
Level-Synchronous Parallel Breadth-First Search Algorithms

For Multicore and Multiprocessor Systems

Rudolf Berrendorf and Matthias Makulla

Computer Science Department

Bonn-Rhein-Sieg University

Sankt Augustin, Germany

e-mail: rudolf.berrendorf@h-brs.de, mathias.makulla@h-brs.de

Abstract—Breadth-First Search (BFS) is a graph traversal
technique used in many applications as a building block, e.g., to
systematically explore a search space. For modern multicore
processors and as application graphs get larger, well-performing
parallel algorithms are favourable. In this paper, we systemati-
cally evaluate an important class of parallel BFS algorithms and
discuss programming optimization techniques for their imple-
mentation. We concentrate our discussion on level-synchronous
algorithms for larger multicore and multiprocessor systems. In
our results, we show that for small core counts many of these
algorithms show rather similar behaviour. But, for large core
counts and large graphs, there are considerable differences in
performance and scalability influenced by several factors. This
paper gives advice, which algorithm should be used under which
circumstances.

Index Terms—parallel breadth-first search; BFS; NUMA;
memory bandwidth; data locality

I. INTRODUCTION

BFS is a visiting strategy for all vertices of a graph. BFS

is most often used as a building block for many other graph

algorithms, including shortest paths, connected components,

bipartite graphs, maximum flow, and others [1]. Additionally,

BFS is used in many application areas where certain appli-

cation aspects are modelled by a graph that needs to be tra-

versed according to the BFS visiting pattern. Amongst others,

exploring state space in model checking, image processing,

investigations of social and semantic graphs, machine learning

are such application areas [2].

Many parallel BFS algorithms got published (see Section

III for a comprehensive overview including references), all

with certain scenarios in mind, e.g., large distributed memory

systems with the message passing programming model [3],

GPU’s (Graphic Processing Unit) with a different parallel

programming model [4], or randomized algorithms for fast,

but possibly sub-optimal results [5]. Such original work often

contains performance data for the newly published algorithm

on a certain system, but often just for the new approach,

or taking only some parameters in the design space into

account [6] [7]. To the best of our knowledge, there is no

rigid comparison that systematically evaluates relevant parallel

BFS algorithms in detail in the design space with respect to

parameters that may influence the performance and/or scala-

bility and give advice which algorithm is best suited for which

application scenario. In this paper, BFS algorithms of a class

with a large practical impact (level-synchronous algorithms for

shared memory parallel systems) are systematically compared

to each other.

The paper first gives an overview on parallel BFS algorithms

and classifies them. Second, and this is the main contribution

of the paper, a selection of level-synchronous algorithms rele-

vant for the important class of multicore and multiprocessors

systems with shared memory are systematically evaluated

with respect to performance and scalability. The results show

that there are significant differences between algorithms for

certain constellations, mainly influenced by graph properties

and the number of processors / cores used. No single algorithm

performs best in all situations. We give advice under which

circumstances which algorithms are favourable.

The paper is structured as follows. First, a BFS problem

definition is given. Section III gives a comprehensive overview

on parallel BFS algorithms with an emphasis on level syn-

chronous algorithms for shared memory systems. Section IV

prescribes algorithms in detail that are of concern in this paper.

Section V describes our experimental setup, and, in section VI,

the evaluation results are discussed, followed by a conclusion.

II. BREADTH-FIRST SEARCH GRAPH TRAVERSAL

We are interested in undirected graphs G = (V,E), where

V = {v1, ...,vn} is a set of vertices and E = {e1, ...,em} is a set

of edges. An edge e is given by an unordered pair e = (vi,v j)
with vi,v j ∈ V . The number of vertices of a graph will be

denoted by |V |= n and the number of edges is |E|= m.

Assume a connected graph and a source vertex v0 ∈V . For

each vertex u ∈V define depth(u) as the number of edges on

the shortest path from v0 to u, i.e., the edge distance from v0.

With depth(G) we denote the depth of a graph G defined as

the maximum depth of any vertex in the graph relative to the

given source vertex. Please be aware that this may be different

to the diameter of a graph, the largest distance between any

two vertices.

