
Future Irregular Computing with Memory Accelerators

 Noboru Tanabe
Toshiba Corporation

Kawasaki, Japan
noboru.tanabe@toshiba.co.jp

Junko Kogou, Sonoko Tomimori, Masami Takata, Kazuki Joe
Nara Women's University

Nara, Japan
{vega, tomimori-sonoko0826, takata, joe}@ics.nara-wu.ac.jp

Abstract—Effective memory bandwidth for irregular
applications such as a CG (Conjugate Gradient) solver and
graph processing for larger sparse matrices must be
accelerated with lower power in the future. Since the total
performance of such HPC (High Performance Computing)
applications is limited by memory bandwidth, smart memory
is a possible lower power accelerator than GPUs (Graphics
Processing Units). In this paper, we propose a GPU based
HPC system using memory accelerators with gather functions
and a HMC (Hybrid Memory Cube) interface. We
implemented CG solver for it. The memory accelerator
converts indirect accesses, which are unsuitable for cache and
device memory, into direct accesses using gather functions.
This paper presents the performance of the proposed memory
architecture with University of Florida Sparse Matrix
Collection. The result shows 1.01 to 1.20 times acceleration by
the memory accelerator against the texture cache, even in the
case of small matrices that take advantage of texture cache
effects. The ratio will dramatically increase when the gap of
the cache capacity and the matrices size increases. The
scalability of the proposed method is guaranteed by the
scalable broadcast thorough interconnection network.

Keywords-high performance computing; memory
architecture; smart memory; irregular processing; CG solver

I. INTRODUCTION
The computation ability of vector processor based

supercomputers can be substituted with COTS (Commercial
Off-The-Shelf) CPUs or GPUs in many cases. The
computation ability of a high-end GPU reaches to one Tera
FLOPS (FLoating point Operation Per Second) to be widely
used for various applications known as GPGPU (General
Purpose computing on Graphics Processing Units). The peak
performance of GPUs seems to continuously and steadily
increase in FLOPS according to the Moore's law [1]. If such
performance progress is not given with sufficient device
memory bandwidth for the peak performance, the memory
wall problem gets more serious year by year. Hierarchical
memory systems, typified by cache memory, do not address
the problem when data reusability is small. However, in the
case of some applications such as solving a system of linear
equations consisting of kernels of SpMV (sparse matrix-
vector multiplication), data reusability cannot be exploited so
much. When matrices are small, such as a benchmark
collection for a sparse matrix [2], the problem is not critical
because GPU's cache works well for the small size matrices.
The larger the target sparse matrices are, the more frequent
and inefficient accesses to the external memory the cache

needs to make, thus degrading performance. When large
enough sparse matrices are to get regular accesses, most
accesses can be converted to coalesced accesses of GPUs so
that each cache miss takes a cache line with possible data to
be accessed later. On the other hand, when the same sparse
matrices are to get irregular accesses because the cache line
size or the shortest burst length of GDDR5(Graphics Double
Data Rate 5) memory is 128 bytes, it is reported that a cache
miss exhausts the memory bandwidth 16 times (double
precision) or 32 times (single precision) [3]. The line size of
the last level cache (L2 cache) on a new generation GPU is
larger than that of texture cache on older GPUs. Therefore,
effective bandwidth degradation for huge SpMV (i.e. in the
situation with low cache hit rates) of the newer GPU will be
larger than that of the older GPUs.

To solve the above problem, an extended large capacity
functional memory (memory accelerator) system with PCI
(Peripheral Component Interconnect) express based interface
and a set of scalable SpMV algorithms for GPUs are
proposed in [3]. Although the experiment results of the
SpMV algorithms and the functional memory system show
four times performance improvement at a maximum, the
contribution of the algorithms and the functional memory for
the performance improvement is not described separately. In
the meantime, they show that the bottleneck of the proposed
algorithms and the functional memory lies in the PCI express.

The main contributions of this paper are summarized
below:

• We propose new interfaces for the functional
memory on a future GPU cluster to avoid the PCI
express bottleneck, where Hybrid Memory Cube
ports are promising.

• We analyze the relation between the cache hit rate
and the matrix size for an SpMV executed on two
kinds of GPUs. A tendency of hit rate degradation of
texture cache and L1 cache is observed when row
vector size increases.

• We implement a CG (Conjugate Gradient) solver
including SpMVs for the proposed memory system
to evaluate the performance improvement against a
cache based system. Since we use the same
algorithms for the evaluation, the improvement of
memory system is estimated separately.

• During the execution of the CG solver on the
proposed memory system, we get its breakdowns to
detect hidden problems.

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

• To solve the above new problems, we improve the
implementation based on CUBLAS, which is a
numerical calculation library by Nvidia.

The rest of this paper is organized as follows: In Section
2, we introduce related works. In Section 3, we explain the
architecture of our proposed memory system. In Section 4,
the target workload (i.e. CG solver) on the proposed
architecture is explained. We present the performance
evaluation results in Section 5. In Section 6, we conclude the
work and present future considerations.

