previous distributed
SMT solving time Tpre is shown in 2. n denotes the total
number of files to be solved, s̄ is the average solving of a
single file. tname and tsize represent the time of establishing
communication and sending file’s name and size respectively.
tcontrol + tnumber are consumption of sending control signal and
the number of files. number denotes files which will be sent by
the server over one requirement of a client. After the reduction,
the time consumption constitution Tnew is shown in 3. In some
cases, the average solving time s̄ is no match for establishing
the connection between the server and client. So reducing the
time denoted by tx can increase the performance significantly.
tx presents the time consummation of tname, tcontrol and tnumber.

V. Experiments and Analysis

To evaluate the efficiency of our improved distributed SMT
solving implementation, we conduct a serial experiments on

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

six groups of benchmarks downloaded from the Satisfiability
Modulo Theories Library (SMT-LIB) [19] that conform to
version 2.0 of the SMT-LIB format. The benchmarks are
same as our previous work which are AUFNIRA, QF UFLRA,
AUFLIA, QF UFLIA, QF LRA-1, and QF LRA-2. We will
not go into the details of those benchmarks, which are basically
not relevant to the topic of this paper. Please refer to [19] for
the meaning of those benchmarks. We deploy the program of
the above described algorithms in four PCs running Windows
7 Enterprise Edition with MPICH 2.0 installed. One of the
PCs is used as the server and the others are as clients.
The hardware of the PCs are as follows: PC1 has a quad-
core Intel Xeon CPU (2.66GHz) with 8GB RAM; PC2 and
PC3 have a quad-core Intel i7 CPU (2.7GHz) with 8GB
RAM; PC4 has a Intel Core2 Duo dual-core CPU (1.8GHz)
with 2GB RAM. All the four PCs are connected to 100MB
Ethernet. To evaluate the effective of our improvement, we
use our prototype to solve those benchmarks and compare
the results of our previous work. As we mentioned in the
previous section, the four benchmarks, which are AUFNIRA,
QF UFLRA, AUFLIA and QF UFLIA, are easy problems and
the benchmarks QF LRA-1 and QF LRA-2 are hard problem.
We design some new experiments beside the previous one.
Combined-1 is a combination of easy problems with hard
problems and Combined-2 is a set of 3000 easy problems. We
use our previous algorithm and the new algorithms on solving
these benchmarks respectively to prove the effectiveness of the
latter.

Firstly, we conduct same experiments using the improved
implementation for benchmarks which are used in our previous
experiments [1]. We perform a serial solving experiment for
each benchmarks using PC1. The SMT files are solved one
after another in a serial way. Then the clients are connected
to the server one by one and the same benchmarks are solved.
PC4 is used as the server. Secondly we perform the same
procedure mentioned above on new benchmarks Combined-1
and Combined-2. The results are shown in Figure 7. The
vertical rectangular marked as grey denotes the solving time
of serial solving. The blue vertical rectangular presents results
using previous algorithm. The red vertical rectangular denotes
the solving time by using our new algorithm with two im-
provements. It is obvious that our improvements are useful on
accelerating our previous distributed SMT solving implemen-
tation, especially for combined benchmarks. In Figure 7(e) and
7(f) when we add clients to 2 and 3, the improvement seems
elusive. The reason is that these two benchmarks contain one
or more hard problems which take nearly 300 seconds to be
solved. In other words, the limit of distributed solving time is
about 300 seconds no matter how many clients are connected.

Our new improved architecture give us the ability to control
the usage of CPU cores more precisely. This means that we can
add threads involved in parallel solving procedure one by one,
in an easier way than before. We conduct experiments with
Easy Benchmarks and Combined Benchmarks to investigate
the influence by increasing of CPU cores. We use PC4 as
the server and other PC as clients. At first one client is
connected, but only one CPU core is used, the second time
the number of the CPU cores is increased to 2. Four cores
will be used on each PC, after one PC reached the max value
of used CPU cores, new client will be connected. We increase

0

20

40

60

80

100

120

140

serial 1 client 2 clients 3 clients

S
o

lv
in

g
 T

im
e(

s)

Number of Clients

Previous Design

New Design

(a) AUFLIA

0

20

40

60

80

100

120

serial 1 client 2 clients 3 clients

S
o
lv

in
g
 T

im
e(

s)

Number of Clients

Previous Design

New Design

(b) QF UFLIA

0

50

100

150

200

250

serial 1 client 2 clients 3 clients

S
o

lv
in

g
 T

im
e(

s)

Number of Clients

Previous Design

New Design

(c) QF UFLRA

0

5

10

15

20

25

30

35

serial 1 client 2 clients 3 clients

S
o

lv
in

g
 T

im
e(

s)

Number of Clients

Previous Design

New Design

(d) AUFNIRA

0

500

1000

1500

2000

2500

3000

serial 1 client 2 clients 3 clients

S
o
lv

in
g
 T

im
e(

s)

Number of Time

Previous Design

New Design

(e) QF LRA-1

0

5000

10000

15000

20000

serial 1 client 2 clients 3clients

S
o

lv
in

g
 T

im
e(

s)

Number of Clients

Previous Design

New Design

(f) QF LRA-1

0

500

1000

1500

2000

serial 1 client 2 clients 3 clients

S
o

lv
in

g
 T

im
e(

s)

Number of Clients

Previous Design

New Design

(g) COMBINED-1

0

50

100

150

200

250

300

350

serial 1 client 2 clients 3 clients

S
o
lv

in
g
 T

im
e(

s)

