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Abstract—The strong demand for larger memory capacity
with high energy efficiency creates the need for a hybrid
main memory of DRAM and NVRAM (Non-Volatile RAM).
In an attempt to provide task co-scheduling method on hybrid
main memory, we found that the conventional task scheduling
algorithms do not reflect the features of different memory
mediums into scheduling decisions. Long access latency of
the NVRAM make memory bandwidth usage of each task
misestimated, thereby incurring unpredictable contention on
memory accesses. Different access latencies according to the
access type to the NVRAM deteriorates the contention. As
a remedy to these problems, we propose HMMSched, which
reflects different access latencies of hybrid main memory
to the bandwidth estimation. Our scheme prioritizes CPU-
intensive tasks, and then co-schedules tasks having complemen-
tary bandwidth consumption on different memory medium.
Consequently, HMMSched reduces execution time of tasks by
reducing memory access contention of co-scheduled tasks on
the same memory. The experimental results show that the new
scheduler reduces the overall execution time up to 19% than
the default Linux scheduler.

Keywords-Hybrid Main Memory; NVRAM; PRAM; task
scheduling; memory contention;

I. INTRODUCTION

Increased concurrency of the workload executions brings
not only great advances in system performance but limita-
tions. Increasing number of computing cores achieve high
instruction per cycle (IPC) by executing multiple instruction
streams concurrently on same chip. The more tasks run
concurrently, however, the greater the demand of memory
because of the size of aggregated working set. It causes
problems in the aspects of capacity, energy, and access
contention. Enlarging memory size is expected to be lim-
ited by the clamped scalability of DRAM [1], [2]. Energy
consumption of memory occupying 30-40% of server system
energy [3], [4] will grow with the increase of DRAM size.
Contention on memory accelerated by the use of many-
core processors is a well-known problem on DRAM-based
main memory. Cores share parts of the memory hierarchy
and compete for resources. It brings delay in memory
accesses, which results in degradation of application perfor-
mance. As solutions, several studies proposed contention-
aware scheduling [5], [6], [7], [8], [9], [10], [11], [12] to
reduce memory contention. A contention-aware scheduler
detects tasks having potentials of competing for memory

hierarchies. Found tasks are scheduled at different time and
location.

Hybrid main memory of DRAM and NVRAM is a
promising architecture to enlarge memory capacity with
high energy efficiency and little performance loss [3], [13],
[14]. By placing both media at the same level of memory
hierarchy, both memory are complementary to each other.
Non-volatility of the NVRAM can reduce the total energy
consumption of the main memory compared with DRAM-
only main memory of the same capacity. DRAM comple-
ments the demerits of NVRAM on performance caused by
its longer and asymmetric access latencies.

Unfortunately, existing studies of contention-aware task
scheduling algorithms focused on DRAM main memory.
With DRAM-only main memory, access latencies to the
same memory bank are independent of access request type.
In the hybrid main memory architecture, on the contrary,
access latency varies according to the medium of the target
memory, memory access type, and the location of the
target memory on NUMA (Non-Uniform Memory Access)
architecture.

NVRAM read latency is longer than DRAM access la-
tencies, and NVRAM write latency is much longer than
NVRAM read. When we ran hybrid main memory-agnostic
contention-aware scheduling algorithms on the target sys-
tem, we found that they do not aware resource usage well.
It results in performance degradation. We have summarized
our motivation about the performance degradation.

• Multiple tasks concurrently accessing same type
of memory increases contention: Hybrid main mem-
ory is a combination of DRAM and NVRAM, where
larger size of NVRAM replaces DRAM. With them,
frequently accessed data are located in DRAM while
NVRAM maintains data generating burst accesses [14].
This deteriorates task performance when memory-
intensive tasks accessing same memory bank are co-
scheduled. Concurrent tasks accessing hot data on
reduced size of DRAM generate more contention like
shown in Fig. 3. Overlapped burst accesses to NVRAM
amplify longer access latencies of the medium.

