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Abstract—With the recent growth in the quantity and value
of data, data holders have come to realize the importance of
being able to utilize information that is otherwise abandoned or
concealed. In this situation, they face the difficulty of publishing
data without revealing private information. Two of the methods
used to protect private information when publishing data are
privacy-preserving methods based on constraints known as k-
anonymity and l-diversity. These methods enable the utilization
of published data while preserving privacy, but incur a large
computational cost. We solve this problem using a hardware
architecture composed of Ternary Content Addressable Mem-
ory (TCAM), which can significantly accelerate the privacy
preservation process. k-anonymity and l-diversity have not
been studied in any significant way for efficient hardware
implementation. Thus, this will be the first of its kind. An
evaluation proves that an implementation of the proposed
architecture on a reconfigurable device performs approximately
10-50 times faster than a RAM-based architecture.

Keywords-hardware; reconfigurable device; privacy-preserving
data publishing.

I. INTRODUCTION

Recently, the spread of Web services such as social
networking services, blogs, and Internet shopping has em-
phasized the importance of users’ information on Web
servers and databases. Ubiquitous devices, sensor networks,
and RFIDs will accelerate this situation. These types of
applications generate information, including trends, which
is valuable for service providers, social researches, and
marketing. In this situation, data holders intend to share and
utilize information that is otherwise abandoned or concealed.

In this situation, data holders face the difficulty of pub-
lishing data without revealing private information. Beyond
the current methods of protecting against external cyber
attacks, new methods of protecting private information when
publishing data are needed. One of these is a privacy-
preserving method based on a statistically proved constraint
such as k-anonymity [1] or l-diversity [2] that enables
data users to utilize published data under the constraint
of preserving privacy. However, this method has a high
processing cost, which makes it difficult to process high-
throughput data streams such as the output of a database or
network traffic that has been kept generated without pausing.

One of promising approaches to improve the performance
is hardware implementation. We propose a TCAM-based
hardware architecture for accelerating k-anonymity and l-
diversity methods. These methods have not been studied in

any significant way for efficient hardware implementation.
Thus, this will be the first of its kind.

II. RELATED WORK

Techniques to extract useful information without revealing
privacy have been proposed for privacy-preserving data
mining (PPDM) [3]. PPDM extracts useful information such
as statistics and associations from more than one database
with their secrecy preserved. In particular, the protection of
private information when publishing data is called privacy-
preserving data publishing (PPDP) [4], which is different
from PPDM because it does not involve data mining. Two
PPDP techniques are methods based on constraints, known
as k-anonymity [1] and l-diversity [2], which are achieved
by generalizing and suppressing “unique” data.

In recent years, many methods, especially for k-
anonymity, have been studied. The main focus of some
works is on privacy-preserving publishing of not static
data, but dynamic data set, where new data can be added
[5][6]. In this scenario, mainly two problems emerge; One
is that the republication of the entire data set is needed
whenever new data are added, and the other is the malicious
inference available by analyzing the multiple versions of
published data sets. To solve these problems, incremental
update methods, which efficiently insert new data into the
current data set without making it vulnerable, were proposed.

A clustering-based method based on k-anonymity for
data streams was proposed with an eye on applications
that need continuous privacy-preserving data publishing such
as the publishing of telephone/network service records for
network-traffic analysis, a search engine publishing a query
log for online Web mining, and a stock exchange publishing
its transactions [7]. Our approach is not based on clustering,
and we focus on maintaining data in input order, which is
important for some applications. It is different from those
researches. Furthermore, our approach is based on hardware
acceleration. The parallelism of our architecture efficiently
accelerates the privacy preservation process.

The calculations of k-anonymity and l-diversity generally
require a large cost. It has been shown that an optimal
calculation of k-anonymity, which means results with the
minimum information loss, is NP-hard [8]. The calculation
of k-anonymity or l-diversity can be completed by repeat-
edly comparing each record against every other record as
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an association-rule mining. This calculation requires a time
complexity of O(n2) in the worst case for k-anonymity
and in all cases for l-diversity. To improve performance,
a promising approach is to exploit advanced hardware.
This approach includes an implementation with network
processors [9], exploitation of GPGPU or GPUTeraSort [10],
improved performance of join with Cell/B.E. [11], and the
implementation of special purpose hardware for stream data
operations with FPGA [12][13][14][15].

