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Abstract - Computer applications typically run under the 

control of intermediary system software that is in the form of 

an operating system such as Windows or Linux, or a small 

kernel. The application could also be embedded within the 

operating system or kernel itself. This paradigm makes 

applications dependent on an intermediary software layer. An 

alternative approach is to eliminate this layer by writing 

computer applications that can run directly on the hardware. 

This approach takes a small or tiny kernel to its extreme, 

eliminating the operating system, which results in a novel bare 

machine computing paradigm. In this paper, we describe the 

bare machine paradigm, and illustrate how to build self-

supporting bare machine applications by eliminating 

application dependence on an operating system or kernel. The 

new paradigm requires that the developer be aware of the 

underlying hardware resources and use them efficiently for 

the needs of a given application suite. We also describe a set of 

generic bare interfaces that can be used across many 

pervasive devices as well as ordinary desktops and laptops. 

These interfaces have made it possible to build large bare 

applications. The bare machine paradigm paves the way for 

software interfaces to be incorporated into a chip, introducing 

a computing model where applications are independent of any 

intermediary software.   

Keywords - bare machine applications; bare machine 

computing; middleware; direct hardware interfaces; operating 

systems. 

 
I.       INTRODUCTION 

Building bare machine applications, which are 

independent of any intermediary software, is daunting due 

to constraints imposed by the existing computer 

architecture and development environments. Most CPUs 

are designed to work with an operating system (OS) or 

kernel and do not provide any interfaces to directly control 

the hardware. In some cases, the kernel or virtual machine 

may allow an application direct hardware access, but does 

not fully relinquish its control to the application. However, 

for certain specialized applications and secure systems, 

even the presence of a small kernel may prevent the 

application from fully controlling its environment and 

managing the hardware.  

We propose to eliminate the OS (or kernel) and give 

full control to applications. These applications are then able 

to run on the bare hardware without the need for any 

additional software layers. There is no persistent storage or 

any other resource to secure on a bare machine, device, or 

computing system. Moreover, only one bare application 

suite runs at a time. When an application is not running, the 

machine is not running any other code. It simply has 

memory, processors and an I/O controller to communicate 

with the applications when needed. Instead of an OS or 

kernel providing resources, an application suite manages 

the hardware. This does not mean that the applications 

replicate OS functionality. Rather, applications only 

contain code that is required for a given application suite. 

An application suite is modeled as an Application Object 

(AO) [6] that carries its own application and execution 

environment. For example, an AO may consist of a text 

processor/editor, a Webmail client, and a Web browser, and 

bare interfaces to the hardware. An AO programmer needs 

to have knowledge of the underlying resources, since an 

AO controls and manages all the hardware when it runs. A 

bare machine user carries a removable mass storage device 

to boot, load and run the application suite, thus making the 

machine bare when the AO is not loaded (since no OS or 

kernel is needed to run the suite).  

When such bare machines are built, they become 

ownerless and can be used by anyone, anytime, and 

anywhere. Many complex bare applications have been built 

to illustrate the bare machine computing (BMC) paradigm. 

These include a Web server [4], Webmail server [1], 

conventional (non-HTTP) email server and client, VoIP 

soft-phone [9], SIP server, and bare PC clusters using split 

servers [13]. The development of such applications served 

as the motivation for designing the direct hardware 

interfaces to a bare PC (x86 architecture). These interfaces 

are generic and can be used to construct any bare machine 

application.  One can make these interfaces and the BIOS 

part of the hardware in the future, thus creating a pure 

BMC environment, where there is no other software needed 

to run computer applications. A high-level methodology for 

developing bare machine applications was outlined 

previously [10]. Here, we provide details of how to develop 

such bare machine applications by using a set of generic 

hardware interfaces. In particular, this paper describes the 

direct hardware interfaces needed to eliminate the 

intermediary OS.  

The rest of the paper is organized as follows. Section II 

provides the motivation for this work. Section III describes 

the bare machine computing paradigm and its 

characteristics. Section IV illustrates the development of 

bare machine applications using a step-by-step process. 

Section V presents the direct generic hardware interfaces. 

Sections VI, VII and VIII respectively cover the use of a 

bootable USB, memory map, and the novel features of this 

approach. Finally, Section IX gives the conclusion. 
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II.          MOTIVATION 

The following considerations serve as the motivation 

for developing BMC applications based on the underlying 

paradigm: the proliferation of operating systems (OS) and 

frequent new releases to replace them; the rapid 

obsolescence of existing computer applications; the myriad 

of programming languages and interfaces; and the 

heterogeneity of computer architectures and platforms. 