• The number of memory transactions does not reflect
bandwidth occupancy of a task: Existing contention-
aware scheduling algorithms [8], [9], [10], [15], [16]
estimates memory bandwidth usage by counting the
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number of memory transactions. In the hybrid main
memory environment, however, a write to NVRAM
occupies target memory longer than a DRAM read.
Type-agnostic counting of memory transactions to the
NVRAM makes the value not proportional to the actual
memory bandwidth usage. It incurs wrong decision of
the task scheduler that tries to avoid memory contention
based on the bandwidth usage of each task.

In this paper, we propose HMMSched, a task co-
scheduling method for tasks running on hybrid main mem-
ory. HMMSched collects memory access information for
each task to acquire memory bandwidth usage of each type.
We define that Effective Bandwidth (EBW) is the estimated
bandwidth considering the different access latencies of each
memory medium. It translates bandwidth usage of NVRAM
to the same unit of DRAM’s not to make the estimated
bandwidth fluctuate according to the target medium and
access type of the memory access requests.

HMMSched performs following two phases to determine
the next task to schedule. On the first phase, HMMSched
prioritizes tasks having lower EBW consumption than the
predetermined threshold. It is from the fact that a task having
lowest EBW have greatest potential to make progress in the
CPU. As the second phase, HMMSched separates EBW of
each task according to its target medium for the remaining
schedulable tasks. The tasks having low complementary
EBW on different memory medium are alternately co-
scheduled.

Our algorithm is implemented in Linux kernel with simu-
lated per-task performance monitoring unit (PMU) attached
to each workload. The preliminary experiment results show
that our algorithm outperforms up to 19% better than the
default Linux scheduler.

This study is an extension of our previous work [17],
which is a part of resource management for the MN-MATE
computing platform [18]. In the previous work, we focused
on finding problems on task scheduling on hybrid main
memory environment with small number of cores. Our
objective in this paper, however, is to devise task scheduling
policy with more consideration on real multicore execution
environment and implementation issues.

The rest of this paper is organized as follows. Section II
explains background of this work and Section III discusses
related work. Section IV describes our motivation of this
paper. Section V presents design of HMMSched and its
implementation issues. Section VI provides the experimental
results, and we conclude our work in Section VII.

II. BACKGROUND

In this section, we explain two non-volatile memories
as DRAM alternatives. Then we introduce a hybrid main
memory, which is the target memory architecture of this
paper.

TABLE I. ACCESS LATENCIES OF MEMORY
TECHNOLOGIES. DATA OBTAINED FROM [20], [21]

Technology Latency (ns)
Read Write

DRAM 25 25
STT-RAM 29.5 95

PRAM 67.5 215

A. Non-Volatile Memories

Non-volatile memory (NVRAM) technologies, unlike
DRAM, will possibly enable memory chips that are non-
volatile, require low-energy, and have density and latency
closer to current DRAM chips [19]. Among emerging mem-
ories, Phase Change Memory (PRAM) and Spin-Transfer
Torque RAM (STT-RAM) is one of the most promising
technologies for future memory.

1) Phase-Change Memory (PRAM): PRAM is a byte-
addressable, non-volatile memory based on phase change
materials that can sustain phase persistently [22]. Persistent
sustenance of phase gives non-volatility to PRAM, which
makes leakage energy negligibly small. Because the length
of the current pulse decides the direction of state change,
a PRAM cell can be switched from 0 to 1 and vice-versa
without any erase operation. It gives the memory in-place
update property. PRAM is argued to be a scalable technology
[19], [22], [1] for its high density. Recent works [4], [1]
have demonstrated that the scalability will make PRAM a
promising DRAM alternative for main memory.

On the other hand, there are several disadvantages. First,
both read and write latencies of PRAM are several times
slower than DRAM. Table I summarizes read and write
latencies of main memory candidates. Second, large write
energy mostly consumed by the reset operation is also one
of the weak points of the PRAM. It makes the energy usage
of PRAM depend on the number of writes. We will not cover
the endurance problem of 108 rewrite sustainability [23].

2) Spin-Transfer Torque RAM: STT-RAM is another
byte-addressable, non-volatile memory. It applies different
write mechanism based on spin polarization [24], [25].
Compared with the PRAM access latencies, STT-RAM has
very low read and write latencies. Read latency of STT-RAM
is as fast as of DRAM according to [20]. Though the write
latency is slower than DRAM, it is still very fast compared
with the PRAM. It also has better endurance, reaching above
1015 cycles [24]. The weak point of STT-RAM is density. Its
cell size has less density than current DRAM cells, shown
in Table I. Smaller capacity from lower density depletes fast
access speed, which is as fast as DRAM.