II. RELATED WORKS
Recently, there are many research results that SpMV on

GPU is accelerated to take the advantage of larger memory
bandwidth of GPU rather than CPU [3]-[12]. So far, some
sparse matrix libraries are already open to the public, such
as in Nvidia [13][14]. While most studies are about storage
formats for sparse matrix [3]-[12], some studies make use of
GPU's texture cache for high-speed access to column vectors
of the sparse matrix [4]-[12]. Although GPU's texture
memory is read-only memory from the GPU, it can be used
for storing column vectors, which are reusable, by the GPU
with dedicated functions such as tex1Dfetch and tex2D to
access the column vectors. Since the texture memory is
cached on the texture cache, accesses to the device memory
would be reduced if appropriate disposition of non-zero
elements of sparse matrices are given.

Latest GPUs (e.g., Fermi architecture GPUs in the case
of Nvidia) contain general purpose L1 and L2 caches for
global memory on the device memory as well as texture
memory. Using such general purpose caches, the column
vectors can be cached without any dedicated functions to
reduce device memory accesses.

Among many studies for accelerating SpMV, there are
very few studies for accessing huge sparse matrices from
many GPUs. In such studies, the huge sparse matrices should
be decomposed for each device memory on the GPUs.
Unless smart decomposition methods are used, considerable
numbers of fine grain random communications, which
degrade the scalability, are generated. In [5], the reduction of
inter-GPU communication by hyper graph partitioning is
reported, but the efficiency heavily depends on the matrix
shape and/or the number of GPUs.

III. MEMORY ACCELERATOR

A. Basic concept
Figure 1(a) illustrates the mapping of applications and

their suitable hardware accelerators categorized by the
density of memory access and computation. The memory
accelerator is hardware for the fast execution of memory
bandwidth intensive applications such as irregular SpMVs
that are difficult to be optimized for existing hardware
accelerators. When a series of cache misses are issued,
inefficient memory accesses where only four or eight bytes
out of a 128 byte cache line are valid would be repeated. In
such the case, the accesses to column vectors, which occupy
one third of the total accesses, require the memory

bandwidth 32 times for single precision and 16 times for
double precision.

The memory accelerator has a memory controller with
hardwired scatter/gather functions on the memory-side, i.e.
between a block of external memory chips and a network-on-
chip (NoC). The hardwired scatter/gather functions on the
memory-side have been implemented in DIMMnet-2[15].
Figure 1(b) gives the concept of our proposed system
including memory chips connected by many memory
channels with a small number of wires for random memory
accesses.

Recently, a memory subsystem that supports gather/
scatter capabilities is announced as a focus area [16] by IAA
which is an organization for an Exa-FLOPS machine of the
United States.

Figure 1. The concept of Memory accelerator: (a) Pourpose, (b) Proposed

architecture.

B. Architectural improvement
In this paper, we propose an architectural improvement to

the architecture of [3], where the interface of the memory
accelerator is PCI express. Although it is reported in [3] that
four times acceleration is observed with the combinatorial
use of memory accelerator and pre-processing algorithms, it
turned out that the bottleneck lies in the PCI express. As a
short-term solution, we have adopted PCI express [3] as the
host interface for the memory accelerator. For the middle and
long term solutions, we are to adopt the GDDR5 device
memory interface and the HMC (Hybrid Memory Cube) [17]
interface, respectively. The current GDDR5 DRAM
(Dynamic Random Access Memory) provides the bandwidth
of 28GB/s.

We propose that the memory accelerator is implemented
with 3D stacking as an HMC to integrate its hardwired
scatter/gather functions inside the logic base chip of the
HMC as shown in Fig. 1(b). Since each host interface of the

M e m o r y
A c c e le r a to r

M e m o ry a c c e s s d e n s ity [B /s]
C

om
pu

tin
g

de
ns

ity
[F

LO
PS

]

C o n v e n tio n a l
a c c e le r a to r

V e c to r s u p e r

F F T
W h e th e r C F D

N -b o d y
M a tM u l

S e q u e n tia l
C P U

G P U

I r e g u la r
S p M V

R e g u la r
S p M V

M o o re ’s la w im p ro v e s o n ly F L O P S

M e m o ry w a ll is g e t t in g h ig h e r

M e m o r y
A c c e le r a to r

M e m o ry a c c e s s d e n s ity [B /s]
C

om
pu

tin
g

de
ns

ity
[F

LO
PS

]

C o n v e n tio n a l
a c c e le r a to r

V e c to r s u p e r

F F T
W h e th e r C F D

N -b o d y
M a tM u l

S e q u e n tia l
C P U

G P U

I r e g u la r
S p M V

R e g u la r
S p M V

M o o re ’s la w im p ro v e s o n ly F L O P S

M e m o ry w a ll is g e t t in g h ig h e r

(a)

Interleaved
& Stacked

D R A M

V ector address
generator

Vector
register

HostI/F
Non-contiguous access
W ith vector com m and M emory

I/F
For

H M C

Core 2

Core n

N
O
C

・・・

CO TS Processor
(Cache based, G PU)H ardw ired G ather/Scatter

H ybrid M em ory Cube w ith gather func.