The problem of BFS for a given graph G = (V,E) and a

source vertex v0 ∈ V is to visit each vertex in a way such

that a vertex v1 must be visited before any vertex v2 with

depth(v1)< depth(v2). As a result of a BFS traversal, either

the level of each vertex is determined or a (non-unique) BFS

spanning tree with a father-linkage of each vertex is created.

Both variants can be handled by BFS algorithms with small

modifications and without extra computational effort. The

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

problem can be easily extended and handled with directed

or unconnected graphs. A sequential solution to the problem

can be found in textbooks based on a queue where all non-

visited adjacent vertices of a visited vertex are enqueued [1].

The computational complexity is O(|V |+ |E|).

III. PARALLEL BFS ALGORITHMS AND RELATED WORK

We combine in our BFS implementations presented later

in Section IV several existing algorithmic approaches and

optimization techniques. Therefore, the presentation of related

work has to be intermingled with an overview on parallel BFS

algorithms itself.

In the design of a parallel BFS algorithm, different chal-

lenges might be encountered. As the computational density

for BFS is rather low, BFS is memory bandwidth limited for

large graphs and therefore bandwidth has to be handled with

care. Additionally, memory accesses and work distribution are

both irregluar and data-dependent. Therefore, in large NUMA

systems (Non-Uniform Memory Access [8]) data layout and

memory access should respect processor locality. In multicore

multiprocessor systems, things get even more complicated,

as several cores share higher level caches and NUMA-node

memory, but have distinct and private lower-level caches.

A more general problem for many parallel algorithms in-

cluding BFS is a sufficient load balance when static partition-

ing is not sufficient. Even when an appropriate mechanism

for load balancing is deployed, graphs might only supply a

limited amount of parallelism. This aspect especially affects

the popular level-synchronous approaches for parallel BFS we

concentrate on later.

In BFS algorithms, housekeeping has to be done on visited

/ unvisited vertices with several possibilities how to do that. A

rough classification of algorithms can be achieved by looking

at these strategies. Some of them are based on special container

structures where information has to be inserted and deleted.

Scalability and administrative overhead of these containers are

of interest. Many algorithms can be classified into two groups:

container centric and vertex centric approaches.

A. Container Centric Approaches

The emphasis in this paper is on level-synchronous al-

gorithms where data structures are used, which store the

current and the next vertex frontier. Generally speaking, these

approaches deploy two identical containers (current and next)

whose roles are swapped at the end of each iteration. Usually,

each container is accessed in a concurring manner such that the

handling/avoidance of synchronized access becomes crucial.

Container centric approaches are eligible for dynamic load

balancing but are sensible to data locality on NUMA systems.

Container centric approaches for BFS can be found in some

parallel graph libraries [9] [10].

For level synchronous approaches, a simple list is a suffi-

cient container. There are approaches, in which each thread

manages two private lists to store the vertex frontiers and

uses additional lists as buffers for communication [3] [11].

This approach deploys a static one dimensional partitioning of

the graph’s vertices and therefore supports data locality. But

this approach completely neglects load balancing mechanisms.

The very reverse would be an algorithm, which focuses on

load balancing. This can be achieved by using special lists

that allow concurrent access of multiple threads. In contrast

to the thread private lists of the previous approach, two global

lists are used to store the vertex frontiers. The threads then

concurrently work on these lists and implicit load balancing

can be achieved. Concurrent lock-free lists can be efficiently

implemented with an atomic compare-and-swap operation.

It is possible to combine both previous approaches and

create a well optimized method for NUMA architectures [6]

[7] (this paper came too late to our knowledge to include it in

our evaluation). Furthermore, lists can be utilised to implement

container centric approaches on special hardware platforms as

graphic accelerators with warp centric programming [4].

Besides strict FIFO (First-In-First-Out) and relaxed list

data structures, other specialized containers may be used.

A notable example is the bag data structure [12], which is

optimized for a recursive, task parallel formulation of a parallel

BFS algorithm. This data structure allows an elegant, object-

oriented implementation with implicit dynamic load balancing,

but which regrettably lacks data locality.

B. Vertex Centric Approaches

A vertex centric approach achieves parallelism by assigning

a parallel entity (e.g., a thread) to each vertex of the graph.

