
Process Management Reviewed

Mohsen Sharifi
1
, Seyedeh Leili Mirtaheri

1
, Ehsan

Mousavi Khaneghah
1

1
School of Computer Engineering

1
Tehran, Iran

{msharifi, mirtaheri, emousavi}@iust.ac.ir

Zeinolabedin Mosavi Khaneghah
 2

2
Faculty of Management, University of Tehran

2
Tehran, Iran

zmousavi@pmamut.com

Abstract—We propose a new 5-layered pyramid of process

needs that must be administered by local and global managers

of the process society, namely the computer operating systems

of the future. We also propose a new needs-oriented approach

to process management based on the proposed categorized

process needs. We argue that in contrast to traditional blind

order-oriented operating system process managers, needs-

oriented process-aware operating system process managers are

more favorable to future computing environments with

relatively large-scale orders of magnitudes of processes and

resources scattered in smallest and biggest imaginable scales

and varieties.

Keywords-process; process management; process needs;

operating systems; process-aware

I. INTRODUCTION

Computing systems have long entered and instrumented

human societies in recent decade so much so that most are

advocating electronic societies in which computers act on

behalf of humans. These actions are thus quite vital to

human well being and require meticulous criticism.

We believe in the revival of human understanding of and

attitude towards computer entities that actually denote these

actions namely processes. We advocate a U-turn on our

viewpoint on event-driven computer processes, replacing

the old black-box view by a more autonomous process-

aware view wherein each process has a repetitive though

limited life cycle of providing services to categorized

discrete requests from outsiders.

We envisage a more reasonable management of locally

and globally distributed computer processes than

traditionally achievable. In the same way Abraham Maslow

[1, 2] has categorized human needs in a pyramidal

hierarchy, we categorize and structure process needs in 5

layers. In this hierarchy, self-consciousness is at the top and

vital needs at the bottom of the pyramid, and security and

social and power needs are in between, for the purpose of

better management of societies and their needs [3].

Processes need recognition by the process society to

begin with. This implies that each process must be granted a

globally unique identifier as a first citizen entity and enough

local and global space to start living. Having got the vital

resources from local and global administrators and

managers of the process society, they require proper means

for inter and intra process communications to autonomously

and in their own discretion pursue their goals and objectives

prescribed at their birth time.

There are no aimless processes in the process society

and processes need to communicate and cooperate to

achieve their goals in their limited lifetime. In the race for

resources, processes may wish to get more privileges from

the process society compared to other processes in order to

get to their goals. The managers of the society must thus

provide some sort of improvising the priorities.

Processes get more self conscious and aware of their

own behaviors and their society as time passes and they

come closer to their termination time. Although not all

processes might be concerned with their security, they are

all vigilant on their safety all along their lifetime.

We thus envisage a 5-layered pyramid of process needs

that need to be administered by local and global managers

of the process society, namely the computer operating

systems of the future. We can now draft a new philosophy

for the management of processes based on the given

categorized needs in terms of lifetime-needs. We argue this

philosophy is more favorable than traditional process

management of operating systems to future computing

environments with relatively unbounded large-scale orders

of magnitudes of processes and resources that are scattered

in smallest and biggest imaginable scales.
The rest of paper is organized as follows. Section II

presents the traditional definition of processes and how they
are used to be managed in operating systems. Section III
argues in favor of a change in the traditional view and
proposes a new set of definitions and roles for processes and
process managers. Section IV argues how the propositions
can benefit future computing and Section V concludes the
paper.

II. TRADITION

Believing in a purely and fully mechanical world, we

humans are used to envisage a manufacturing factory as a

complex of (electro) mechanical tools operated by a number

32

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

of human (and more recently, humanoid) operators to

produce as many products as possible at the lowest costs.