B. Hybrid Main Memory

Hybrid main memory is a combined architecture of
DRAM and NVRAM for main memory [3], [13], [14],
where both memory is located at the same level of memory
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Figure 1: Hybrid main memory architecture. Both NVRAM
and DRAM are located at the same level in the memory
hierarchy.

hierarchy. It is designed to exploit the strenghs of each
memory medium while avoiding their weaknesses as much
as possible. By maintaining both media as a main memory
at the same level, DRAM and NVRAM complements weak
points of each other. Higher density of NVRAM provides
main memory scalability, which will be limited by the
DRAM. Lower standby power of NVRAM enlarges main
memory capacity with lower energy consumption. Further-
more, shorter access latency of DRAM reduces performance
loss due to long access speed of NVRAM [4].

In this paper, we target PRAM and STT-RAM as candi-
dates for DRAM alternatives of main memory. Their byte-
addressability and in-place update property enable them to
be directly attached to the main memory interface, though
they need separate memory controller. It makes the memory
hierarchy provide both low latency and non-volatility. There
are two studies [13], [14] providing kernel supports for the
efficient use of the hybrid main memory architecture.

Fig. 1 shows our target structure of hybrid main memory
architecture. In this architecture, NVRAM and DRAM are
assigned to single physical memory address space. NVRAM
has either lower or higher, contiguous physical address. OS
can distinguish the medium of the target memory based
on their physical address. OS manages all physical page
frames and controls data placements based on reference
characteristics. Any tasks can use both types of memory
through the kernel.

There are some researches [26], [27] to extends the
memory capacity with flash memories not attached to the
main memory interface. However, they use either DRAM
or Flash memory as a data cache or swap storage, which
are not our concern in this paper. We motivated from the
possibilities with the memory architecture having differ-
ent read/write latencies. Therefore we only targets byte-
addressable NVRAM and DRAM directly attached to the
CPU at the same level of memory hierarchy.

III. RELATED WORK

In this section, we explain previous researches about task
co-scheduling. Contemporary studies present solutions that
enhance system-wide performance in a system with multiple
number of cores and DRAM-only main memory.

Memory bandwidth is one of the most popular criteria
for memory-aware task scheduling. Koukis and Koziris [5],
[6] proposed a scheduling method for SMP clusters. They
profile bandwidth usage of each process and calculate aver-
age available bandwidth for new task. The scheduler selects
the most fitting process whose bandwidth consumption best
matches the average available bandwidth. Though it utilizes
per task memory bandwidth consumption, it targets SMP
clusters, which does not share caches.

In addition, Xu et al. [8] quantified the impact of memory
bandwidth fluctuation on overall performance for tasks on
multicore system. They found that bandwidth fluctuation
measured using very fine time intervals could distorts the
parameters of the job scheduler, especially when the total
bandwidth usage approaches to peak system bandwidth.
They proposed new scheduling criteria maintaining the
total bandwidth requirement at a steady level instead of
maximizing bandwidth utilization. Though they enhanced
performance by reducing fluctuation in bandwidth consump-
tion of the workloads, they targeted tasks running on a
system with DRAM main memory. We borrowed some of
their idea by not selecting tasks to fill in the available
bandwidth. HMMSched co-schedules tasks by prioritizing
latency-sensitive tasks followed by matching task consuming
largest bandwidth. It doesn’t compare bandwidth consump-
tion with the available system bandwidth to fill in.

Miss rate of shared caches among cores is also a popular
criterion for task co-scheduling on DRAM main memory.
El-moursy et al. [7] tried to select thread pairs on each
Simultaneous Multi-Threaded (SMT) processors combined
with DRAM main memory. They add new hardware PMU
and monitor contention on functional unit, register files,
and caches. They define a phase as changing utilization
of target resource and tried to find compatible phases that
generate less conflicts on the resource. Compatible threads
minimizing total cache miss rate are co-scheduled on the
same SMT core.

