
The Ontological Programming Paradigm

Valeriya Gribova, Alexander Kleschev

Intelligent Software Laboratory

Institute of Automation and Control Processes,

Far Eastern Branch of RAS

Vladivostok, Russia

gribova@iacp.dvo.ru, kleschev@iacp.dvo.ru

Abstract — This paper is devoted to the new ontological

programming paradigm, an evolution of the declarative

programming paradigm. The data model, basic structures of

the language, and example are described.

Keywords - programming paradigm; data model; semantic

network; ontology.

I. INTRODUCTION

Software development is a time consuming process.
Even more difficult is software maintenance. They both
require new approaches from developers to resolve these
problems. The declarative programming paradigm and
languages realized in this paradigm were proposed as an
approach to the problem mentioned above.

In general, a program in a declarative language is a
description of an abstract model of the task to be solved, or,
in accordance with [1], an executing specification of a result
of computation. The programmer does not have to describe a
process to control computation; it is the function of the
language processor. Among other advantages is the fact that
it is easier to write, to understand, and to maintain programs
using languages of this paradigm in comparison with those
written in imperative languages.

Declarative languages comprise logical and functional
languages. However, the main idea of declarative
programming in the modern logical and functional languages
has not been realized completely yet. As a result, programs
written in Prolog [2] and Lisp [3] are not considerably easier
to develop, understand, and maintain than programs written
in imperative languages. Among other drawbacks of
declarative languages are poor facilities for user interface
realization, and the difficulty of including imperative
operators, if necessary.

The aim of this report is to suggest a new programming
paradigm, called the ontological programming paradigm, as
a further evolution of the declarative programming paradigm
and to suggest an ontological programming language (OPL)
satisfying the declarative programming definition, where a
program is an ontology of results of computation.
Mechanisms for user interface realization and facilities for
including imperative structures are proposed.

The paper has the following structure. The problem
statement is discussed complication of processes of
development, modification, and understanding a program in
the imperative, functional, and declarative paradigms; the
ontological programming paradigm and its basic principles
are described. Then the data models of the paradigm, basic

structures of the ontological programming language are
suggested. At the end of the paper the expert system of
medical diagnosis using OPL is presented.

II. PROBLEM STATEMENT

 Output data of task solving are the result of a
computation process. The complications of program writing
for solving a certain task are the following: the developer
has to understand a set of computation processes to obtain
results (extension of a task) for various possible input data,
and to specify this set in a programming language (to write a
program) [4]. The complications of a program modification
during the life cycle are the following: the maintainer must
recover extension of the task and comprehend why the
computation processes result in exactly these output data.
Then he or she must understand how to change these
processes in order to obtain new output data and then
modify the program.

 We will discuss how computation processes to obtain
results are connected with programs for obtaining these
results in the imperative, functional, and declarative
paradigms.

The basis of the imperative paradigm is computational
models [5, 6]. The process of obtaining results in these
models is a sequence of states, the first of them is generated
from input data using an input procedure, every follow-up
state is generated from the previous one using an operator of
direct processing; the terminal state gives the output result.
All the states of the computation process, except for the
terminal state, are only indirectly connected to the output
result. In currently-used imperative languages, the state of a
computation process is a set of variable values, and the
operator of direct processing is the assignment operator.
Using this operator, the next state is a modification of a
variable value; the remainder variables keep their values.
Sequences of operator execution in programs written in
imperative languages are defined by linear fragments of the
program, conditional operators, and cycle operators (and also
a procedure call).

The basis of the functional paradigm is the lambda
calculus [5, 6]. The process of obtaining the result can be
represented by an oriented marked network of a function
call. The label of every terminal vertex is input data, the label
of every non-terminal vertex is a function value. Arguments
of this function are labels of arcs outgoing from this vertex
(the arc orientation is from the result to the argument). The
computation result is the label of the network root. All
temporary values (labels of non-terminal vertexes), except

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

mailto:gribova@iacp.dvo.ru
mailto:kleschev@iacp.dvo.ru

for the root label, are indirectly connected to the output
result. In current functional languages there is a set of basic
functions and facilities for designing of new functions from
basic and already defined (among them being conditional
terms and recursion).

The basis of the logical paradigm is the first order
predicate calculus [5, 6]. The process of obtaining result can
be represented by an oriented marked network of result
inference. The label of every terminal vertex is a relationship
tuple representing input data; the label of every non-terminal
vertex is a relationship tuple representing the result of
applying a rule to premises. Premises are labels of arcs
outgoing from this vertex (the arc orientation is from the
consequence to premises). The computation result is the
label of the network root. All temporary values (labels of
non-terminal vertexes), except for the root label, are
indirectly connected to the output result. A program in a
logical language is an inquiry and a set of rules
(implications) and facts (relationship tuples).

The computation result in each of the three paradigms is
obtained at the last step of the computation process, all
remainder steps are indirectly connected to the output result
and are temporary values.