Executive managers on the factory floor take their orders

from top management and monitor and control these orders

are exactly followed by the operators to the last point with

no regard at all to the consciousness and awareness of

operators on what and how they really do the work. The

prominent paradigm is purely order-oriented. Operators and

executive managers that take orders best irrespective of how

they feel about it or whether orders satisfy their

requirements are considered as best. This is what used to be

followed and advertized by the adverts of Taylor school [4,

7].

The operators and executive floor managers are the

active entities, i.e., processes and process managers

respectively, in this game. Those who have originally

designed the factory, i.e., creators, though humans but are

not active in the runtime manufacturing process and are not

willing to sacrifice production rate by any unanticipated

runtime requirements of operators or executive floor

managers. Even worth, they do not grant much authority to

executive floor managers to manage operator society

differently than already prescribed at design time.

This Taylor style of management only works fine in

cases where everything is known correctly and completely

(i.e., accurately and exactly) a priori and proper design is

sought based on this valid and complete knowledge, does

not requiring to bother about any unforeseeable changes at

all. This condition had never been satisfied in real world

though especially in a working set including humans as their

principal active entities of work.

We have experienced a similar dogmatism in the

management style of computer operating systems too.

Problem domain experts eager to use computer were forced

to think they know the exact solution to their exactly known

problems. Programmers were forced to think the advocated

solutions by expert domains were exact, which had to be

followed in every prescribed step and sought states.

Operating systems followed suit and supposed that

programmers exactly knew the constraints of operating

systems and the hardware they ran on. They thus executed

processes running these programmed solutions in the exact

orderly-prescribed manner. This worked fine as long as no

change was made to any suppositions. The executive floor

manager (i.e., process manger of operating system)

controlled the exact orderly-prescribed execution of

processes without any regards for any possible process

needs. This is to say that it could have denied the basic

needs of a process but still expect the orderly execution of

the process.

We do not live in utopia anymore [2, 9]. We are

currently living in an information era with very unknowns

but yet many hard requirements to be able to work and

service irrespective of our many unknowns. Nowadays,

domain experts no more claim to have the exact knowledge

about their problems and solutions to these problems a

priori. Programmers are no longer rest assures that they

have programmed the exact solutions to problems.

Processes expect to face unforeseen cases not orderly-

programmed before. Process managers have to manage

ever-increasing resource hungry processes that race for

additional new types of needs too (e.g., membership, safety,

security). Process communities are getting worldwide and

wider under disparate communities. New varieties of

resources scattered and distributed in different

administrative domains have emerged. Voluminous data is

generated as time passes which needs to be fed to processes

at runtime with many runtime constraints. At last but not the

least, requirements are changing fast in all dimensions and

at all levels. In short, we live in a dynamic compute world.

This new compute world requires a completely different

approach and style to management of its constituent active

entities, i.e., creators, process managers, and processes. It

is no more possible for designers to prescribe orderly-

prescribed execution of processes and expect process

managers to handle all changes in process needs by

themselves.
In the next section, we present a purely managerial

solution to the general problem and then present our
proposition accordingly for operating system process
managers, processes, and creators.

III. PROPOSITIONS

Maslow has presented a new more conscious
management style that is more akin to work in an ever-
changing real world. He has rightly replaced the old purely
order-oriented approach with a needs-oriented approach to
management, categorized in a five level hierarchical pyramid
(Fig. 1) [5, 6]:

1. Physiological Needs: for food, drink, air, sleep-the
basic bodily “tissue” requirements.

2. Safety Needs: for security, stability, protection from
harm or injury; need for structure, orderliness, law,
predictability; freedom from fear and chaos.

3. Belongingness and Love Needs: for abiding
devotion and warm affection with spouse, children,
parents, and close friends; need to feel a part of
social groups; need for acceptance and approval.

4. Esteem Needs: for self-esteem based on
achievement, mastery, competence, confidence,
freedom, independence; desire for esteem of others
(reputation, prestige, recognition, status).

5. Self-Actualization Needs: for self-fulfillment,
actually to become what one potentially can be;
desire to actualize ones capabilities; being true to
ones essential nature; be what one can be.