Zhuravlev et al. [9] and Blagodurov et al. [10] also
proposed a contention modeling heuristic named Distributed
Intensity on DRAM main memory. They found that memory
bus, prefetch hardware, and DRAM controller affecting
performance degradation rely on cache miss rate. Based on
the observation, they assigned threads to caches to even out
the miss rate across all the caches. Though it showed good
performance enhancement and performance stabilization,
we target different execution environment where it utilizes
NVRAM as a part of main memory. In addition, recent
studies [15], [16] give an insight that miss rates does not
reflect memory bandwidth because of the different write
latency in PRAM main memory. Therefore, it is hard to
apply to systems with hybrid main memory.

Several researches try to reduce energy consumption
by scheduling tasks. Merkel and Bellosa [28] proposed
memory-aware scheduling for energy efficiency on DRAM.
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They also used performance counters to measure memory
intensity. After sorting tasks on runqueues of cores, they
paired cores. The scheduler selected two tasks from each
runqueue, one having smallest memory intensity and the
other one having largest memory intensity. Selected tasks are
co-scheduled during time calculated by the unit time divided
by the number of tasks in the source runqueue. They also
applied frequency scaling for energy efficiency. DeVuyst et
al. [29] also found that unbalanced number of threads on
each core bring less energy consumption.

Suleman et al. [11] and Bhadauria and McKee [12]
controlled the number of homogeneous threads to maintain
bandwidth usage below the bandwidth limit. They utilized
change of concurrency level on scheduling. But it is hard to
apply tasks with noncontrollable concurrency. Again, their
target systems include DRAM only while our target system
includes NVRAM main memory.

Data placement is another issue on hybrid main memory
for its effect to access patterns. Park et al. [14] proposed a
data placement and migration policy between DRAM and
PRAM at the same level in memory hierarchy. Ramos et al.
[30] also proposed page placement methods where small-
sized DRAM and large size PRAM is combined in a memory
system. While they focused on the location of data and has
little scheduling features, it affects access pattern of running
tasks. Those policies can be complementarily cooperated
with our scheduling policy in spite of the changed memory
environment.

In this paper, we consider scheduling for manycores with
hybrid main memory for objectives that are a composition
of both performance and energy.

IV. MOTIVATION

Previous researches concentrate on memory bandwidth
usage estimation on an environment where DRAM is used
as a main memory. However, these approaches are inappro-
priate for the hybrid main memory of DRAM and NVRAM.
In this section, we explain our motivations in more detail.

A. Co-scheduling contention on Hybrid Main Memory

In the hybrid main memory environment, co-scheduling
tasks intensively accessing same type of memory generates
contention in several locations.

Fig. 2 shows contention on DRAM of hybrid main mem-
ory according to the task type. With 444.namd, which is
classified as CPU-intensive task, accessing same bank of
memory has little effect on performance due to low memory
access intensity. They undergo rather little slowdown. With
memory-intensive task such as 429.mcf, however, task per-
formance is greatly affected by the contention on memory.
The more memory accesses converge to the same memory
bank, it makes execution time of each task longer.

The situation is getting worse with the hybrid main mem-
ory of DRAM and NVRAM. With the hybrid main memory,

Figure 2: Slowdown of tasks according to the number of
target memory banks and the number of concurrent tasks.

frequently accessing or short-lived data are usually located
in DRAM while others are stored in NVRAM [3], [13],
[14]. Memory accesses are flocked to the reduced number of
DRAM banks. It increases memory access intensity, which is
the number of memory accesses during a unit time. NVRAM
accesses tend to be burst for the stored data’s high spatial
locality and low popularity. The performance deteriorates if
the number of target memory bank decreases.

B. Inappropriate Bandwidth Estimation

Memory bandwidth (BW) usage has been one of the
popular criteria for task scheduling working on DRAM main
memory [5], [6], [8], [31]. With DRAM, access time of
the memory does not depend on the type of the memory
access request. Therefore, BW usage can be represented by
the number of memory transactions generated during a unit
time, shown in (1).