While many arguments can be given to support the current 

evolution of conventional systems/platforms and their 

advantages, the BMC paradigm has been shown to be 

feasible for building a variety of complex applications such 

as the servers, clients, and high-performance systems noted 

above.  

Most current systems use complex concurrency control 

mechanisms, paging, virtual memory, and other well-

known concepts that have evolved due to lack of large 

memory, memory costs, shared resources, and the need to 

serve multiple users. Under those conditions, computing 

evolved towards complex systems with rapid obsolescence 

and less security. The BMC paradigm [7] enables 

applications to directly communicate with hardware, thus 

eliminating all middleware. Using this paradigm, 

applications can be written in C/C++ or other languages, 

where an AO programmer can directly call hardware 

interfaces, as originally proposed in [8]. This paper extends 

those ideas to address general purpose development of bare 

machine computing applications and a set of generic 

interfaces to the hardware.  

III.       BARE MACHINE COMPUTING   PARADIGM 

The BMC paradigm was originally referred to as 

dispersed operating system computing (DOSC) [7], but we 

have seen further evolution of DOSC into the BMC 

concepts as shown in Fig 1. A conventional OS, kernel or 

embedded software acts as middleware between the 

hardware and an application. An application programmer is 

isolated from an application’s execution environment, 

resource control and management.  

 

 
 

Figure 1. Conventional OS versus BMC paradigms 

That is, the programmer has no direct control of the 

program’s execution or the resources needed. In the BMC 

paradigm as shown in Fig 1, the OS is eliminated and the 

AO programmer is totally responsible for managing 

hardware resources. The AO programmer has knowledge 

and full control over a given application as well as its 

execution. Each AO only carries its needed controls and the 

direct hardware interfaces. The AO programmer is a 

domain expert for a given set of applications that are 

contained in a given AO. The BMC paradigm differs from 

conventional computing in two major ways. First, the 

machine is bare with no existing software and protected 

resources. Second, an AO programmer controls the 

program’s execution and manages the hardware.  

The BMC paradigm makes a computing device owner-

less and simplifies the design of secure systems since there 

are less avenues of attack and no underlying middleware 

that an attacker can control. Viewed another way, when a 

device is bare and contains no valuable resources such as a 

hard disk or kernel, there is nothing to own or protect. In 

BMC, mass storage is external and detachable. The mass 

storage can also be on a network. In this approach, an AO 

is built for a given set of applications to run at a time on a 

machine as a single monolithic executable. The boot, load, 

executable, data and files are stored on a mass storage 

device such as a USB. When a USB is plugged into a 

computer, the machine boots and runs its own program 

without using any extra software or external programs. This 

implies that no dynamic link libraries (DLLs) or virtual 

machine code are allowed in this approach. What runs in 

the machine, is exactly what has been loaded (and nothing 

else).  

This computing paradigm is different from 

conventional computing approaches since it is based on 

applications instead of computing environments. This is not 

a mini-OS or kernel, as there is no centralized program 

running in the machine to manage resources. Instead, the 

resources are managed by the applications themselves and 

run without using any OS/kernel or intermediary software.  

A variety of attempts have been made to eliminate OS 

abstractions or bypass the OS. However, none eliminate the 

kernel or OS altogether. Thus, while the BMC paradigm 

resembles approaches that reduce OS overhead and/or use 

lean kernels such as Exokernel [2], IO-Lite [12], Palacio 

[11], and the Hardware Abstraction Layer [14] in Java, 

there are significant differences. These include self 

controlled applications and programmer-driven execution, 

and the lack of centralized code that manages system 

resources. A model to analyze tradeoffs between feature-

rich and minimalist or “barebone” systems is presented in 

[15]. While such minimalist systems usually require an 

operating system or kernel, they may have also some 

characteristics in common with BMC systems.    

IV.        BMC APPLICATION DEVELOPMENT 

In BMC, a suite of applications such as a text 

processor, Webmail server and Web browser can be 

bundled together and run without any OS or kernel support. 

Fig. 2 illustrates the major steps involved in developing 
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BMC applications. First, a choice has to be made about the 

suite of applications; next, the architecture of the CPU on 

which they will run has to be identified. Using today’s 

CPUs, constructing a BMC application is a daunting task as 

they provide neither direct hardware interfaces, nor a 

development environment that facilitates building 

applications independent of an OS. For example, a bare PC 

requires the BIOS to boot, and an ARM processor requires 

a UBOOT tool. The program counter of a given processor 

is not directly accessible to the programmer. In a machine 

with an x86 CPU, the program counter can only be loaded 

by jumping to the task segment, where its value is stored 

and updated by the CPU. In a bare machine application, the 

program counter must be handled inside an application and 

not controlled by an OS or other software.   