In short, the Maslow school of management believes that

humans (a la processes) can be expected to act more
responsibly and effectively towards community goals only if
their evolutionary declared needs are recognized in their
societies (creators, process managers, and other processes)
and are incrementally satisfied by their communities in their
lifetime.

33

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

Self Actualization Needs

Esteem Needs

Belongingness and Love Needs

Safety Needs

Physiological Needs

Figure 1. Maslow human needs hierarchy [3, 8].

Taking Maslow’s managerial approach as a base, we
have envisaged and propose a 5-layered hierarchical pyramid
called Melz-Mazlow pyramid for compute process needs in
the compute world of today too (Fig. 2), whereby processes
are considered as the smallest active entities executing
solutions to domain experts’ problems (operating system
processes are excluded):

1. Existential Needs: for storage space (memory,
cache, disk, and file), and processing time (CPU,
GPU, and Core) – the “vital” basic requirements.

2. Safety Needs: for process security, stability,
protection from harm, attacks, and injuries; need for
structure, orderliness, law, predictability; freedom
from fear and chaos.

3. Openness and Belongingness Needs: for process
communication mechanisms (IPC, DSM, MP) to
converse with child processes, parent processes,
process managers, and other processes outside local
domains; need to become a member of and
communicate with other compute processes and
social groups; need for acceptance and approval.

4. Competitiveness Needs: for process self-esteem and
survival based on race conditions, achievements,
mastery, competence, confidence, freedom,
independence; desire for esteem and referential
position amongst other processes (priority,
leadership, reputation, prestige, recognition, status)
and desire for the good of other processes (binding,
cooperation, trust, friendship, richness, upgrade, in
addition to their reputation, prestige, recognition,
and status) too;

5. Transcendence Needs: for process self-awareness,
self-fulfillment, actually to become what a process
can potentially be and is expected to achieve at its
limits; desire of process to actualize fully its
capacities and capabilities; being true to ones
essential nature; be what a process can be – the
ultimate “behavioral self-consciousness”
requirements.

Transcendence Needs

Competitiveness Needs

Openness and Belongingness Needs

Safety Needs

Vital Needs

Figure 2. Proposed Melz-Mazlow compute process needs hierarchy.

Using the proposed Melz-Mazlow 5-layered process
needs, we now propose a request-based approach in place of
an order-based approach to process management in operating
systems of the future.

To begin with, it is essential to reiterate and remind
ourselves about some of the important best practices in
operating systems design in the past that lay the best grounds
for design and implementation of any future operating
system, including its process management:

1. Operating systems need not get involved in policies
but rather should take the policies as input and try to
enforce them as best as required by making the most
intelligent use of compute resources; process
managers must follow suit and avoid from getting
involved in deciding on policies on behalf of
processes.

2. Operating system kernels must be kept as primitive
as possible just to satisfy the bare requirements not
all requirements.

3. Operating system designers and developers are not
engaged during execution of processes explicitly.
However, they could implicitly influence the
executions of processes by embedding runtime
mechanisms to enforce their intensions. In other
words, creators of operating systems are not
engaged in day-to-day operations of processes.
Operating systems act on behalf of their creators.

4. Process managers of operating systems are
synonymous to factory floor executive managers that
manage operating processes running solutions to
domain expert problems.

5. Operating systems can perform more effectively to
satisfy the requirements of processes if they are
made aware of the overall requirements of processes
well in advance of executions of processes either
statically or dynamically but with the least overhead
on process management and total performance of the
system.

The question is now how does a process manager that is

intended to work based on process needs differ from
traditional process managers that take orders from their
creators blindly with no regard for process needs. The
answer is simple: process manager must be reflective to
process needs.