The k-anonymity and l-diversity methods have not been
studied in any significant way for efficient hardware imple-
mentation. Researches on the hardware implementation of
an association-rule mining algorithm have been published
[16][17][18]. These researches may be efficient for the k-
anonymity and l-diversity methods in finding infrequent
records that do not satisfy k or l. However, the requirements
are different for k-anonymity or l-diversity and association-
rule mining, as follows: 1. The comparison is computed
for a whole record. It is not necessary to calculate the
combination of elements in a record. 2. An implementation
of generalization is needed. 3. Association-rule mining finds
frequent records, whereas infrequent records are needed in
the calculation of k and l. Moreover, association-rule mining
finds a rule, not a record itself. Thus, after finding rules,
another process may be needed to find records that match
the extracted rules. Therefore, another implementation opti-
mized for the privacy-preserving algorithm would be more
effective than a hardware implementation of the association-
rule mining algorithm.

III. PRIVACY PROTECTION MODEL

k-anonymity and l-diversity are satisfied by using a gen-
eralization that replaces a value with a less specific, more
general value, or masks a part of the value with “*.” The
special terms used in this paper are defined according to
[1][2] as follows:

Data Table: A row is termed a tuple and a column is
termed a field. Each field is said to be an attribute, which
indicates the meaning of values.

Attribute: Attributes that can uniquely identify individuals
such as names are termed explicit identifiers. Other attributes
that in combination can uniquely identify individuals such as
their birth date, ZIP, and gender are termed quasi identifiers.

Sensitive Attribute: Attributes that are not termed quasi
identifiers and should not be associated with an individual,
for example “diagnosis” in the case of medical data, are
termed sensitive attributes. Other attributes, which are possi-
bly the same as the quasi identifiers, are termed non-sensitive
attributes and will be generalized. When the values of non-
sensitive attributes are the same or have been generalized to
the same values, the set of tuples is termed a q*-block.

Domain Generalization Hierarchy (DGH): A Domain
Generalization Hierarchy (DGH) refers to a hierarchy that

{1980/06/01,..., 1980/07/01,..., 1988/01/01,...}

{1980/06/**,..., 1980/07/**,..., 1988/01/**,...}

{1980/**/**,..., 1981/**/**,...}

****/**/**

Figure 1. Birth date domain generalization hierarchy

Table I
DATA TABLE WITH SENSITIVE ATTRIBUTE “PROBLEM”

Gender Birth ZIP Problem
Male 1963 02150 short breath
Male 1960 02140 chest pain
Male 1964 02138 chest pain
Male 1964 02138 obesity
Male 1964 02138 short breath

Table II
2-ANONYMIZED TABLE WITH SENSITIVE ATTRIBUTE “PROBLEM”

Gender Birth ZIP Problem
Male 196* 021** short breath
Male 196* 021** chest pain
Male 1964 02138 chest pain
Male 1964 02138 obesity
Male 1964 02138 short breath

indicates how and how many times an attribute is general-
ized. For example, Figure 1 shows the DGH of the attribute
“birth date.”

A. k-anonymity

A table T satisfies k-anonymity if each sequence of non-
sensitive values in T appears with at least k occurrences.

Table I with the sensitive attribute “problem” is gener-
alized into Table II where k = 2, as an example. Because
there are at least 2 of the same tuples for each tuple in Table
II, an adversary cannot distinguish one tuple from another
in any q*-block. k-anonymity guarantees that a tuple cannot
be distinguished from at least k−1 other tuples in the table.

However, k-anonymity may leak private information in a
few cases, as mentioned in [2]. In a case where the sensitive
values are all the same in a q*-block, an adversary can infer
the sensitive value even if he cannot distinguish the tuple.
In another case where an adversary has a strong background
knowledge about the sensitive values, he may be able to
infer non-sensitive values from the sensitive values. These
vulnerabilities are both caused by a lack of diversity in the
sensitive values. To solve this problem, l-diversity [2] has
been proposed, as stated below.
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Table III
GENERALIZED VALUE EXPRESSION IN TCAM

Value TCAM
Data Mask

0011**** 00110000 00001111
00111*** 00111010 00000111

Table IV
GENERALIZATION PROCESS IN TCAM

Value TCAM
Attribute 1 Attribute 2 Data Mask

0000 0000 0000 0000 0000 0000
↓generalize

000* 000* 0000 0000 0001 0001
↓generalize

00** 00** 0000 0000 0011 0011

B. l-diversity

Table T satisfies l-diversity if every q*-block has at least
l different values for a sensitive attribute.