Subsequently, an algorithm repeatedly iterates over all vertices

of the graph. As each vertex is mapped to a parallel entity,

this iteration can be parallelised. When processing a vertex,

its neighbours are inspected and if unvisited, marked as part

of the next vertex frontier. The worst case complexity for this

approach is O(n2) for degenerated graphs (e.g., linear lists).

This vertex centric approach might work well only, if the graph

depth is very low.

A vertex centric approach does not need any additional

data structure beside the graph itself and the resulting level-

/ f ather-array that is often used to keep track of visited

vertices. Besides barrier synchronisation at the end of a level

iteration, a vertex centric approach does with some care not

need any additional synchronisation. The implementation is

therefore rather simple and straightforward. The disadvantages

of vertex centric approaches are the lacking mechanisms for

load balancing and graphs with large depth (e.g., a linear list).

But this overall approach makes it well-suited for GPU’s

where each thread is mapped to exactly one vertex [13] [14].

This approach can be optimized further by using hierarchical

vertex frontiers to utilize the memory hierarchy of a graphic

accelerator, and by using hierarchical thread alignment to

reduce the overhead caused by frequent kernel restarts [15].

Their linear memory access and the possibility to take

care of data locality allow vertex centric approaches to be

efficiently implemented on NUMA machines [16]. Combined

with a proper partitioning, they are also suitable for distributed

systems, as the overhead in communication is rather low.

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

C. Other Approaches

The discussion in this paper concentrates on level-

synchronous parallel BFS algorithms for shared-memory par-

allelism. There are parallel algorithms published that use

different approaches or that are designed for other parallel

architectures in mind. In [5], a probabilistic algorithm is shown

that finds a BFS tree with high probability and that works

in practice well even with high-diameter graphs. Beamer

et.al. [17] combines a level-synchronous top-down approach

with a vertex-oriented bottom-up approach where a heuristic

switches between the two alternatives; this algorithm shows for

small world graphs very good performance. Yasui et.al. [18]

explores this approach in more detail for multicore systems.

In [19], a fast GPU algorithm is introduced that combines

fast primive operations like prefix sums available with highly-

optimized libraries. A task-based approach for a combination

of CPU/ GPU is presented in Munguia et.al. [20].

For distributed memory systems, the partitioning of the

graph is crucial. Basically, the two main strategies are one

dimensional partitioning of the vertices and two dimensional

edge partitioning [3]. The first approach is suited for small

distributed and most shared memory systems, while the second

one is viable for large distributed systems. Optimizations of

these approaches combine threads and processes in a hybrid

environment [21] and use asynchronous communication [22]

to tolerate communication latencies.

D. Common extensions and optimizations

An optimization applicable to some algorithms is the use

of a bitmap to keep track of visited vertices in a previous

iteration [6]. The intention is to keep more information on

visited vertices in a higher level of the cache hierarchy.

Fine-grained tuning like memory prefetching can be used

to tackle latency problems [7] (but which might produce even

more pressure on memory bandwidth).

Besides implicit load balancing of some container centric

approaches, there exist additional methods. One is based on a

logical ring topology [23] of the involved threads. Each thread

keeps track of its neighbour’s workload and supplies it with

additional work, if it should be idle. Another approach to adapt

the algorithm to the topology of the graph monitors the size of

the next vertex frontier. At the end of an iteration, the number

of active threads is adjusted to match the workload of the

coming iteration [11].

IV. EVALUATED ALGORITHMS

In our evaluation, we used the following parallel algorithms,

each representing certain points in the described algorithm

design space for shared memory systems, with an emphasis

on level-synchronous algorithms:

• global: vertex-centric strategy as described in Section

III-B, with parallel iterations over all vertices on each

level [16]. As pointed out already, this will only work for

graphs with a very low depth.

• graph500: OpenMP reference implementation in the

Graph500 benchmark [9] using a single array list with

atomic Compare-And-Swap (CAS) and Fetch-And-Add

accesses to insert chunks of vertices. Vertex insertion into

core-local chunks is done without synchronized accesses.

Only the insertion of a full chunk into the global list has

to be done in a synchronized manner. All vertices of a

full chunk get copied to the global array list.

• bag: using OpenMP [24] tasks and two bag containers as

described in [12]. This approach implicitly deploys load

balancing mechanisms. Additionally, we implemented a

Cilk++ version as in the the original paper that didn’t

perform better than the OpenMP version.