BW ≈ Number of Memory Transactions

Unit T ime
(1)

Several researches try to relieve the unequal distribution
of memory bandwidth usage with the counted memory band-
width [5], [6], [8]. Basic approaches of previous researches
are to select next task consumed memory bandwidth not
greater than the available bandwidth. More specifically, they
measured total bandwidth usage of running tasks, BWOcc.
Based on the peak bandwidth, BWPeak, estimated before,
a scheduler calculates available bandwidth BWAvail. It
selects a next task that has memory bandwidth usage similar
to the BWAvail.

However, these methods are not applicable with the hybrid
memory architecture where both DRAM and NVRAM are
used as a part of main memory. Equation (5) is a decom-
position of (2) according to the memory access type when
the target memory is NVRAM. As we describe in Section
II-A, access latency to the NVRAM is vary according to the
request type.
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TABLE II. SYMBOLS TO DESCRIBE (3) TO (5).

Symbol Description
BWD occupied DRAM bandwidth
BWNV occupied NVRAM bandwidth
BW (R) occupied memory bandwidth by read
BW (W ) occupied memory bandwidth by write
BWD,Avail available DRAM bandwidth
BWNV,Avail available NVRAM bandwidth
BWD,Occ occupied DRAM bandwidth
BWNV,Occ occupied NVRAM bandwidth
BWD,Peak peak DRAM bandwidth
BWNV,Peak peak NVRAM bandwidth
BWD,Peak(R) peak DRAM bandwidth by read
BWD,Peak(W ) peak DRAM bandwidth by write
BWNV,Peak(R) peak NVRAM bandwidth by read
BWNV,Peak(W ) peak NVRAM bandwidth by write

BWAvail = BWPeak −BWOcc (2)
BWAvail = (BWD,Avail, BWNV,Avail) (3)

BWD,Avail = BWD,Peak −BWD,Occ (4)
BWNV,Avail = BWNV,Peak −BWNV,Occ

= (BWNV,Peak(R)

+BWNV,Peak(W ))

− (BWNV,Occ(R) +BWNV,Occ(W ))

(5)

An NVRAM access request occupies target memory rank
for a specified time according to the type of the request.
Different latencies of each memory request type change the
number of memory access requests handled during a unit
time. Even a read operation consumes more time than the
DRAM’s, it is hard to represent the bandwidth consumption
of a task by the number of memory access requests. It
should be consider the target memory medium and the
proportion of read and write operation to the number of
memory transactions.

Fig. 3 illustrates the effect of different latencies to the
bandwidth usage estimation. With DRAM main memory,
occupied bandwidth of running tasks can be represented
by the number of memory transactions. With hybrid main
memory of DRAM and NVRAM, memory access requests
can be classified into three categories based on access
latencies: DRAM access, NVRAM read, and NVRAM write.

The problem is that estimated bandwidth of running tasks
changes over the proportion of write to overall accesses.
It makes the number of memory transactions hard to reflect
the bandwidth usage of the task. It results in wrong decision
about selecting next task satisfying decision criteria. There-
fore, bandwidth estimation for NVRAM should reflect type
of accesses by differentiating BWNV (W ) and BWNV (R)
as shown in (5).

(a) DRAM-only main memory (b) expected bandwidth of DRAM-
only main memory

(c) Hybrid main memory (d) expected bandwidth of Hybrid
main memory

Figure 3: Number of memory transactions handled during a
unit time. NVRAM bandwidth usage changes according to
the ratio of read and write.

V. HYBRID MAIN MEMORY-AWARE TASK SCHEDULING
(HMMSCHED)

A. Basic Design

The primary design goal of the HMMSched is to accel-
erate task performance by co-scheduling tasks consuming
complementary amount of memory bandwidth on different
type of memory. To achieve this design goal, HMMSched
consists of two phases: 1) per-task memory access moni-
toring; 2) selection of a next candidate task to be sched-
uled based on collected memory access statistics during
the previous phase. During the running time of each task,
hardware PMU collects memory access information for each
task. Collected information includes type of target memory
medium, memory access type, and the access counts. The
HMMSched selects next task on the basis of the proposed
policy regarding the collected statistics during the last sched-
uled period.