Assume that the ith most frequent sensitive value appears
ri times and n types of sensitive values appear in a q*-block;
l-diversity is defined by equation 1.

r1 ≤ rl + rl+1 + ... + rn (1)

IV. PROPOSED ARCHITECTURE

A. TCAM

A hardware implementation of the k-anonymity and l-
diversity method requires the following things:

• A fast search function for infrequent tuples that do not
satisfy k-anonymity or l-diversity

• Implementation of the generalization, which means a
search function compatible with “*,” i.e., a wild card

These requirements can be achieved using Ternary Content
Addressable Memory (TCAM). CAM is a memory that
receives data as input and outputs the locations where the
associated contents are stored. Comparison logic for each
cell enables a search operation to be completed in a single
memory access. By using CAM, it becomes clear whether
or not the required privacy level is satisfied in CAM with the
complexity O(n). Additionally, TCAM has a mask circuit
that allows a third matching state of “Don’t care” for each
cell for various-length matching. The generalization can be
processed with this circuit as shown in Table III.

By shifting mask bits, data can be generalized from the
bottom bit-by-bit, as shown in Table IV.

The calculation of k-anonymity is completed by counting
the number of tuples that are the same as the one specified
in a search. TCAM can complete the calculation in a
single cycle by searching for the tuple. Unfortunately, the
calculation of l-diversity requires a process that is not as
simple as that for k-anonymity because a calculation of the
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Figure 2. TCAM-based architecture for k-anonymity and l-diversity

frequencies of the values of sensitive attributes in a q*-block
is required. Based on the l-diversity principle expressed by
equation 1, if the probability of the occurrence of a value
for a sensitive attribute in a q*-block is less than 1/l, a tuple
that has that value has absolutely satisfied l-diversity. Thus,
the probability of the occurrence of a value for a sensitive
attribute in a q*-block can be written as p(s|q∗), where s
denotes the sensitive value, and if the probability satisfies
equation 2, the tuple is said to satisfy l-diversity.

p(s|q∗) ≤ 1
l

(2)

Our approach to calculate the probability is to utilize
variable-length matching just as in the generalization, which
allows the calculation to be completed in two phases. In
the first phase, a search operation is executed just as in
the calculation of k-anonymity, and the total number of
tuples that are the same as the one specified in the search
is counted. The result of the first phase shows how many
times a value for a sensitive attribute of the current tuple
occurs in the q*-block. In the second phase, unlike the first
phase, a search operation is executed with the values for the
sensitive attribute masked. The result of the second phase
shows the total number of tuples in a q*-block that include
the tuple currently being processed. The probability p(s|q∗)
of the tuple can be calculated using the two values obtained
in these two phases.

B. Whole Architecture

Figure 2 shows the hardware architecture proposed in this
paper. The TCAM has a match line for each entry and
outputs are connected to the tree adder, which counts up
the total number of asserted match lines. The comparator
compares the input with the previously configured privacy
level, and the output indicates whether or not the privacy
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level is satisfied. The controller manages the write and
read addresses, and shifts the generalization process from
the current tuple to the next tuple after completing the
generalization, which is necessary if the privacy level of the
current tuple is not satisfied. Finally, all of the sets of data
and mask values are output when all of the tuples in TCAM
satisfy the privacy level. The algorithm is executed as stated
below.

1) Input data into the TCAM
2) Search the TCAM for a tuple
3) Generalize the tuple if its privacy level is not satisfied
4) Search for the next tuple
5) Repeat step 3 and 4 until all of the tuples in the TCAM

satisfy the required privacy level
6) Output all sets of data and mask values in the TCAM

and go back to step 1
The details of this algorithm are described in the follow-

ing.
Algorithm Calculation of k and l

1: loop
2: /*Input*/
3: while TCAM is not full do
4: write tuple to TCAM;
5: end while
6: /*Calculation of k and l*/
7: repeat
8: flag ← 0;
9: for each tuple in TCAM do

10: search for tuple;
11: if k or l is not achieved then
12: generalize tuple;
13: flag ← 1;
14: end if
15: end for
16: until flag is 0
17: /*Output*/
18: while TCAM is not empty do
19: read tuple from TCAM;
20: result← data | mask;
21: end while
22: end loop

Because it is important to ensure the levels of tuples
in the generalization hierarchy are as same as possible in
computing the algorithm, the search operation at each tuple
is executed only once per loop, and the loop is repeated
until all of the tuples in the TCAM satisfy the required
privacy level. In the output process, if the output is only
one tuple, the whole transaction, including tuples that have
already been output, may not satisfy l-diversity. This is why
the proposed architecture exchanges tuples perfectly. In this
case, because it is the same to process a divided transaction
one-by-one, the architecture can work in parallel.
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Figure 3. Observed waveforms