Core 1

Core 0

Low pow er short w ires

Index
Address

High pow er long w ires

Highly effective
Long burst transfer

Interleaved
& Stacked

D R A M

V ector address
generator

Vector
register

HostI/F
Non-contiguous access
W ith vector com m and M emory

I/F
For

H M C

Core 2

Core n

N
O
C

・・・

CO TS Processor
(Cache based, G PU)H ardw ired G ather/Scatter

H ybrid M em ory Cube w ith gather func.

Core 1

Core 0

Low pow er short w ires

Index
Address

High pow er long w ires

Highly effective
Long burst transfer

(b)

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

HMC provides 160 to 320GB/s bandwidth, the bottleneck
problem would be resolved. The HMC with gather functions
can randomly and effectively access many narrow memory
banks using short low powered wires. It transmits just
effective data on long off-chip wires. Therefore, the
proposed memory system architecture must be low power
and have high performance. Since the gather function can be
implemented on a logic base of the HMC, the additional cost
for the proposed architecture must be considerably smaller
than that of conventional vector supercomputers. This
improved memory can be a candidate for a new accelerator
of future power constrained HPC platforms.

The cost of the proposed architecture with HMC
interface is very low, since HMC essentially has a logic base
chip which can easily have proposed gather functions. HMC
is seen to be a low cost commonly used memory in the future.
If the proposed logic is listed in the standard of future HMC,
the hardware cost of the proposed architecture can be
negligible.

IV. TARGET WORKLOAD FOR THE PROPOSED SYSTEM
In this paper, we use a CG solver for the evaluation of the

proposed system as one of the target workloads. SpMV is the
main part of the CG solver. In [3], an inter GPU
communication reduction method for SpMV with keeping
high scalability against the matrix shape and the number of
GPUs is presented. The approach in [3] presents one of the
best SpMVs from comprehensive standpoint considering
scalability, load balancing and memory access efficiency.

As shown in Figure 2, an SpMV can be divided into
multiplications of a set of row vectors and a column vector.
Since there is no data dependence among the multiplications,
it is quite easy to decompose the sparse matrix for each GPU
by row vector according to the memory capacity constraint.
The SpMV algorithm of [3] guarantees the scalability to
remove the inter node communications by the strategy
shown in Figure 2. In the case of the proposed architecture
for accelerating CG, the resultant column vectors must be
written back to the memory accelerator. In the case of
multiple memory accelerators, the resultant column vectors
must be multicasted to each memory accelerator. This
multicast can be implemented so that it does not depend on
the number of memory accelerators by using appropriate
interconnection networks. Furthermore, the application of
streaming would overlap the execution of the SpMV and
multicast data transfer of resultant column vectors.

Furthermore, [3] proposes some pre-processing
algorithms shown in Figure 3 to accelerate the performance
of SpMVs. The pre-processes are padding, folding, and
transposition to get better disposition of non-zero elements of
the sparse matrix to GPUs. The use of the pre-processes in
combination with the proposed hardware gives a maximum
performance improvement of four times compared to [7]. In
this paper, we follow [3] to use the SpMV algorithms and the
hardware except the host interface of the GPUs.

In the CG solver, two parameters are generated from
inner product operations to dense matrices, and using the two
parameters each column vector of a sparse matrix is updated
to apply SpMVs. The operation number of the dense

matrices inner product is proportional to the number of
unknowns of the simultaneous equations (the row number of
the coefficient matrix), and the number of SpMVs is
proportional to the number of non-zero elements of the
coefficient matrix. It depends exactly on the disposition of
non-zero elements. In general, the more non-zero elements
per row the sparse matrix has, the more computation for the
SpMVs the total operations contain. The less non-zero
elements per row, the more computation there is for dense
matrix inner product. Especially in the latter case, if the
dense matrix inner product is not performed at the GPU but
sent to the host to be calculated, it seems to have a risk to
move the bottleneck to the host as well as data transfer
overhead. Therefore, all the calculation should be performed
in the GPU.

Figure 2. Strategy of scalable Sparse Matrix-Vector Multiplication in [3].

Figure 3. Flow of SpMV in [3].