Thus, to simplify the program development and its
understanding and modification, it is necessary to suggest a
programming paradigm where processes of obtaining result,
represented by oriented graphs are direct. It means that a
fragment of a result is formed at the every step of the
computation process. In this case a program is an executable
specification of a set of results of computation (but not a set
of indirect processes of obtaining them). Developing such a
program the programmer must only specify a set of results of
computation; analyzing such a program the programmer
must only conceive a set of results obtained; modifying such
a program the programmer must only understand how to
change the specification of the set of computation results to
obtain required changes of these results, and every changing
is local. The specification of a set of results, according to the
up-to-date view in the artificial intelligence is an ontology of
computation results. So, we name the suggested paradigm
the ontological programming paradigm. It is considered as a
more complete realization of the declarative programming
paradigm (functional and logical paradigms).

III. THE DATA MODEL OF THE PARADIGM

All data in the ontological programming paradigm are
semantic networks. The semantic network is an oriented
graph without cycles; all arcs of the network have labels,
vertexes can be simple and structural; the network vertex
without entering arcs is the root. Every simple terminal
vertex of the network has a label. A label is a constant of a
type. The root of the network has two labels. The first of
them is the label of a class (the name of a function), the
second is the individual label of this network. Every
structural vertex is a container comprising an ordered set of
hierarchical semantic networks with the same label of a class
and different individual labels.

The semantic network may be stored constantly (out of
the programs) or temporarily (within the program). Using
semantic networks as a data model means that objects of
processing are integrated information structures. For
example, integrated information structures in the expert
system of medical diagnosis are: a case report, a knowledge
base, and an explanation represented in the form of semantic
networks. It is the difference of the ontological paradigm
from others that support processing informational structures
divided into some fragments (for example, some objects).
Relations between these fragments are only known to
programmers.

IV. THE APPLICATION

In general, an application has one or some output
semantic networks (results), may have/do not have one or
some input semantic networks (input data), and also may
have/do not have one or several temporary semantic
networks (temporary data). Every temporary or the output
semantic network is computed by a function (the name of the
function is a label of a class of the semantic network root).

Every function may have/do not have input semantic
networks and the only output semantic network and does not
have any temporary networks.

Input semantic networks may be stored constantly (out of
the application) or temporary (within the application), so
output semantic networks of an application or a function may
be stored both constantly and temporary.

Among all semantic networks of an application (input,
output, and temporary ones) a partial order is defined.
Therefore, an application is a superposition of these
functions, connected with computation of all semantic
networks of an application, except for input semantic
networks stored constantly. Thus, application executing is
computation of the output semantic network using input
semantic networks stored constantly and created before
application launching (if any). Every function of an
application is an ontology (structure) of an output semantic
network created by the ontological programming language.

V. THE ONTOLOGICAL PROGRAMMING LANGUAGE

The OPL is a visual logical language of programming. A
function is the ontology of the output semantic network. It is
an oriented graph with the marked vertex and arcs. Arc
labels are terms which become arc labels of an output
semantic network of a function in the process of application
executing. A vertex label is logical formulas.

The computation process of an output semantic network
of a function built this network starting from the root. During
the process of semantic network building one-to-one
correspondence between the vertex and arcs of the output
semantic network and the vertex and arcs of its ontology
(function) is determined. The output semantic network can
be built as both automatic and interactive ones.

с

Figure 1. The simple formula

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

http://www.multitran.ru/c/m.exe?t=1036963_1_2
http://www.multitran.ru/c/m.exe?t=1036963_1_2
http://www.multitran.ru/c/m.exe?t=2535370_1_2
http://www.multitran.ru/c/m.exe?t=2535370_1_2
http://www.multitran.ru/c/m.exe?t=2535370_1_2
http://www.multitran.ru/c/m.exe?t=2535370_1_2

Logical formulas of the language are: a simple formula, a
unary formula, a propositional formula, a simple quantifier
formula, a structural quantifier formula and a set of
implications.

T

F

Figure 2. The unary formula

The simple formula (see Figure 1) is a graph comprising
the only vertex with the label c. Label c is a constant of any
type, or variable v, or variable value v*.

The unary formula (see Figure 2) is a graph comprising
the initial vertex and the arc with the label T (term), going
out of the initial vertex and coming into the initial vertex of a
logical formula F.

P

. . .
T1

FnF1

Tn

Figure 3. The propositional formula

The propositional formula (see Figure 3) is a graph
comprising the initial vertex with the propositional label P
and n arcs (two and more) going out of this vertex. Each of
these arcs has the label Ti (term; i varies from 1 to n, and all
of these arcs must be different) and coming into the initial
vertex of a logical formula Fi. The propositional labels P are:
& — conjunction, — disjunction, and | — XOR. The set
of propositional labels is extended.

The simple quantifier formula (see Figure 4) is a graph
comprising the only vertex with the label QMT, where Q is a

quantifier, M is a set, and T is a term. The quantifier is 

(universal),  (existential), 2 (existential not less than two),

? (existential but not for all), ! (existential and only),  []
(existential subinterval).