1) Per-task memory access monitoring: With HMM-
Sched, memory bandwidth usage is an important criterion to
choose next task to be run on an idle core. A software PMU,
described in Section VI-A collects segmentalized memory
access statistics for each task based on the access types and
the target memory type. We have three criteria to classify
memory accesses: target memory type, access type, and
distance from the core where the target task runs to the
target memory.

Target memory type is our primary consideration for clas-
sifying memory accesses. We targeted hybrid main memory
that DRAM and NVRAM are located at the same level in
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TABLE III. VARIABLES TO CALCULATE EFFECTIVE
BANDWIDTH IN THE HYBRID MAIN MEMORY

ENVIRONMENT

Variable Description
EBW (T ) Effective bandwidth of a task T
EBWD Effective bandwidth for DRAM
EBWNV Effective bandwidth for NVRAM
BWD Conventional bandwidth for DRAM
NReq Number of memory access transactions
TD Memory access latency of DRAM
NR Number of read transactions to the NVRAM
NW Number of write transactions to the NVRAM
γ NVRAM read latency / DRAM access latency
δ NVRAM write latency / DRAM access latency

the memory hierarchy. However, each medium has different
access latencies. If a task accesses data located in NVRAM,
it can access less number of data within a unit time compared
with when accessing data in DRAM. It makes the task make
progress in the CPU. Therefore, we differentiate NVRAM
accesses from DRAM accesses to find tasks having more
potentials of making progress. Because the latency of write
to NVRAM is much longer than read from the NVRAM,
we also differentiate NVRAM writes from NVRAM reads
based on the same criteria.

Generally, the DRAM bandwidth usage of a task is
measured as the number of memory transactions during a
unit time. In case of NVRAM, memory access latencies
are different from each other according to the target media
and access type. It results in that the number of memory
access does not reflect memory bandwidth usage of a task.
We therefore use a new metric, Effective Memory Band-
width (EBW) to translate NVRAM’s bandwidth usage and
bandwidth usage of remote node memory into the number
of DRAM transactions. Table III shows items that the per-
task software PMU collects and translates. We can calculate
effective bandwidth using (6).

EBW = EBWD + EBWNV (6)
EBWD = BWD

' NReq × TD

EBWNV ' γ ×NR × TD + δ ×NW × TD (7)

When a task is about to be scheduled, the software PMU
starts monitoring of memory accesses generated from the
task. If the task consumes all allocated time slices or is
preempted by other task, collected values are stored in the
kernel memory. Software PMU then translates measured data
to estimated values having same unit using (7). HMMSched
use latest EBW value of each task to select next task to be
scheduled on an idle core.

Figure 4: Basic idea of HMMSched. A task consuming
complementary EBW to different medium is selected to be
scheduled

2) Choosing a next task to be scheduled: Whenever a
core becomes idle, HMMSched selects a task from schedul-
ing candidate tasks based on a converted EBW.

As a preliminary work for choosing a next task to be
scheduled, HMMSched arranges all schedulable tasks in
order of EBW. HMMSched then classify them into two
categories based on their latest EBW: latency-sensitive and
bandwidth-sensitive. Latency-sensitive tasks consume less
amount of memory bandwidth. Bandwidth-sensitive tasks
spend more time to access both types of memory.

HMMSched use EBW as a criterion to classify tasks
according to the bandwidth usage. Before classification,
all tasks are arranged in order of EBW calculated by
the (6). Let Taski indicates a task having ith lower
EBW and EBW (Taski) indicates estimated effective
bandwidth of Taski. We then calculate TotalEBW =∑n

i=1EBW (Taski), where n is the number of all schedula-
ble tasks. Tasks occupying some of total memory bandwidth
greater than a predefined threshold α are classified as
latency-sensitive. In other words, K tasks satisfying∑K

i=1EBW (Taski) < αTotalEBW are classified into
latency-sensitive tasks. Others are classified as bandwidth-
sensitive. Here α is a parameter 0 ≤ α ≤ 1, where lower α
indicates a stronger threshold. In order to prevent bandwidth-
sensitive tasks from being subjected to starvation, α reflects
total execution time of each category. HMMSched selects
latency-sensitive task first as long as the total execution time
of all latency-sensitive tasks is less than a tenth of the total
execution time of bandwidth-sensitive tasks.