(1) C o m p r e s s r o w s
M a x . # o f n o n - 0 e l e m e n t s i n r o w s

F o l d i n g l i n e = q * (A v e . o f # o f n o n - 0) + r s

o f r o w s
N _ r o w

M u l t i p l e o f 3 2
w h i c h i s l a r g e r

t h a n
(N _ r o w + N _ f o l d)

f o r
a l i g n m e n t

(2) F o l d l o n g r o w s

r o w i n d e x = 1 2

(3) T r a n s p o s e
1 2

(2) F o l d l o n g r o w s

R o w s t o
b e r e d u c e d
a t t h e l a t e r

N _ f o l d

N _ r o w

(1) C o m p r e s s r o w s
M a x . # o f n o n - 0 e l e m e n t s i n r o w s

F o l d i n g l i n e = q * (A v e . o f # o f n o n - 0) + r s

o f r o w s
N _ r o w

M u l t i p l e o f 3 2
w h i c h i s l a r g e r

t h a n
(N _ r o w + N _ f o l d)

f o r
a l i g n m e n t

(2) F o l d l o n g r o w s

r o w i n d e x = 1 2

(3) T r a n s p o s e
1 2

(2) F o l d l o n g r o w s

R o w s t o
b e r e d u c e d
a t t h e l a t e r

N _ f o l d

N _ r o w

C o m p r e s s e d
& t r a n s p o s e d

I n d e x

I n d e x
f o r

G P U 0

b u f f e r 1

V e c t o r
（ N _ r o w ）

t o M P

D e v i c e m e m o r y
@ G P U 0

b u f f e r

F u n c t i o n a l m e m o r y

H o s t P C

t o M P

D e v i c e m e m o r y
@ G P U 1

b u f f e r

Th
re

ad
00

Th
re

ad
01

Th
re

ad
02

Th
re

ad
03

Th
re

ad
04

Th
re

ad
05

Th
re

ad
06

Th
re

ad
07

Th
re

ad
08

Th
re

ad
09

Th
re

ad
10

Th
re

ad
11

Th
re

ad
12

Th
re

ad
13

Th
re

ad
14

Th
re

ad
15

b u f f e r 0

(5) B u r s t t r a n s f e r o n P C I e

(6) C o a l e s c e d
t r a n s f e r &

i n n e r p r o d u c t

(4) I s s u e G a t h e r - c o m m a n d s t o f u n c t i o n a l m e m o r i e s

I n d e x
f o r

G P U 1

C o m p r e s s e d
& t r a n s p o s e d

I n d e x

I n d e x
f o r

G P U 0

b u f f e r 1

V e c t o r
（ N _ r o w ）

t o M P

D e v i c e m e m o r y
@ G P U 0

b u f f e r

F u n c t i o n a l m e m o r y

H o s t P C

t o M P

D e v i c e m e m o r y
@ G P U 1

b u f f e r

Th
re

ad
00

Th
re

ad
01

Th
re

ad
02

Th
re

ad
03

Th
re

ad
04

Th
re

ad
05

Th
re

ad
06

Th
re

ad
07

Th
re

ad
08

Th
re

ad
09

Th
re

ad
10

Th
re

ad
11

Th
re

ad
12

Th
re

ad
13

Th
re

ad
14

Th
re

ad
15

Th
re

ad
00

Th
re

ad
01

Th
re

ad
02

Th
re

ad
03

Th
re

ad
04

Th
re

ad
05

Th
re

ad
06

Th
re

ad
07

Th
re

ad
08

Th
re

ad
09

Th
re

ad
10

Th
re

ad
11

Th
re

ad
12

Th
re

ad
13

Th
re

ad
14

Th
re

ad
15

b u f f e r 0

(5) B u r s t t r a n s f e r o n P C I e

(6) C o a l e s c e d
t r a n s f e r &

i n n e r p r o d u c t

(4) I s s u e G a t h e r - c o m m a n d s t o f u n c t i o n a l m e m o r i e s

I n d e x
f o r

G P U 1

I f a w h o l e c o p y
o f c o l u m n v e c t o r

c a n n o t b e
h e l d l o c a l l y

r a n d o m
c o m m u n i c a t i o n

*

N o d e p e n d e n c y
b e t w e e n r o w s

p a r a l l e l i z a b l e

* ** *

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

V. EVALUATIOＮ

A. Evaluation environment and test matrices
The evaluation environment is illustrated in Table I

(Tesla C1060) and Table II (Tesla C2050). Table III shows
the test matrices. The test matrices are chosen from
University of Florida Sparse Matrix Collection [2]. Although
these sparse matrix problems are insufficient for our goal,
namely not "so large problems that each vector cannot be
stored in GPU device memory", we assume that the test
matrices have the same characteristics to the too large
vectors distributed among GPUs of the proposed system for
parallel execution. In previous work [8], the same kinds of
matrices were chosen for the performance evaluation of
SpMV. In this paper, we chose the sparse matrices in [8].
Note that the chosen test matrices are not large enough. The
size of the largest vector to be multiplied is so small (6.3MB)
as to be insignificant compared with the device memory size.
Therefore, we can say that the evaluation experiments are
performed in a condition that cache effect is stronger (the
condition that the cache-based previous work is profitable)
than the finally supposed case (the condition that the
problem is too large). Actually our method does not need
cache effect so much.