The set is defined by values of the elements (constants),
or the type of valid values, or an integer and a real interval,
or a variable. The type is "string", "integer", "real", "integer
interval ", "real interval ", and "data-time ". The set of types
is extended. The determined set and the chosen quantifier
define conditions and contingencies during the consequence
process of a result fragment.

QMT

Figure 4. The simple quantifier formula

The structural quantifier formula (see Figure 5) is a graph
comprising the only vertex with the label QMT, where Q is a
quantifier, M is a set, and T is a term, and a logical formula
F, the initial vertex of which is inside the initial vertex of the
structural quantifier formula.

QMT F

Figure 5. The structural quantifier formula

IS: 

IS:

A1 => C1, …,Am => Cm

Figure 6. The set of implications

The set of implications (see Figure 6) is a graph

comprising the only vertex with the label {A1  C1, …, Am

 Cm}, where A1, …, Am are antecedents and C1, …, Cm
are consequents of implications. The antecedent of the
implication is a finite set of components. They are logical
formulas; each of them can have a prefix. The prefix is a
name of an application written in the OPL. The consequent
of the implication is a logical formula.

Variables declared in logical formulas can be only in

antecedents and consequent of implications. The special
labels of vertexes of unary formulas can be only in
antecedents of implications. If a variable is in the consequent
of the implication, it must be in antecedent of the
implication.

For realization of complicated calculations computed
predicates are added to the OPL. They are intended for
describing calculations using operators of an imperative
language (for example, Java). A computed predicate has
name and a set of formal parameters.

Abstract interface commands define functional of a user
interface. They are divided into four classes: output
commands, input (edit) commands of a value of a type, input
(edit) commands of a set of values of a type, choice
commands of a subset from the set of values.

Medical

diagnostic

knowledge

base

Case record

Input data Application

OPL program

(explanation ontology)

Output data

Explanation

Figure 7. Architecture of the expert system of the medical diagnosis

Using the OPL the expert system of medical diagnosis is
described (see Figure 7). Input data for the system are the
knowledge base and a case record. The application (the
program in OPL) is the semantic network of explanation
(forming the explanation). The explanation consists of two
parts: hypotheses explanation that a patient is healthy and
hypotheses explanation that a patient suffers from a disease
from the knowledge base (see Figure 8).

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

http://en.wikipedia.org/wiki/Universal_quantifier
http://en.wikipedia.org/wiki/Existential_quantifier
http://en.wikipedia.org/wiki/Existential_quantifier
http://en.wikipedia.org/wiki/Existential_quantifier

Explanation: &

Hypothesis

«Patient is healthy»

Hypothesis

«Patient suffers from a desease»

IS3

&

Hypotheses

«Factor is normal»

Estimation

 of hypothesis

IS2IS1

Figure 8. Explanation of the expert system of the medical diagnosis

Hypotheses explanation that a patient is healthy consists
of hypotheses explanation that all observed factors of the
patient is normal and hypotheses estimation that the patient is
healthy.

Case record:

 v1: observation  v1: observationIS1: &

Hypotheses

«Value is normal»

Estimation

 of hypothesis

IS5IS4

Figure 9. Description of “Factor is normal” hypothesis

Implication IS1 (see Figure 9) forms variable value v1. It
is a set of all observed factors in the case record. Hypotheses
explanation consists of two parts. The first part is hypotheses
explanation that all observed values of this factor is normal.
The second part is hypotheses estimation that this factor is
normal. Similarly to IS1 implications IS2, IS3, IS4, and IS5
are described.

VI. CONCLUSION

The new paradigm is intended for reducing labor-
intensiveness of development and maintenance of intelligent
systems. The main idea is to describe an ontology of results
using the visual logical language of programming. The
programmer does not have to describe a process of obtaining
result; it is the function of the language processor. All data in
the ontological paradigm are semantic networks. The
language has facilities for user interface realization and for
including imperative structures.

ACKNOWLEDGMENT

The research was supported by the Russian Foundation
for Basic Research, the project 12-07-00179-а and the Far
Eastern Branch of Russian Academy of Science, the project
12-I-ОНИТ-04

REFERENCES

[1] J. Lloyd Practical advantages of declarative programming. In:
Proceedings of the 1994 Joint Conference on Declarative
Programming, GULP-PRODE'94, Springer Verlag, 1994,
Vol. 94, pp. 1-15.

[2] I. Bratko Prolog programming for artificial intelligence.
Harlow, England ; New York: Addison Wesley, 2001, 678 p.

[3] C. Orlov Technology of software development – SPb: Piter,
2002, 464 p. (in rus.)

[4] UspenskiyV.A. Semenov A.L. The theory of algorithms.
Fundamental discoveries and applications - М.: Nauka, 1987,
288 p.(in rus.)

[5] Sebesta R.W Concepts of Programming Languages. - AW:
2001, 672 p.

[6] Floyd R.W. The Paradigms of Programming//
Communications of the ACM, 1979, 22(8), pp. 455-460.

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-217-2

FUTURE COMPUTING 2012 : The Fourth International Conference on Future Computational Technologies and Applications

http://www.ias.ac.in/resonance/May2005/pdf/May2005Classics.pdf