Memory needs or requirements must be considered for 

a given application’s code, data and stack. The application 

programmer has to determine memory areas for the code, 

data and stack, as these applications run in a real memory. 

Real memory is cheap and affordable today. It is therefore 

feasible to avoid paging and virtual memory overhead, and 

the associated management. The absence of any other 

software in the system eliminates many unnecessary 

features commonly found in today’s technology. Most 

BMC application suites only require small amounts of 

memory compared to OS-based applications. For very large 

applications, one can use mass storage to provide extended 

storage using swapping techniques.  Section 7 describes 

details of the memory map created for some real-world 

applications using the BMC paradigm.  

The next step is to construct an application suite using 

programs that are independent of any OS. This application 

suite should be able to run on any compatible CPU without 

changes or adaptations. Different CPU architectures have 

different compilers to compile code. This requires that I/O 

related code be identified and direct hardware interfaces be 

deployed. One of the key elements in writing BMC code is 

being able to differentiate between code that is OS 

dependent, code that is OS independent and code that is I/O 

related. For example, file I/O is OS dependent code and a 

for-loop is OS independent code. User interfaces to support 

keyboard, mouse and display are all I/O related code. 

 

 
Figure 2.  Steps in developing bare machine applications 

 

Once OS dependent code and I/O related code are 

written (as hardware interfaces), they can all be integrated 

with the rest of the OS independent code and run as a single 

monolithic executable. The above approach introduces 

many challenges that must be addressed when developing 

BMC applications. They include the boot-up process and 

loading of an application suite. Each computing device is 

different in its boot process and the internal details are 

often hidden. Similarly, loading an application on a bare 

device also poses difficulties as it requires readily available 

tools that are OS dependent. Developing an OS 

independent loader requires a thorough knowledge of the 

CPU architecture and its development environment. 

Domain knowledge and related expertise for each CPU 

device are required to develop the bare boot and load 

processes. 

 

V.          DIRECT HARDWARE INTERFACES 

Conventional computer applications and programming 

languages use OS calls or system calls injected at link time 

from an OS such as Windows [16] or Linux [3]. These calls 

include memory, keyboard, terminal screen, network, mass 

storage, and interrupts. Some OSs include in their 

repertoire other commonly used OS-independent functions 

such as memory copy, string operations and concurrency 

control that require system calls. Computer applications 

and the programmer expect these calls or interfaces to be 

included at compile and link time by a given compiler and 

linker. 

Bare machine applications require system call 

equivalents (direct hardware interfaces) that are 

independent of any OS or kernel. These interfaces are 

directly controlled and accessed by an AO programmer. All 

of the above are factors to consider in determining the 

number of direct hardware interfaces needed for a suite of 

BMC applications. Some direct hardware interfaces used in                       

BMC applications are discussed below.  
 

A. Static and Dynamic Memory 

Static memory needs depend on the size of code, data 

and stack needed to run a program. When an executable is 

created, this information is available to the programmer. 

Thus, for a given executable, one can specify its 

requirements for memory. An AO can also be designed that 

can read the existing memory and restructure its code, data 

and stack in real memory and external mass storage or 

network. The code image is small as there is only one AO 

running at a time in the machine, and applications that are 

related are grouped to run together. 

Dynamic memory needs are however not known until 

run time. In a bare machine application, an AO programmer 

estimates the dynamic memory. Appropriate exceptions for 

memory can be set to manage dynamic memory; when 

large dynamic memory needs arise, one can use secondary 

storage in place of large dynamic memory. System calls 

similar to malloc() and free() can be designed to support 

dynamic memory management. One can allow the memory 
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controller to communicate with an AO and thus provide 

appropriate memory interfaces to manage memory in the 

AO. As memory technology improves and becomes 

cheaper, it is also conceivable to assume full address space 

(4GB in a 32-bit architecture) in a machine to avoid all 

memory management issues and provide direct control to a 

given AO.  

B.  User Interfaces  

The most common user interfaces are keyboard, 

mouse, touch-screen and terminal screen. These resources 

are managed by the OS in conventional systems. In bare 

machine applications, keyboard interfaces are part of an 

AO where the keyboard interrupt code places the data in a 

user buffer. Similarly, mouse data is also placed in a user 

buffer. An AO programmer designs the code to directly 

interface with a keyboard or a mouse. The terminal screen 

is usually controlled by a video memory or its graphics 

adaptor. An AO programmer can directly store output in 

video memory or write a bare video driver to control the 

screen. All device drivers supporting a bare application 

have to be bare and provide direct hardware interfaces to 

applications. They cannot, as is done, when an OS is 

present, be hidden from the application programmer. Other 

user interfaces have to be handled in a similar manner to 

the above interfaces.   