TABLE I. EVALUATION ENVIRONMENT (C1060)

CPU Intel®a Core(TM) i7 CPU920 @ 2.67GHz
GPU Nvidia Tesla C1060

(# of core=240, 4GB, Memory bandwidth103GB/s)
Host I/F PCI express x16 Gen2 (bandwidth 8GB/s)
OS Fedora10
CUDA Cuda3.0

TABLE II. EVALUATION ENVIRONMENT (C2050)

CPU Intel® Xeon®a CPU X5670 @ 2.93GHz
GPU Nvidia Tesla C2050

(# of core=448, 3GB, Memory bandwidth144GB/s)
Host I/F PCI express x16 Gen2 (bandwidth 8GB/s)
OS Red Hat Enterprise Linux Client release 5.5
CUDA Cuda3.2
ECC Off

a. Intel, Intel Core, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

TABLE III. TEST MATRICES

Non-0 elements Name # of rows
Total Ave. Max σ

Na5 5,832 155,731 26 185 35.7
msc10848 10,848 620,313 57 300 49.4
thermal2 147,900 3,489,300 23 27 6.9
hood 220,542 5,494,489 24 51 13.3
F1 343,791 13,590,452 39 306 20.0
ldoor 952,203 23,737,339 24 49 12.9
G3_circuiit 1,585,478 4,623,152 2 4 2.2

When we solve a large problem for the same kind of

applications, it is expected that the number of non-zero
elements per row of the sparse matrices is considered as a
constant for most cases. When a large matrix is decomposed
for multiple GPUs by row based on the strategy described in

Figure 2, the memory accesses to the matrix issued by each
GPU does not change so much when the matrix size is small.
Since the indirect referenced column vector size increases
when the problem size is large, the cache hit rate of existing
cache based systems deteriorates. In the meantime, in the
case of the proposed method, such performance degradation
does not occur when the column vector size increases
because the proposed method is based on a vector processor
architecture. Furthermore, the strategy described in Figure 2
does not include any point-to-point communication, namely
it is scalable. In short, the effect of the proposed method to
the performance gain for small matrices to be evaluated for a
GPU gives the lower limit of the performance gain for large
matrices to be evaluated for GPU clusters.

B. Implementation of CG solver
For the evaluation of the proposed architecture, we

implement three types of CG solvers with different accesses
to the column vectors in the kernel, as explained below. In
either case, pre-processes described in the previous section
are applied to perform SpMV so that we analyze the relation
between the access types of vectors and acceleration
efficiency.

1) Texture memory version: In this version, column
vectors are stored in GPU texture memory so that Tex2D
function is called to make use of texture cache. This version
gives the criteria of performance to be compared with other
versions, and the number of iterations to be converged in
this version is given to (3) as described later.

2) Shared memory version: In this version, column
vectors on device memory are accessed via shared memory.
In the case of Fermi C2050, those accesses are accelerated
by L1 and L2 caches.

3) Proposed architecture version: In this version,
column vectors on device memory, which get disposition
operations in advance (fairing and transposition), are
accessed. Because of the disposition operations, the original
indirect references are converted to direct references in the
source code so that they are in the form of burst and
coalesced access. We assume that we have enough memory
bandwidth of memory accelerator.

Note that the proposed method assumes the use of the
mixed precision iterative refinement algorithm [19].
Although the algorithm [19] mostly consists of a single
precision CG solver, it provides rich convergence ability to
be comparable with double precision operations. For this
reason, we measure the execution speed of a single precision
CG solver in this evaluation. In the case that there is a matrix
not to be converged with single precision operations, we just
measure the execution speed of the loop which includes the
matrix for a fixed number of interactions.

C. Texture cache hit rate
We measure the texture cache hit rate of the texture

memory version to be executed on a C1060 with profiling.
CUDA 3.0 provides performance counters tex_cache_hit and
tex_cache_miss. Figure 4 shows the relation between the

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

matrix size (the number of rows) and the texture hit rate. As
the number of rows increases, the texture cache hit rates
decreases because column vector accesses protrude the small
texture cache. In Figure 4, we show the linear approximation
by the black line, which shows a precipitously falling
diagonal stroke from top left to bottom right. The linear
approximation indicates that when the matrix size increases
further, any cache effect is not expected.

Figure 4. Matrix size and the texture hit rate.

Figure 5. Matrix size and the L1 cache hit rate.

Figure 6. Processing speed ratio of SpMV.

Figure 7. Matrix size and GFLOPS of SpMV.

Actually, among the matrices in this experiment, the
largest one G3_circuit (1,585,478 rows) gets the cache hit
rate of 7.74%, which reveals that the texture cache has spilt
out. In the meantime, in G3_circuit the average number of
non-zero elements per row is 2, and this means there are very
few reusable data in each cache line, which makes the cache
hit rate low, too.

D. General purpose cache hit rate
We measure the general purpose cache (L1) hit rate of

the shared memory version to be executed on a C2050 with
profiling. CUDA 3.0 provides performance counters
L1_global_load_hit and L1_global_load_miss.