• list: deploys two chunked linear lists with thread safe

manipulators based on CAS operations. Threads concur-

rently remove chunks from the current node frontier and

insert unvisited vertices into private chunks. Once a chunk

is full, it is inserted into the next node frontier, relaxing

concurrent access. The main difference to graph500 ist

that vertices are not copied to a global list but rather a

whole chunk gets inserted (updating pointers only). There

is some additional overhead, if local chunks get filled only

partially.

• socketlist: extends the previous approach to respect

data locality and NUMA awareness. The data is logically

and physically distributed to all NUMA-nodes (i.e., CPU

sockets). Each thread primarily processes vertices from its

own NUMA-node list where the lists from the previous

approach are used for equal distribution of work. If a

NUMA-node runs out of work, work is stolen from

overloaded NUMA-nodes [6].

• bitmap: further refinement and combination of the pre-

vious two approaches. A bitmap is used to keep track

of visited vertices to reduce memory bandwidth. Again,

built-in atomic CAS operations are used to synchronize

concurrent access [6].

The first algorithm is vertex-centric, all others are level-

synchronous container-centric in our classification and utilize

parallelism over the current vertex front. The last three im-

plementations use a programming technique to trade (slightly

more) redundant work against atomic operations as described

in [25]. socketlist is the first in the algorithm list that pays

attention to the NUMA memory hierarchy, bitmap additionally

tries to reduce memory bandwidth by using an additional

bitmap to keep track of the binary information whether a vertex

is visited or not.

V. EXPERIMENTAL SETUP

In this section, we specify our parallel system test environ-

ment, describe classes of graphs and chosen graph represen-

tatives in this classes.

A. Test Environment

We used in our tests different systems, the largest one a 64-

way AMD-6272 Interlagos based system with 128 GB shared

memory organised in 4 NUMA nodes, each with 16 cores (1.9

GHz). Two other systems are Intel based with 2 NUMA nodes

each (Intel-IB: 48-way E5-2697 Ivy bridge EP at 2.7 GHz,

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

Intel-SB: 32-way E5-2670 Sandy-Bridge EP at 2.6 GHz). We

will focus our discussion on the larger Interlagos system and

discuss in section VI-C the influence of the system details.

B. Graphs

It is obvious that graph topology will have a significant

influence on the performance of parallel BFS algorithms. We

used beside some real graphs synthetically generated pseudo-

random graphs that guarantee certain topological properties.

R-MAT [26] is such a graph generator with parameters a,b,c
influencing the topology and clustering properties of the gen-

erated graph (see [26] for details). R-MAT graphs are mostly

used to model scale-free graphs. We used in our tests graphs

of the following classes:

• Graphs with a very low average and maximum vertex

degree resulting in a rather high graph depth and limited

vertex fronts. A representative for this class is the road

network road-europe.

• Graphs with a moderate average and maximum vertex de-

gree. For this class we used Delaunay graphs representing

Delaunay triangulations of random points (delaynay) and

a graph for a 3D PDE-constraint optimization problem

(nlpkkt240).

• Graphs with a large variation of degrees including few

very large vertex degrees. Related to the graph size, they

have a smaller graph depth. For this class of graphs we

used a real social network (friendster), link information

for web pages (wikipedia), and synthetically generated

Kronecker R-MAT graphs with different vertex and edge

counts and three R-MAT parameter sets. The first parame-

ter set named 30 is a = 0.3,b = 0.25,c = 0.25, the second

parameter set 45 is a = 0.45,b = 0.25,c = 0.15, and the

third parameter set 57 is a = 0.57,b = 0.19,c = 0.19. The

default for all our RMAT-graphs is the parameter set 57;

the graphs with the suffix -30 and -45 are generated with

the corresponding parameter sets.

All our test graphs are connected, for R-MAT graphs guar-

anteed with n − 1 artificial edges connecting vertex i with

vertex i+ 1. Some important graph properties for the graphs

used are given in table I. For a general discussion on degree

distributions of R-MAT graphs see [27].

VI. RESULTS

In this section, we discuss our results for the described

test environment. Performance results will be given in Million

Traversed Edges Per Second MT EPS := m/t/106, where m

is the number of edges and t is the time an algorithm

takes. MTEPS is a common metric for BFS performance [9]

(higher is better). In an undirected graph representing an edge

internally with two edges (u,v) and (v,u) only half of the

internal edges are counted in this metric.