 

C.  Network Interfaces 

Most ordinary computing devices today have one 

wired and one wireless network interface. The device 

drivers for a network interface are controlled by underlying 

OS. Bare machine device drivers that provide direct 

network interfaces to an AO are needed in BMC. Instead of 

current OS-dependent network drivers, an AO programmer 

can initialize a network driver, configure relevant internal 

registers, and read or write to buffers and control registers. 

Such a design allows direct communication to applications 

and avoids the need for any middleware. As the drivers are 

now encapsulated within an AO, the network hardware is 

not accessible to other applications when a given 

application suite is running in the machine. A bare PC USB 

device driver and its implementation are described in [5].   

D.  Process Interfaces  

Many computer applications require process creation, 

deletion and management, which are usually controlled by 

an OS. In Intel x86 processors, process control and state are 

maintained by the CPU in a task segment. Interrupt gates 

are used to switch from one task to another. That can be 

done in a bare environment since these interfaces are 

accessible to an AO programmer. Control of the CPU is 

placed in an application program for creation of a new 

process (or a task). The global descriptor table (GDT) and 

local descriptor table (LDT) entries are used by the AO 

programmer to control task memory. Thus, when a machine 

becomes bare, the CPU and tasks are managed by an AO 

programmer. Task management in a bare machine is much 

simpler than in a conventional system, and the code size is 

also smaller compared to an OS-supported system. A 

conventional Web server system may be complex and 

create over 7000 tasks (in an x86 box) to provide high 

performance [4]. Process interfaces can eventually be 

generalized and made available to an AO programmer for 

any given CPU architecture. Today’s machines hide all 

these interfaces under an OS or some form of similar 

middleware. 

E. File Interfaces 

In conventional systems, a file system is part of the 

operating system. File systems use some standard 

specifications such as FAT32 or NTFS. Files can be 

transported across multiple operating systems and 

applications if they use standard specifications in their 

design. In bare machine applications, persistent data is 

under the control of an AO programmer and the data itself 

is part of an AO. Programmers can use their own file 

storage specification or use a standard specification to 

transport files to non-bare systems. One can also do a raw 

file system in an AO to avoid all file management 

complexities and hide the files within an AO (the only AO 

in which they are visible). This may be the most secure way 

to implement a file system. File transfers can also be 

accomplished through a network or by message passing. A 

given file system interface uses a bare device driver and 

controls the relevant device operations.  

 F. Boot and Load Interfaces  

Boot and load facilities are usually under control of the 

OS and the underlying BIOS calls. In BMC, these 

interfaces are controlled by the AO programmer to facilitate 

bare machine applications. Soft and hard boot can be used 

to control the machine when needed in bare machine 

applications. These interfaces also vary across platforms; 

ideally, a standard boot and load mechanism to run bare 

machine applications across multiple CPU architectures 

and machines is the best solution (what is described in 

Section VII, is a method that has been implemented for x86 

Intel CPUs). 

 G.  Compile, Link and Library Issues 

Compilers and linkers generate different formats for 

executables, which pose problems in loading and running 

bare machine applications. There is a need for 

homogenization in these tools to develop common bare 

machine applications that can run on many pervasive 

devices. New programming tools can be developed to 

compile bare machine applications using existing libraries 

and batch files, or new features can be added into existing 

Microsoft Visual Studio and Eclipse development tools to 

provide bare machine compilation options. Common 

libraries such as string operations, memory operations, 

locking, shared memory, message passing, and concurrency 
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control are system dependent and part of the OS libraries. 

However, they can be generalized and designed to run 

across many CPU architectures.  

VI.      BOOTABLE USB 

In the BMC paradigm, applications are carried on a 

removable storage medium such as a CD/DVD or a flash 

drive. This device also carries a boot program to boot and 

load its own application object suite. A typical way to 

create a bootable USB is as follows. A bootable USB is 

created using a special tool written in C and assembly 

language. This tool is a batch file that runs in a DOS 

window. The USB is formatted for FAT32 before its use. 

The bootable USB should have three files as shown in Fig. 

3b. The boot file is stored in the boot sector (#0), the 

prcycle.exe file is stored at 0x3be000, and the application 

file (shown in Fig. 3a as shell.exe), is stored at 0x3c4000.  