Figure 5 shows the relation between the matrix size (the
number of rows) and the L1 cache hit rate, where the
preference of L1 cache is LARGER (L1 cache is 48KB
while shared memory is 16KB). As in the case of texture
cache, the L1 cache hit rate decreases when the matrix size is
large. G3_circuit gets the cache hit rate of 26.5% which is
better than 7.74% on C1060. In the case of F1, the L1 cache
hit rate is 23.9% which is lower than the texture cache hit
rate. This phenomenon can be explained as follows. The L1
cache tries to keep any row vectors even if they do not have
reusable data. Since F1 contains a large number of non-zero
elements, F1 gets the lower cache hit rate as the result. To
avoid this situation, when the row vector without reusable
data is loaded, a special instruction, which skips L1 cache to
directly load vector data, should be used.

E. SpMV execution times for three implementations
Figure 6 shows the processing speed ratio of each

execution time of SpMV kernel to the execution time of the
texture memory version on C1060. At a glance, it turns out
that the proposed architecture version on both C1060 and
C2050 is better than other implementations. Note that the
effect of the additional hardware for the proposed
architecture is very limited because the target matrices are so
small. In other words, the proposed architecture provides
more throughputs without any cache effect than the
throughputs of GPUs with a certain amount of texture or L1
cache effect for relatively small matrices. Since the previous
experiment shows that the use of larger matrices decreases
the cache effect, the proposed architecture provides much
more throughput for larger matrices compared with other
implementations.

Considerable performance improvement is observed also
in the shared memory version on C2050 compared with
C1060 because of the improvement of device memory
bandwidth and L1/L2 cache effect on C2050. This
performance improvement seems to be given mainly by L2
cache effect. Since L2 cache is not so large compared with
L1 cache, the performance improvement is limited when the
target matrices are larger.

 In [10], M. M. Baskaran et al. reports the execution
times of F1 and ldoor with double precision SpMV in the
JDS format on C2050. Our shared memory version on
C2050 is 4.1 times and 2.74 times faster than in [10] for F1
and ldoor, respectively. Although our shared memory
version is single precision that naturally makes two times

0
10
20
30
40
50
60
70
80

0 500000 1000000 1500000 2000000
Number of row

te
x

ca
ch

e
hi

t [
%

] C1060
Linear approximation (C1060)

0

10

20

30

40

50

60

0 500000 1000000 1500000 200000
N u m ber o f row

L1
 c

ac
he

 h
it

ra
ti

o[
%

]

C 2050
L in ear approx im ation (C 2050)

0

0 .5

1

1 .5

2

2 .5

3

N
a5

m
sc

18
48

th
er

m
a l
2

ho
od F1

ld
oo

r

G
3_

ci
rc

ui
t

P
ro

c
e
ss

in
g

sp
e
e
d

ra
ti
o

T e xtu re @ C 1 0 6 0

Sh are d@ C 1 0 6 0

Pro po se d@ C 1 0 6 0

T e xtu re @ C 2 0 5 0

Sh are d@ C 2 0 5 0

Pro po se d@ C 2 0 5 0

0 .0 0

2 .0 0

4 .0 0

6 .0 0

8 .0 0

1 0 .0 0

1 2 .0 0

1 4 .0 0

1 6 .0 0

1 8 .0 0

0 5 0 0 0 0 0 1 0 0 0 0 0 0 1 5 0 0 0 0 0 2 0 0 0 0

N u m b e r o f r o w s

G
F
L
O

P
S

C 2 0 5 0 G a t h e r

C 2 0 5 0 L 1 / L 2

L in e a r a p p r o x im a t io n (G a t h e r)

L in e a r a p p r o x im a t io n (L 1 / L 2)

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

performance improvement because of the difference of the
device memory bandwidth (double vs. single), the pre-
processing (folding) of our shared memory version achieves
more performance improvement than their implementation.

 Figure 7 shows the relation between matrix size and
GFLOPS of SpMV on C2050. The shape of the graph of
GFLOPS values with L1/L2 is similar to that of the L1 cache
hit rate (Figure 5). We observe a tendency of performance
degradation for L1/L2 as the matrix size increases. On the
contrary, we observe an improving tendency of matrix size
for Gather. This result predicts that the performance ratio
between Gather and L1/L2 cache will increase when the gap
of cache capacity and solution vector size increases.

F. CG solver execution times for three implementations
When the SpMVs are fully accelerated on the GPU, the

inner product operations performed on the host PC become a
bottleneck. The inner product of dense matrices can be
calculated in parallel, and seems to be accelerated using
CUBLAS [18]. After the above consideration, we apply
CUBLAS to the inner product operations and move most of
the miscellaneous operations (except residual operations to
be executed on the host PC) to the GPU. Figure 8(a) shows
the speed ratio of the CG solver using CUBLAS applied to
various matrices on C2050 with three implementations.