Information on each process are stored in kernel
structures as before but just an snapshot of these information
is given to the process upon every request of process so that
it can look at these information and get informed about its
status quo so that to guide the process manger what to do to
best satisfy its needs. This way the process knows by itself
and takes the responsibility that it is not reasonable to ask for
its safety needs if it had not asked for its vital needs yet or its
previous calls for vial resources had not been satisfied yet. In
turn, it does not engage itself in communication with other
processes if it has not asked for protection yet or that it had
asked for it before but not provided yet by the process
manager or other managers concerned. Only an open process
enabled to communicate asks for socialization with other

34

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

processes to strengthen its competitive edge in its own local
society or in other global societies. Finally, only a process
that is conscious about its position in communities will be
willing to cater and ask for its transcendence needs.

Therefore, what we propose here is that processes behave
more wisely and orderly by themselves and allow the process
manager to take their more thoughtful needs and manage
them all more wisely as guided by processes. This is quite in
contrast to traditional processes that go wild to ask for as
much as possible of everything irrespective of their status
quo, burdening the process manager with how to resolve
many possibly conflicting requirements and to satisfy the
blindly requested needs of all processes.

The gaining of the process manager is tremendous at the
cost of merely providing the current image of information it
has on a process to the process upon handling of every
request of the process. The trick is that process manager
becomes process aware whilst it is still kept primitive with
the least thickening of the operating system kernel.

Interestingly, such a reflective process manager is
expected to be scalable to handle global distribution and
higher varieties and numbers of process needs.

IV. ARGUMENT

Let us now briefly argue how our propositions can
benefit future computing. We noted that tomorrow’s
compute world is faced with numerous new applications that
try to solve complex problems whose behaviors might not be
fully understood and coded statically. Such applications
require the means that can detect these behaviors
dynamically. For example, MM5 [8] is a well-known
traditional weather forecasting model that uses a very
restricted number of weather parameters such as temperature
and humidity, and takes the integral of a formulation of these
parameters to predict weather in a given meshed
geographical region. To improve the accuracy and
geographical extent of predictions, more advanced models
such as the WRF model [9] have been introduced.
Interestingly, WRF uses the same algorithms as in MM5 for
small size regions, a la taking the integral of a number of
weather parameters though larger in numbers than in
traditional MM5, but unexpectedly changes its behavior by
taking derivations of parameters when forecasting weather
for inter-regions that may be due to unexpected changes in
the wave structure and energy. This is to say that the
behaviors of processes comprising such an application are at
the least very complex and hard to predict statically,
implying that the pattern of their requests for compute
resources are also hard to predict.

The old order-oriented approaches to management of
such processes take one of the following actions in response
to requests of a process for compute resources (i.e., CPU,
I/O, file, and memory):

1. Blindly satisfy or reject the request of each process
solely based on the local availability or
unavailability of the requested resource irrespective
of previous pattern of resource requests of this
process and irrespective of the role and relation of
this process to other processes in the community of

this process that together make up the process
population of an application. We believe this kind of
ah-hoc response by process manager to process
requests cannot satisfy many quality requirements of
future computing applications such as high
performance requirement.

2. Decide how to handle the request based on compile-
time analysis of process requests. This is restricted to
applications whose resource request patterns of
processes of an application can be fully determined
at compile-time; the very condition that is hardly
satisfied in future complex applications such as the
stated WRF weather forecasting example.

3. Deploy an additional component in the operating
system (process manager) to profile the pattern of
resource requests by the process through repetitive
runs of the application to which the process belongs,
and use this pattern to handle the request
accordingly. Apart from the high run-time overhead
of profiling, the addition of an extra component in
the operating system for this purpose contradicts
with the principle of keeping the operating system as
primitive as possible. Furthermore, as in the first ad-
hoc alternative, the decision on how to handle the
request of the process is made irrespective of the role
and relation of this process to other processes in its
community that together make up the process
population of an application.

The proposed needs-oriented approach to management of

processes comprising a complex application uses the
proposed category of process needs to avoid the
shortcomings of the traditional order-oriented approaches. It
achieves this by deciding on how to handle requests of a
process based on current needs status of the process at run-
time considering the patterns of resource requests of all other
processes in the community of this process together forming
an application. It does not require repetitive runs of
application and saves us from adding a profiler to the
operating system too. Nevertheless, how can this be done?