The prcycle.exe file (22, 037 bytes in size) contains 

assembly code to boot a bare PC, provides the user 

interface/menu, and facilitates the loading of AOs (in this 

instance, shell.exe). It enables the switching from real to 

protected mode and vice versa for handling low-level 

interfaces. It also contains, IDT, GDT, TSS and BIOS 

interrupts to provide the AO programmer with direct 

control of the CPU. This part of the application code thus 

plays a key role in enabling the programmer to manage the 

hardware resources in a bare PC. In summary, the batch file 

copies files onto the USB, installs a boot program, and 

creates a bootable USB. This entire process does not 

require any software other than what resides on the USB 

(and is thus part of the bare PC application). There is no 

dependence on any specialized commercial tool or 

software. This enables bare PC applications to be 

independent of any OS-related environments and tools. It is 

also possible to use existing boot tools to create a bootable 

USB; however those tools must guarantee high security if 

needed in a system. The approach proposed here 

demonstrates building bare machine computer applications 

in a single environment where every aspect of software 

development is controlled by an AO programmer with no 

other dependencies. This approach facilitates enhanced 

security to computer applications.  

 
Figure 3. USB layout 

VII.      MEMORY MAP 

As discussed in section 4, the AO programmer needs to 

design the real memory layout when developing a bare PC 

application. Fig. 4 shows a typical memory layout for a 

given application suite. An AO programmer prepares this 

map before designing a given application suite. The 

prcycle.exe program is used on the bare platform to load 

the AO at 0x600 in real mode memory. The main() entry 

point for prcycle.exe is located at 0x3100, which can be 

obtained from the prcycle.map. When the PC is booted, it 

must jump to 0x3900 as instructed by this memory map. A 

user loads the example application (shell.exe) by using the 

menu provided by prcycle.exe (not shown here). The 

executable for this AO is loaded at 0x00111E00 as shown 

in Fig. 4. The reason for using this particular address for 

loading shell.exe is discussed below. Visual Studio 8.0 (and 

later editions) of compilers behave differently than the 

previous versions when generating an exe file. In previous 

versions, when the entry point in shell.map indicates 

0001:00000000, it usually implies that the main entry point 

in shell.exe is at 0x1000. In newer versions, this is not the 

case. In Visual Studio 8.0 (C++ versions), the executable 

starts at address 0x400 instead of at 0x1000. As shown in 

Fig. 4, the AO (shell.exe) is located at 0x00111E00. The 

higher 16-bit address 0x0011 indicates that it is loaded 

above 1 MB to load it in a protected mode memory 

address.  

The lower 16-bit address 0x1E00 is derived as follows. 

The compiler start address for shell.exe is 0x0000, but it 

actually starts at 0x400. It was observed in the executable 

that the offset used by this compiler is 0x1e00 more than 

the actual offset in the executable. Thus, when the 

executable is relocated at 0x1e00, the references to the 

variables were correct as it was generated by the compiler. 

The main entry point for shell.exe should be at 0x1e00 + 

0x400 as shown in Fig. 4. A generic tool is needed to 

resolve such intricacies involved in generating a memory 

map for a mass storage device.  This tool should consider 

compiler options, executable formats and map files to 

create a memory map that is suitable for a given bare 

machine device. 

 
Figure 4.  Memory map 
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Figure 5. BMC device architecture 

 

VIII.     NOVEL FEATURES 

BMC applications provide a new and innovative 

computer architecture that is based on current trends in 

technology. Fig. 5 illustrates a vision of future computing. 

This shows a BMC device that communicates with standard 

units such as memory, network card, wireless card, USB 

device, keyboard, mouse, display and mass storage. These 

units are common to many pervasive devices today. It is 

thus useful to write computer applications that target the 

BMC device as a baseline. Each device can run its own 

native application while using the standard hardware API 

as illustrated in the figure. All applications can access these 

interfaces and yet the hardware itself is bare. Until then, we 

can continue to provide these interfaces as software. The 

BMC architecture avoids heterogeneity in hardware, 

software, programming and tools.  

 

IX. CONCLUSION 

We described the BMC paradigm and showed how to 

build applications based on it. We identified the generic 

direct bare hardware interfaces needed to eliminate the 

OS/kernel. The BMC paradigm/approach enables these 

hardware interfaces to be incorporated in the hardware, thus 

making the latter more intelligent and able to communicate 

with the software. The interfaces were used to construct 

complex bare PC applications that have a small code 

footprint, are simple to use, provide high performance, and 

are inherently secure in design. We also presented a bare 

machine application architecture that enables a BMC 

device to be used for many pervasive applications. The new 

paradigm and approach will make it possible to save time, 

energy, and resources, while reducing the cost of 

developing applications for each pervasive device. The 

BMC paradigm demonstrates a new approach to computing 

based on completely self-supporting applications that 

eliminate all intermediary software. 
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