Each matrix is symmetric but some matrices are not
positive definite. Furthermore, they are single float
operations. So, the number of iterations is totally different by
matrix, and some matrices cause the CG solver not to
converge. Taking into account the above problems, we
measure partial iterations to calculate the average execution
time by iteration. Since the shared version program could not
be executed for ldoor on our environment, the result is not
available.

Figure 8. Performance of the CG solver using CUBLAS based inner

products on C2050: (a) Speed ratio, (b) Breakdown.

The result is that the proposed architecture version works
1.01 to 1.20 times faster than texture memory version
although the matrices are small enough to take advantage of
the texture cache effect. These speed ratios are not attainable
by the kernels shown in Figure 6. This is because operations
other than SpMVs and inner products are executed on the
host PC.

To investigate the performance effect of non-kernel
operations, we measure other operations of the CG solver.
Figure 8(b) shows the breakdown of the execution times by
our proposed architecture using CUBLAS based inner
products on C2050. It turns out that the post SpMV
operations which are reductions of partial inner products of
folded vectors and the main part of SpMVs do not take the
major part of the processes, but the other calculations on the
CPU and the data transfer between the host PC and the GPU
dominate the total processes. This is one of the reasons why
the speed-up ratio in Figure 8(a) is not so large. The second
reason why the speed-up ratio in Figure 8(a) is not so large is
that the workload matrix is too small for the L2 cache hit rate
and the device memory bandwidth to dominate the
performance. If workload matrices are large enough that
these parameters dominate the performance, the speed-up
ratio must be increased since the proposed memory system is
based on the vector architecture whose performance does not
decrease when the vector length is larger.

The amount of inner product operations depends on
unknown variables of the linear equation. In the case of
G3_circuit where the average number of non-zero elements
per row is two, the amount of SpMVs is almost as same as
inner product operations. This is the reason why
miscellaneous operations dominate the execution time of
G3_circuit. As the result of reducing CPU execution times,
the data transfer between the host and the GPU comes to
dominate the total execution time. If the complete
optimization, namely all operations on a GPU such as Kepler
by Nvidia, was achieved, the data transfer between the host
and the GPU would be reduced and higher acceleration
would be expected.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we evaluate texture and general purpose

cache hit rates for conventional SpMVs. We confirm that
relatively small matrices (several hundred Kilo Byte to
several Mega Byte) taken from University of Florida Sparse
Matrix Collection [2] generate cache hit rates of 10% to 70%,
which are low. Larger matrices tend to degrade cache hit
rates and FLOPS performance.

To keep high scalability of the number of GPUs, each
GPU should contain a copy of the target column vector in its
device memory. When the target is a mesh of 1,000 cubic,
the column vector size becomes 8GB and exceeds the
capacity of the device memory. In this case, the overhead of
data transfer via PCI express would make the performance
worse. The memory accelerator, which has gather functions
and a huge capacity of memory optimized for short bursts,
has been proposed in [3]. The memory accelerator can
replace cache memory so that it treats huge problems that

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

1 .4 0

N
a5

m
sc

10
84

8

th
er

m
al
2

ho
od F1

ld
oo

r

G
3_

c i
rc

u i
t

T e x t u r e

S h a r e d

P r o p o s e d

(a)

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

N a 5 m s c 1 0 8 4 8 t h e r m a l2 h o o d F 1 ld o o r G 3 _ c ir c u it

T r a n s f e r

C P U

m is c @ G P U

S p M V - p o s t @ G P U

S p M V - m a in @ G P U

(b)

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

matrices and column vectors are too large to be stored in the
device memory.

The problem of the memory accelerator in [3] is that
SpMV on GPUs reveals PCI express is the bottleneck. In this
paper, we proposed that a memory accelerator is connected
to the GDDR5 port or the HMC port of GPUs. In these cases,
the bandwidth per port increases, and the total bandwidth
additionally increases using multiple ports.

The previous evaluation could not explain the
performance effects by replacing cache memory with the
memory accelerator and by pre-processing algorithms
separately. In this paper, we evaluate the performance effects
on University of Florida Sparse Matrix Collection [2] with
different memory systems including the memory accelerator.
As a result, even in the case of small matrices where texture
cache is effective, it turned out that our proposed architecture
works 1.01 to 1.20 times faster than the texture cache based
existing method. If workload matrices are large enough that
the L2 cache hit rate and the device memory bandwidth
dominate the performance, speed-up ratio will be greater
since proposed memory system is based on vector
architecture whose performance does not decrease when the
vector length is larger. If the complete optimization, namely
all operations on a GPU such as Kepler by Nvidia, was
achieved, higher acceleration would be expected.

While the previous evaluation was just for SpMV, in this
paper we evaluate the CG solver including SpMV. In the CG
method execution, the full acceleration of SpMV on a GPU
exposes the other processes of dense matrix inner product on
a CPU and data transfer latency between the CPU and the
GPU. Shifting some part of the miscellaneous processes to
the GPU side, we observe considerable performance
improvement.