Without entering into implementation details, we suffice
to answer this question by presenting our first intuition on
how we may implement this kind of process management.

We know that the operating system keeps all types of
information on processes in its own data structures in the
kernel space. The process manager can share this
information on a process with the process before deciding
how to handle the request of the process. This reflection
allows the process to request more consciously according to
its hierarchy of needs (as proposed before). To give an
example, a process that finds out that its vital needs have not
been satisfied yet, stops asking for transcendence needs in
vein.

On the other hand, the process manager can look up at
current values in data structures storing information on all
processes of an application and find out about the needs
states of processes to determine if it had to upgrade the level
of needs status of any process or not. It can also get a clue on
future resource-request patterns of processes and accordingly

35

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

reconfigure itself dynamically. For example, it can kill the
random identity generator process that generates unique
system-wide identifiers for new forked processes in the
application if it expects that the application will not fork new
processes anymore. It may start working out how to deploy a
remote resource if it finds out that a process will ask for the
resource soon but it knows that this resource is not available
locally. Overall, processes submit requests less frequently
more sensibly and more orderly, process manager is more
aware of request patterns and needs status of processes
allowing it to be more responsive and respective to
reasonable requests of processes representing the community
of an application at run-time. This all leads to a much better
well structured and well behaved process society that can
handle the complex and extremely dynamic applications of
the future.

V. CONCLUSION

Arguing against the shortcomings of traditional process

managers for proper handling of process requests, and by

using the Maslow’s school of human management, we

proposed a 5-layered pyramid of process needs that local

and global managers of the process society, namely the

computer operating systems of the future, must administer.

We also drafted the responsibility of process managers

based on the given categorized needs. We think conscious

processes alongside process-aware process managers of the

kind presented in this paper build up a more promising and

manageable computing environment that has relatively

large-scale orders of magnitudes of processes and resources

distributed in wide scales.

We are currently working on a prototyped
implementation of a Linux-based process manager enhanced
with the proposed mechanism in this paper to provide
process consciousness in terms of categorized process needs.

REFERENCES

[1] A. H. Maslow, Maslow on Management, Wiley, Ed.1, 1998.

[2] A. Adler, Social Interest, Faber & Faber, London, 1938.

[3] D. O’Connor and L. Yballe, “Maslow revisited: constructing
a road map of human nature”, Journal of Management
Education, vol. 31, no. 6, pp. 738-756, 2007.

[4] P. F. Drucker, Management Challenges for the 21st Century,
Butterworth-Heinemann, UK, 2006.

[5] E. L. Deci and R. M. Ryan, “The what and why of goal
pursuits: human needs and the self-determination of
behavior”, Psychological Inquiry, vol. 11, no. 4, Page 227,
2000.

[6] J. J. O'Toole and K. J. Meier, “The human side of public
organizations contributions to organizational performance
laurence”, The American Review of Public Administration,
vol. 39, no. 5, pp. 499-518, 2009.

[7] P. Lawrence and N. Nohria, Driven: How Human Nature
Shapes Organizations, Harvard Business School Working
Knowledge, 2001.

[8] Ó. Rögnvaldsson, J. W. Bao, H. Ágústsson1 and H. Ólafsson,
“Downslope windstorm in Iceland – WRF/MM5 model
comparison”, Atmos. Chem. Phys., vol. 11, pp. 103–120,
2011.

[9] R. O. Olatinwo, T. Prabha1, J. O. Paz1, D. G. Riley and G.
Hoogenboom, “The Weather Research and Forecasting
(WRF) model: application in prediction of TSWV-Vectors
Populations”, Journal of Applied Entomology, vol. 135, no. 1-
2, pp. 81–90, 2011

36

FUTURE COMPUTING 2011 : The Third International Conference on Future Computational Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-154-0