Number of Clients

Previous Design

New Design

(h) COMBINED-2

Figure 7: The Distributed SMT solving Results

the CPU cores by one each time and repeat this procedure
with two benchmarks respectively. The results are shown in
Figure 8 and Figure 9. The results show that the curve of
solving speed decrease sharply until the fourth CPU cores are
involved. After that, the curve becomes flat. We have men-
tioned the possible reason in the paragraph above. For solving
the Combined Benchmarks, the solving time of the hardest
single problem is a limit of distributed SMT solving. For Easy
Benchmarks, due to the CPU cores are on different PCs which
are distributed in networks, the more CPU cores involved, the
more communication will take place. Considering the time
consumption resolving single easy problem and the overhead
taken by network communication, the whole communication
time consumption will be the predominant factor. In other
words, if the solving target is determined, the whole solving
time consumption could not be decreased always by simply
adding more clients.

VI. Conclusion

In this paper, we first described our previous work on ac-
celerating SMT solving using a distributed computation archi-
tecture, and discussed its shortcomings. To tackle those short-
comings, we proposed the fine-grained dispatching scheme and
communication reduction methods. A series of experiments

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12

S
o

lv
in

g
 T

im
e(

s)

Number of CPU Cores

Easy Benchmarks

Figure 8: Influence by increasing CPU cores
on easy benchmarks

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10 11 12

S
o

lv
in

g
 T

im
e(

s)

Number of CPU Cores

Combined Benchmarks

Figure 9: Influence by increasing CPU cores
on combined benchmarks

were carried out to demonstrate the feasibility and efficiency of
our improved techniques. Discussions and analysis are raised
after the experiments.

Regarding future work, in addition to the techniques meth-
ods proposed in this paper, there are other methods that can be
used for improving the efficiency of distributed SMT solving.
The methods proposed in this paper are only for the client side.
However, we can actually further improve the efficiency from
the server side as well. In our current implementation, the num-
ber of requests from clients is four times higher than before,
which may make the server get stuck. The server responds to
the clients’ requests in a serial way while parallel I/O can be
used to give the server an ability to respond to various requests
at the same time. Currently, the server randomly chooses files
to send to the clients without considering the computation
ability of different clients. Another possible idea is that the
sever could use other optimized file choosing strategy, e.g., by
the size of files, so as to avoid dispatch hard problems to weak
clients. We will investigate those possibilities in the future.

References

[1] L. Liu, W. Kong, and A. Fukuda, “Implementation and Experiments
of a Distributed SMT Solving Environment,” International Journal on
Computer Science and Engineering, vol. 6, 2014, pp. 80–90, ISSN:
0975-3397.

[2] E. M. Clarke, O. Grumberg, and D. Peled, Eds., Model Checking. The
MIT Press, 1999, ISBN: 978-0-262-03270-4.

[3] G. J. Holzmann, Ed., The SPIN Model Checker: Primer and Reference
Manual. ADDISON WESLEY Publishing Company Incorporated,
2003, ISBN: 978-0-321-77371-5.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Information and
Computation, vol. 98, no. 2, 1992, pp. 142–170.

[5] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
Model Checking,” Advances in computers, vol. 58, May 2003, pp. 117–
148.

[6] A. Armando, J. Mantovani, and L. Platania, “Bounded model checking
of software using SMT solvers instead of SAT solvers,” International
Journal on Software Tools for Technology Transfer, vol. 11, no. 1, Nov.
2008, pp. 69–83.

[7] N. Amla, R. Kurshan, K. L. McMillan, and R. Medel, “Experimental
analysis of different techniques for bounded model checking,” in
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2003, pp. 34–48.

[8] L. de Moura and N. Bjørner, “Satisfiability modulo theories: An appe-
tizer,” in Formal Methods: Foundations and Applications. Springer,
2009, pp. 23–36.

[9] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduc-
tion and applications,” Communications of the ACM, vol. 54, no. 9,
2011, pp. 69–77.

[10] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic Model Checking
without BDDs,” in In Proc. of the Workshop on Tools and Algorithms
for the Constrction and Analysis of Systems (TACAS’99). Springer
Berlin Heidelberg, 1999, pp. 193–207.

[11] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, Handbook of
Satisfiability. IOS Press, 2009, vol. 185, ch. 26, pp. 825–885.

[12] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[13] “CVC4: the SMT Solver,” 2014, URL: http://cvc4.cs.nyu.edu/web/
[accessed: 2014-01-18].

[14] A. Biere, Handbook of satisfiability. IOS Press, 2009, vol. 185.
[15] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability

modulo theories,” in Handbook of Satisfiability. IOS Press, 2009, pp.
825–885.

[16] “The Message Passing Interface (MPI) Standard,” 2014, URL:
http://www.mcs.anl.gov/research/projects/mpi/ [accessed: 2014-01-02].

[17] “MPICH User’s Guide (Version 3.0.4),” 2014, URL:
http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4-userguide.pdf
[accessed: 2014-01-02].

[18] “Open MPI: Open Source High Performance Computing,” 2014,
URL: http://openmp.org/wp/2013/12/tutorial-introduction-to-openmp/
[accessed: 2014-01-02].

[19] “SMT-LIB: The Satisfiability Modulo Theories Library,” 2013, URL:
http://www.smtlib.org/ [accessed: 2013-12-10].

[20] G. J. Holzmann and D. Bosnacki, “The Design of A Multi-core
Extension of the SPIN Model Checker,” IEEE Trans on Software
Engineering, vol. 33, no. 10, 2007, pp. 659–674.

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