In the following discussion on results, we distinguish be-

tween different views on the problem. It is not possible to

show all our results in this paper in detail (3 parallel systems,

35 different graphs, up to 11 thread counts, 32/64 bit versions,

different compilers / compiler switches). Rather than that, we

TABLE I: CHARACTERISTICS FOR SOME OF THE USED GRAPHS.

degree graph

graph name |V |×106 |E|×106 avg. max. depth

delaunay (from [28]) 16.7 100.6 6 26 1650

nlpkkt240 (from [29]) 27.9 802.4 28.6 29 242

road-europe (from [28]) 50.9 108.1 2.1 13 17345

wikipedia (from [29]) 3.5 45 12.6 7061 459

friendster (from [30]) 65.6 3612 55 5214 22

RMAT-1M-10M 1 10 10 43178 400
RMAT-1M-10M-45 1 10 10 4726 16
RMAT-1M-10M-30 1 10 10 107 11
RMAT-1M-100M 1 100 100 530504 91
RMAT-1M-100M-45 1 100 100 58797 8
RMAT-1M-100M-30 1 100 100 1390 9
RMAT-1M-1G 1 1000 1000 5406970 27
RMAT-1M-1G-45 1 1000 1000 599399 8
RMAT-1M-1G-30 1 1000 1000 13959 8

RMAT-100M-1G 100 1000 10 636217 3328
RMAT-100M-2G 100 2000 20 1431295 1932
RMAT-100M-3G 100 3000 30 2227778 1670
RMAT-100M-4G 100 4000 40 3024348 1506

summarize results and show only interesting or representative

aspects in detail.

On large and more dense graphs, MTEPS values are gener-

ally higher than on very sparse graphs. The MTEPS numbers

vary between less than 1 and approx. 3,500, depending on the

graph. This is due to the fact that in denser graphs many visited

edges do not generate an additional entry (and therefore work)

in a container of unvisited vertices. This observation is not true

for global, where in all levels all vertices get traversed.

A. Graph Properties and Scalability

In terms of scalability, parallel algorithms need enough

parallel work to feed all threads. For graphs with limitating

properties, such as small vertex degrees or small total number

of vertices / edges, there are problems to feed many parallel

threads. Additionally, congestion in accessing smaller shared

data structures arise. For such graphs (road network, the

delaunay graph and partially small RMAT-graphs), for all

analysed algorithms performance is limited or even drops as

soon the number of threads is beyond some threshold; on all

of our systems around 8-16 threads. Figure 1a shows the worst

case of such an behaviour with road-europe. Figure 2 shows

different vertex frontier sizes for 3 graphs.

For large graphs and/or high vertex degrees (all larger

R-MAT graphs, friendster, nlpkkt240), the results were

quite different from that and all algorithms other than global

showed on nearly all such graphs and with few exceptions a

continuous but in detail different performance increase over all

thread counts (see detailled discussion below). Best speedups

reach nearly 40 (bitmap with RMAT-1M-1G-30) on the 64-way

parallel system.

B. Algorithms

For small thread counts up to 4-8, all algorithms other than

global show with few exceptions and within a factor of 2

comparable results in absolute performance and behaviour.

But, for large thread counts, algorithm behaviour can be quite

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(a) Limited scalability with road-europe graph.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(b) Memory bandwidth optimization with bitmap for friendster graph.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(c) Similar principal behaviour for dense graphs with a small depth
(RMAT-1M-1G-30 on Intel-IB, 32 bit indices).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(d) RMAT-1M-1G-30 on AMD system with 64 bit indices.

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60

M
T

E
P

S

number of threads

global
graph500

bag
list

socketlist
bitmap

(e) Intel-IB system with wikipedia graph.

Fig. 1: Selected performance results.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000

si
ze

 (
nu

m
be

r
of

 v
er

tic
es

)

level iteration

road-europe wikipedia friendster

Fig. 2: Dynamic sizes of some vertex frontiers (and potential parallelism).

different. We concentrate, therefore, the following discussions

on individual algorithms primarily on large thread counts.

The algorithm global has a very different approach than all

other algorithms which can be also easily seen in the results.