We applied different management scheme to each cate-
gories for ease of candidate selection. In the latency-sensitive
category, all tasks are arranged in ascending order of own
EBW (T ). In the bandwidth-sensitive category, each task
belongs to two management lists; DRAM-intensive and
NVRAM-intensive. DRAM-intensive list sorts all tasks in
ascending order of their EBWD(T ). NVRAM-intensive list
arranges all tasks in ascending order of EBWNV (T ).

When HMMSched tries to select a task to be scheduled
next, the primary rule is that the scheduler always chooses
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Figure 5: Target hardware architecture of HMMSched.
DRAM and NVRAM share same memory controller on each
local node of the NUMA system.

a latency-sensitive task prior to selecting a bandwidth-
sensitive task. A task consumed lowest EBW has highest
priority if there are multiple latency-sensitive tasks.

If there is no latency-sensitive task, HMMSched picks
a task from the bandwidth-sensitive category based on the
following order:

1) a task with largest EBWD

2) a task with smallest EBWNV

3) a task with largest EBWNV

4) a task with smallest EBWD

Fig. 4 illustrates this policy. It first makes the scheduler
co-schedule intensively accessing different type of memory
together. It then co-schedules tasks having complementary
access intensities to the same type of memory.

VI. EVALUATION

In this section, we evaluate the performance of HMM-
Sched described in the previous section. We used two ex-
periment systems for evaluation with Intel I7 960 processor
running at 3.2GHz, 6GB of RAM, 2GB per DIMM. The
operating system is Linux 2.6.38.2. Simulated NVRAM
and PMU supporting per-task memory access monitoring
is described in the next section. In this paper, we targeted
a manycore system combined with hybrid main memory of
DRAM and NVRAM, shown in Fig. 5. DRAM and NVRAM
in a local node share same memory controller.

A. Modeling customized PMU and NVRAM

To evaluate our idea, we need two items: NVRAM main
memory module and the hardware performance monitoring
unit (PMU), which counts per-task memory accesses. Un-
fortunately, there is no released NVRAM module for main
memory and commercial CPUs with PMU counting per-
task memory accesses. We use Intel Pin [32] to perform a
detailed simulation of the system’s main memory augmented
with NVRAM and the per-task memory access monitoring
support that HMMSched requires. The memory simulator
adds designated delay between a read or a write to the
NVRAM and the operations that follow, allowing it to ac-
curately model the longer read and write times of NVRAM.

For NVRAM, we use the performance model of PRAM from
[21], which gives an access latency ratio shown in Table I.

As a software PMU, the simulator monitors main memory
accesses for each task and counts the number of following
requests separately: the number of DRAM accesses, the
number of NVRAM reads, and the number of NVRAM
writes. Fig. 6(a) illustrates a simulation environment where
each task runs with own per-task simulation module. Each
simulation module acts like a PMU for single task. To
estimate the number of memory accesses, each simulation
module has own cache hierarchy model. Each simulation
module shares its last-level cache model with other modules
when their target tasks run on the cores sharing same
last-level cache. Collected memory access information is
transferred to the task scheduler via shared memory.

Note that collected information from the simulation mod-
ule should reflect actual memory access information gener-
ated by the combination of the target task and the attached
simulation module. It is because of the fact that the simulated
PMU monitors memory accesses of the target task while
the scheduler schedules the target task running with the
simulation module. We calibrated the simulated PMU by
adjusting miss rates of the shared last level cache. As
a result, the software PMU reflects the memory access
characteristics generated from the combination of the target
task and the simulation module.

B. Workloads

We use the SPEC CPU2006 benchmarks [33] for evalua-
tion. We compiled each benchmark using gcc 4.4.3 with de-
fault optimizations of the benchmark, and executes on Linux
2.6.38.2 kernel. Two workload set is used to evaluate the
effectiveness of HMMSched. Each workload set consists of
four applications, where each application has two instances.
In the first set, half of the applications are memory-intensive
tasks while others are CPU-intensive tasks. Second set has
six memory-intensive tasks and two CPU-intensive tasks.
We configured them to check the effect of prioritization to
the latency-sensitive tasks and the effect of various memory
access intensities.