Our future work includes the implementation and
evaluation of streaming that hides the write-back latency for
the memory accelerator, the exact evaluation of L2 cache
effect for larger matrices, the evaluation of the scalability of
many GPUs and memory accelerators, and the design and
evaluation of a memory accelerator with large capacity
optimized with short bursts.

ACKNOWLEDGMENT
A part of this work is supported by the Ministry of

Internal Affairs and Communications (Soumu-sho).

REFERENCES

[1] R. R. Schaller : Moore's law: past, present and future,
Spectrum, IEEE , Vol.34, No.6, pp.52,59 (1997)

[2] Tim Davis : "The University of Florida Sparse Matrix
Collection", http://www.cise.ufl.edu/research/sparse/matrices/
[retrieved March 2013]

[3] N. Tanabe， Y. Ogawa， M. Takata， K. Joe : Scaleable
Sparse Matrix-Vector Multiplication with Functional Memory
and GPUs, 19th Euromicro Conference on Parallel,
Distributed and Network-Based Computing (PDP 2011), pp.
101-108 (2011)

[4] X. Yang, S. Parthasarathy, P. Sadayappan : Fast Sparse
Matrix-Vector Multiplication on GPUs: Implications for

Graph Mining, 37th International Conference on Very Large
Data Bases (VLDB2011), pp.231-242 (2011)

[5] A. Cevahir, A. Nukada, S. Matsuoka : High performance
conjugate gradient solver on multi-GPU clusters using
hypergraph partitioning, Computer Science - Research and
Development, Vol.25, No.1-2, pp.83-91 (2010)

[6] M. Ament, G. Knittel, D. Weiskopf, W. Straser : A Parallel
Preconditioned Conjugate Gradient Solver for the Poisson
Problem on a Multi-GPU Platform, 18th Euromicro
Conference on Parallel, Distributed and Network-based
Processing (PDP 2010), pp.583-592 (2010)

[7] A. Cevahir, A. Nukada, S. Matsuoka : An Efficient Conjugate
Gradient Solver on Double Precision Multi-GPU Systems,
Symposium on Advanced Computing Systems and
Infrastructures (SACSIS2009), pp.353-360 (2009)

[8] Y. Kubota, D. Takahashi : Optimization of Sparse Matrix-
Vector Multiplication by Auto Selecting Storage Schemes on
GPU, Computational Science and Its Applications(ICCSA
2011), LNCS Vol. 6783, pp.547-561 (2011)

[9] N. Bell, M. Garland : Eficient Sparse Matrix-Vector
Multiplication on CUDA, Nvida Technical Report NVR-
2008-004 (2008)

[10] M. M. Baskaran, R. Bordawekar : Optimizing Sparse Matrix-
Vector Multiplication on GPUs, IBM Research Report,
RC24704 (2009)

[11] A. Monakov, A. Lokhmotov and A. Avetisyan :
Automatically Tuning Sparse Matrix-Vector Multiplication
for GPU Architectures, 5th International Conference on High
Performance Embedded Architectures and Compilers
(HiPEAC 2010), LNCS 5952, pp.111-125 (2010)

[12] F. Vazquez, G. Ortega, J. J. Fernandez and E. M. Garzon :
Improving the Performance of the Sparse Matrix Vector
Product with GPUs, 10th IEEE International Conference on
Computer and Information Technology (CIT 2010), pp.1146-
1151 (2010)

[13] Nvida : CUSPARSE User Guide,
http://docs.nvidia.com/cuda/pdf/CUDA_CUSPARSE_Users_
Guide.pdf [retrieved March 2013]

[14] - : cusp-library : Generic Parallel Algorithms for Sparse
Matrix and Graph Computations,
http://code.google.com/p/cusp-library/ [retrieved March 2013]

[15] N. Tanabe, M. Nakatake, H. Hakozaki, Y. Dohi, H. Nakajo, H.
Amano : A New Memory Module for COTS-Based Personal
Supercomputing, International Workshop on Innovative
Architecture for Future Generation High-Performance
Processors and Systems (IWIA2004), pp.40-48, DOI:
10.1109/IWIA.2004.10019 (2004)

[16] IAA: Focus area, http://iaa.sandia.gov/focus-areas/ [retrieved
March 2013]

[17] Micron Technology, Inc. : Hybrid Memory Cube :
Breakthrough DRAM Performance with a Fundamentally Re-
Architected DRAM Subsystem, Hot Chips 23 (2011)

[18] Nvida : CUBLAS User Guide,
http://docs.nvidia.com/cuda/pdf/CUDA_CUBLAS_Users_Gu
ide.pdf [retrieved March 2013]

[19] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, S. Tomov :
Using Mixed Precision for Sparse Matrix Computations to
Enhance the Performance while Achieving 64-bit Accuracy.
ACM Transactions on Mathematical Software, Vol.34, No.4
(2008)

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-272-1

FUTURE COMPUTING 2013 : The Fifth International Conference on Future Computational Technologies and Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