For large graphs with low vertex degrees, this algorithm

performs extremely poor as many level-iterations are necessary

(e.g., factor 100 slower for road graphs compared to the

second worst algorithm; see Figure 1a). The algorithm is only

competitive on the systems we used if the graph is very small

(no startup overhead with complex data structures) and the

graph depth is very low resulting in only a few level-iterations

(e.g., less than 10).

The graph500 algorithm uses atomic operations to incre-

ment the position where (a chunk of) vertices get to be inserted

into the new vertex front. Additionally, all vertices of a local

chunk get copied to the global list (vertex front). This can

be fast as long as the number of processors is small. But, as

the thread number increases, the cost per atomic operation

increases [25], and therefore, the performance drops often

significantly relative to other algorithms. Additionally, this

algorithm does not respect data/NUMA locality on copying

vertices which gets a problem with large thread counts.

Algorithm bag shows only good results for small thread

counts or dense graphs. Similar to graph500, this algorithm is

not locality / NUMA aware. The bag data structure is based

on smaller substructures. Because of the recursive and task

parallel nature of the algorithm, the connection between the

allocating thread and the data is lost, destroying data locality

as the thread count increases. Respecting locality is delegated

solely to the run-time system mapping tasks to cores / NUMA

nodes. Explicit affinity constructs as in the newest OpenMP

version 4.0 [24] could be interesting for that to optimize this

algorithm for sparser graphs or many threads.

The simple list algorithm has good performance values

for small thread counts. But for many threads, list performs

rather poor on graphs with high vertex degrees. Reasons

are implementation specific the use of atomic operations for

insert / remove of full/final chunks and that in such vertex

lists processor locality is not properly respected. When a

thread allocates memory for a vertex chunk and inserts this

chunk into the next node frontier, it might be dequeued by

another thread in the next level iteration. This thread might

be executed on a different NUMA-node, which results in

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

remote memory accesses. This problem becomes larger with

increasing thread/processor counts.

The socketlist approach improves the list idea with

respect to data locality. For small thread counts, this is a

small additional overhead, but, for larger thread counts, the

advantage is obvious looking at the cache miss and remote

access penalty time of current and future processors (see all

figures).

The additional overhead of the bitmap algorithm makes

this algorithm with few threads even somewhat slower than

some other algorithms. But the real advantage shows off

with very large graphs and large thread counts, where even

higher level caches are not sufficient to buffer vertex fronts.

The performance difference to all other algorithms can be

significant and is even higher with denser graphs (see Figures

1b, 1c, and 1d).

C. Influence of the system architecture

As described in Section V, we used in our tests different

systems but concentrate our discussions so far on results on the

largest AMD system. While the principle system architecture

on Intel and AMD systems got in the last years rather simi-

lar, implementation details, e.g., on cache coherence, atomic

operations and cache sizes are quite different.

While the Intel systems were 2 socket systems, the AMD

system was a 4 socket system, and that showed (as expected)

more sensibility to locality / NUMA. Hyperthreading on Intel

systems gave improvements only for large RMAT graphs.

Switching from 64 to 32 bit indices (which restricts the

number of addressable edges and vertices in a graph) showed

improvements due to lower memory bandwidth requirements.

These improvements were around 20-30% for all algorithms

other than bitmap.

VII. CONCLUSIONS

In our evaluation for a selection of parallel level syn-

chronous BFS algorithms for shared memory systems, we

showed that for small systems / a limited number of threads

all algorithms other than global behaved almost always rather

similar, including absolute performance.

But using large parallel NUMA-systems with a deep mem-

ory hierarchy, the evaluated algorithms show often significant

differences. Here, the NUMA-aware algorithms socketlist

and bitmap showed constantly good performance and good

scalability, if vertex fronts are large enough. Both algorithms

utilise dynamic load balancing combined with locality han-

dling, this combionation is a necessity on larger NUMA

systems.

REFERENCES

[1] R. Sedgewick, Algorithms in C++, Part 5: Graph Algorithms, 3rd ed.
Addison-Wesley Professional, 2001.

[2] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao, “User
interactions in social networks and their implications,” in Eurosys, 2009,
pp. 205–218.

[3] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on BlueGene/L,” in ACM/IEEE Supercomputing, 2005, pp.
25–44.