V. RESULTS

A. Throughput

The proposed architecture is implemented on a Xilinx
Virtex5 FPGA board (XC5VLX330T) using the tool Xilinx
ISE 12.3. Because the TCAM cannot be implemented using
Block RAM and requires a large hardware cost, the TCAM
IP core provided by Xilinx is implemented to improve
resource utilization. Additionally, although the TCAM needs
to output data and mask values in the proposed architecture,
the TCAM IP core has no output ports for stored values. To
solve this problem, the proposed architecture is emulated by
storing data and mask values into not only TCAM but also
Block RAMs. In the case of the 256x256 TCAM, which
is the maximum entry size on XC5VLX330T, hardware
usage is 45,691 LUT FF pairs and the maximum frequency
is approximately 70 MHz. Figure 3 shows a capture of
a SimVision waveform window. The signals described in
this figure are as follows: 1. saddr reg indicates a memory
address where a tuple currently being processed is stored.
2. l cycle indicates the two phases of the calculation of l-
diversity described in IV-A. 3. m count indicates the output
of the tree adder, namely the total number of matched tuples.
4. l indicates the required l. 5. achv indicates whether the
current tuple achieves l-diversity.

The throughput evaluation is performed by processing
Internet traffic, specifically browsing history obtained at
our laboratory to simulate a trend survey on the Web. The
destination IP address is the quasi identifier and used for the
non-sensitive attribute, while the Web title is the sensitive
attribute. The destination IP address is processed as 32 bit
data, and generalized one bit by one bit, up to 32 times.
Table V shows the data layout of the data set used for this
evaluation.

Figure 4 gives a throughput comparison between the pro-
posed architecture and RAM-based architecture where the
search operation is serialized. The comparison is performed
with l-diversity, which requires a larger processing cost than
k-anonymity.

Because the throughput is calculated by assuming that a
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Table V
DATA LAYOUT OF THE DATA SET USED FOR THE EVALUATION

Destination IP address (actually 32 bit data) Web title
012.XXX.XXX.XXX Google
012.XXX.XXX.XXX Facebook
123.XXX.XXX.XXX Google
234.XXX.XXX.XXX FIFA.com

!"

#"

$"

%"

&"

'!"

'#"

()#" ()*" ()'!" ()#!"

!
"
#$
%
&
"
'
%
()
+,
-
.
/0
"

1234"

534"

Figure 4. Performance comparison against RAM-based architecture

tuple corresponds to a packet, and the average packet size
is 1,000 bytes, the architecture can process Internet traffic,
in this case the browsing history in a network of at least 1
Gbps. In the case of another environment, more evaluations
are needed.

In this evaluation, both the TCAM-based architecture and
the RAM-based architecture process the exact same dataset.
Thus, the experimental result shown in Figure 4 means that
the TCAM-based architecture performs approximately 10-
50 times faster than the RAM-based architecture. The CAM
takes advantage of its specialty with the increase of l, as
shown in the throughput differences between the two archi-
tectures, because the number of processes increases. More-
over, compared to software implementation (C++, single-
threaded, 3.0 GHz Quad-Core Xeon CPUx2, 8GB DDR3) of
the same algorithm, it achieves approximately 400-900 times
higher throughput, as shown in Figure 5. This evaluation is
also performed by processing the same dataset in the same
way.

B. Information Loss

A generalized table typically has less useful information.
In order to evaluate the information loss, the theoretic metric
information loss (IL) of data table T , written IL(T ), is
defined by referring to Prec in [1]. Let t ∈ T = {t1, ..., tN}
be a tuple, QIT = {A1, ..., ANA} be the quasi identifier,
DGH be a height of a generalization hierarchy, and h be a
height of a generalized value in a generalization hierarchy.
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Figure 6. Trade-off between information loss and window size

Then, the equation is defined as 3.

IL(T ) =

∑
tj∈T

∑
Ai∈QIT

h
|DGHAi|

|T | · |QIT |

=

∑N
j=1

∑NA

i=1
h

|DGHAi|

N ·NA
(3)

IL indicates how deep a value has been generalized with a
value from 0 to 1.

To process data stream, it has to be divided in windows
and processed one-by-one. Because it is difficult to satisfy
a privacy level in a small window size, a trade-off exists
between the information loss and a window size as shown
in the graph in Figure 6.

Focusing on the utility of published information, smaller
k or l would be chosen as the privacy level because it will
result in smaller IL and useful information. When l is small,
the increase in IL caused by the window-size constraint is
also small as shown in Figure 6. In that case, the window
size can be small without increasing IL, and that results in
low hardware cost.
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VI. CONCLUSION

A hardware architecture for the privacy-preserving algo-
rithm based on constraints known as k-anonymity and l-
diversity was proposed. The work was based on the TCAM,
which enables a fast search operation. A generalization pro-
cess, which is necessary for the calculation of the algorithm,
was also efficiently enabled with variable-length matching.
Overall, the FPGA implementation of the proposed archi-
tecture performed approximately 10-50 times faster than a
RAM-based architecture where the search operation was
serialized.
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