C. Preliminary Result

Fig. 7 shows preliminary experimental results of the
HMMSched compared with the default Linux scheduler.
Y-axis of the graphs indicates normalized execution time
of the benchmarks. In this paper, we add experiment re-
sults with local node sharing same memory controller. We
leave experiments related to NUMA architecture as our
further work. Here we used following NVRAM access
latency specifications. First set is DRAM : NVRAM(read)
: NVRAM(write) = 1 : 1 : 3, which is similar to the
specification of STT-RAM shown in Table I. Second set
is DRAM : NVRAM(read) : NVRAM(write) = 1 : 3 :
8, which is also similar to the specification of PRAM in
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(a) Workloads mix #1 with STT-RAM-like access latency specification (b) Workloads mix #2 with STT-RAM-like access latency specification

(c) Workloads mix #1 with PRAM-like read/write access latency specification

Figure 7: Elapsed time of selected benchmark sets under HMMSched compared with default Linux scheduler.

(a) For multiple tasks (b) Internal flow of a simulation
module

Figure 6: Overall simulation environment running multiple
tasks. Each task runs with per-task simulation module.

Table I. We also composed two benchmark set to analyze
the effect of the priority change of the scheduler when
the latency-sensitive tasks are run with bandwidth-sensitive
tasks. Benchmark mix #1 consists of four memory-intensive
tasks and four CPU-intensive tasks. Benchmark mix #2
contains six memory-intensive tasks and two CPU-intensive
tasks. On each experiment, all benchmarks of the target set
run concurrently.

As we can see in the two experiment results, prioritizing

latency-sensitive tasks and utilizing EBW on co-scheduling
bandwidth-sensitive tasks can effectively reduce comple-
tion time of them. An instance of 471.omnetpp completed
by 19% faster than under the default Linux scheduler.
In addition, we can reduce average running time of all
workloads by 5% under HMMSched even though it hurts
the performance of 429.mcf in Fig. 7(a) With the workloads
mix #2, we can also see improvements with smaller per-
formance degradation of 433.milc #2. If we target PRAM
as an alternative of main memory, our scheduling policy
affects more on concurrently running application perfor-
mance. Figure 7(c) shows experiment result with PRAM
specification for NVRAM part of main memory. Because
of the long read access latency of PRAM compared with
DRAM, co-scheduling bandwidth-sensitive tasks utilizing
EBW shows better performance than with the default linux
scheduler. With STT-RAM specification, tasks generating
more NVRAM write get performance penalty. With PRAM
specification, however, read latency also affects the effective
bandwidth usage of tasks. It leads to leveling-off of each
task’s EBW usage so that they divide up the penalty from
scheduling delay. Consequently, though several tasks are
slightly hurt their performance, we can get more balanced
performance gain.
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VII. CONCLUSION AND FURTHER WORK

As manycore increases the need for larger memory capac-
ity, contention on memory has become a key issue. Although
hybrid main memory of DRAM and NVRAM can enlarge
memory capacity with high energy efficiency, hybrid main
memory-agnostic contention-aware scheduling degrades task
performance. Different access latencies to the NVRAM
compared with DRAM prevent bandwidth consumption of
each task hard to measure. In this paper, we propose
HMMSched, a novel task co-scheduling method for many-
core and a hybrid main memory of DRAM and NVRAM.
We define effective bandwidth to reflect different access
latencies according to the access type to the NVRAM. We
then prioritize CPU-intensive tasks to make more progress
in the CPU. Tasks consuming complementary EBW on
different memory are alternately selected to be co-scheduled
with running tasks. Consequently, HMMSched co-schedule
tasks consuming different memory type with complementary
access intensity, thereby reducing delay from contention on
the memory. The experimental results show that our scheme
outperforms default Linux scheduler by up to 19% in terms
of time efficiency.

As further works, we will add hybrid main memory
management features proposed in [14] to analyze effect of
data migration policy on the HMMSched scheduling. We
will also add task co-scheduling policy when the target
memory hierarchy includes NUMA architecture. Finally, we
will carefully analyze the effect of cache hit ratio according
to the ratio of read and write to the NVRAM main memory.
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