[4] S. Hong, S. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in 16th ACM Symp. PPoPP, 2011,
pp. 267–276.

[5] J. D. Ullman and M. Yannakakis, “High-probability parallel transitive
closure algorithms,” SIAM Journal Computing, vol. 20, no. 1, 1991, pp.
100–125.

[6] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph ex-
ploration on multicore processors,” in ACM/IEEE Intl. Conf. HPCNSA,
2010, pp. 1–11.

[7] J. Chhungani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast and
efficient graph traversal algorithm for CPUs: Maximizing single-node
efficiency,” in Proc. 26th IEEE IPDPS, 2012, pp. 378–389.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 5th ed. Morgan Kaufmann Publishers, Inc., 2012.

[9] Graph 500 Comitee, Graph 500 Benchmark Suite,
http://www.graph500.org/, retrieved: 08.03.2014.

[10] D. Bader and K. Madduri, “SNAP, small-world network analysis and
partitioning: an open-source parallel graph framework for the exploration
of large-scale networks,” in 22nd IEEE Intl. Symp. on Parallel and
Distributed Processing, 2008, pp. 1–12.

[11] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in 21st Intl. Conf. on Parallel and
Distributed Computing and Systems, 2009, pp. 1–8.

[12] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of
reducers),” in Proc. 22nd ACM Symp. on Parallelism in Algorithms
and Architectures, 2010, pp. 303–314.

[13] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in 14th Intl. Conf. on High Performance Comp.,
2007, pp. 197–208.

[14] P. Harish, V. Vineet, and P. Narayanan, “Large graph algorithms for
massively multithreaded architectures,” IIIT Hyderabad, Tech. Rep.,
2009.

[15] L. Luo, M. Wong, and W. Hwu, “An effective GPU implementation of
breadth-first search,” in 47th Design Automation Conference, 2010, pp.
52–55.

[16] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” in Intl. Conf. on Parallel
Architectures and Compilation Techniques, 2011, pp. 78–88.

[17] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proc. Supercomputing 2012, 2012, pp. 1–10.

[18] Y. Yasui, K. Fujusawa, and K. Goto, “NUMA-optimized parallel
breadth-first search on multicore single-node system,” in Proc. IEEE
Intl. Conference on Big Data, 2013, pp. 394–402.

[19] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” in Proc. PPoPP. IEEE, 2012, pp. 117–127.

[20] L.-M. Munguı̀a, D. A. Bader, and E. Ayguade, “Task-based parallel
breadth-first search in heterogeneous environments,” in Proc. HiPC 2012,
2012, pp. 1–10.

[21] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed
memory systems,” in Proc. Supercomputing, 2011, pp. 65–79.

[22] H. Lv, G. Tan, M. Chen, and N. Sun, “Understanding parallelism in
graph traversal on multi-core clusters,” Computer Science – Research
and Development, vol. 28, no. 2-3, 2013, pp. 193–201.

[23] Y. Zhang and E. Hansen, “Parallel breadth-first heuristic search on a
shared-memory architectur,” in AAAI Workshop on Heuristic Search,
Memory-Based Heuristics and Their Applications, 2006, pp. 1 – 6.

[24] OpenMP API, 4th ed., OpenMP Architecture Review Board,
http://www.openmp.org/, Jul. 2013, retrieved: 08.03.2014.

[25] R. Berrendorf, “Trading redundant work against atomic operations on
large shared memory parallel systems,” in Proc. Seventh Intl. Conference
on Advanced Engineering Computing and Applications in Sciences
(ADVCOMP), 2013, pp. 61–66.

[26] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in SIAM Conf. Data Mining, 2004, pp. 442 – 446.

[27] C. Groër, B. D. Sullivan, and S. Poole, “A mathematical analysis of the
R-MAT random graph generator,” Networks, vol. 58, no. 3, Oct. 2011,
pp. 159–170.

[28] DIMACS, DIMACS’10 Graph Collection,
http://www.cc.gatech.edu/dimacs10/, retrieved: 08.03.2014.

[29] T. Davis and Y. Hu, Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/, retrieved: 08.03.2014.

[30] J. Leskovec, Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data/index.html, retrieved: 08.03.2014.

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-339-1

FUTURE COMPUTING 2014 : The Sixth International Conference on Future Computational Technologies and Applications

