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Abstract - The pace at which next-generation Internet of 

Things networks, consisting of wirelessly distributed sensors 

and devices, are being developed is speeding up. More and 

more devices produce data in automated manners and the 

demand of smartphones and wearable devices is continuously 

increasing. With respect to volunteer notification systems 

(VNS), the resulting vast amounts of data can be utilized for 

profiling and predicting the whereabouts of people that, 

combined with machine learning algorithms, complement 

artificial intelligence (AI)-based decision systems. Hence, VNS 

benefit from keeping pace with the current developments by 

using the corresponding data streams in order to improve 

decision making during the volunteer selection process. In 

emergency scenarios, the velocity, low latency and reaction 

times of the system are essential, which results in the need of 

online stream-processing and real-time computational 

solutions. This paper will focus on a basic concept for 

implementing a VNS approach into a scalable, fault-tolerant 

environment that uses state-of-the-art analytical tools to 

process information streams in real-time as well as on demand, 

and applies machine learning algorithms for an AI-based 

volunteer selection. This work concentrates on leveraging open 

source Big Data technologies with the aim to deliver a robust, 

secure and highly available enterprise-class Big Data platform. 

Within the given context, this work will furthermore give an 

insight on state-of-the-art proprietary solutions for Big Data 

processing that are currently available. 

Keywords - Volunteer Notification System; Internet of 

Things; Big Data; Stream Processing; Machine Learning 

I.  INTRODUCTION 

As we are moving towards the Internet of Things (IoT), 

the number of sensors that are deployed around the world, 

and devices supporting various different sensory 

technologies, is growing at a rapid pace [1]. These sensors 

and devices continuously (and automated) generate high 

amounts of data. However, in order to add value to the 

collected raw data, further processing is required that will 

help understanding the meaning and correlations within. 

Bundling the accumulated data into a so called real-time 

information pipeline does enable scalable real-time query / 

in-stream processing technologies [2] and regular batch 

processing, which is currently supported by various state-of-

the-art Big Data analytical environments, as will be 

discussed later. To a given problem (query), the introduced 

approach will process both persisted as well as real-time 

data to generate results, which can be further processed 

instantaneously or stored for subsequent processing. 

Various machine learning extensions on top of the basic 

environment do furthermore provide possibilities for 

extensive profiling and learning approaches that are based 

on the collected data, whereas the resulting decisions are 

generated near real-time, enabling a scalable volunteer 

selection architecture within the application scenario of a 

Volunteer Notification System (VNS), as primary 

introduced in [3].  

Hence, this paper is going to provide an insight of the 

various technologies that can be efficiently used in order to 

create a scalable, reliable and fault tolerant environment as 

architectural base for a reasonable VNS implementation. 

A. Structure 

Section I will continue by introducing the various 

terminologies that are used throughout this work, whilst 

Section II will discuss the state-of-the-art with respect to the 

(Big Data) domain specific technologies and analytical 

frameworks. Section III will give detailed insights on the 

basic implementation approach and the corresponding 

concepts and methods, discussing the scalability effects (of 

the most problematic system components) of the underlying 

technologies in comparison. The last section, Section IV, 

will present a brief conclusion on the elaborated approach 

and shortly discuss those proprietary solutions and standards 

that are currently well established in the industry. 

B. Volunteer Notification System 

A VNS is an approach to integrate laypersons and 
medically trained volunteers into emergency medical 
services (EMS). By tracking the users’ location, and in case 
of a medical emergency, a VNS aims to alarm those potential 
voluntary first-aiders who can arrive on scene fast enough to 
provide the most urgent measures until professional EMS 
arrive at the victims location.  

Whilst the volunteer selection process can be efficiently 
enhanced by an AI-driven selection system [4], rather than 
merely using the last known location of a volunteer, this 
general approach is greatly limited by the input data stream 
and the available processing power. Thus, in order to provide 
a technical solution for the basic research questions in 
regards to an intelligent VNS, the scope of this work will 
focus on providing a solution in which the supported input 
data - that is generated by a multitude of devices - ideally is 
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limitless and the computational power will be matter of 
theoretically seamless scalability. 

C. The Internet of Things paradigm 

The IoT paradigm proposes that everyday objects will be 
globally accessible over the Internet or other adequate 
network structures. Opposite to the Internet world, things 
with a physical shape usually belong to resource-challenged 
environments where energy, data throughput, and computing 
resources are scarce. 

The focus of typical IoT activities lies on establishing 
connectivity at a certain protocol level to enable truly 
distributed machine-to-machine (M2M) applications. In the 
general protocol specification, the devices must 
communicate with each other (D2D). A device’s data then 
must be collected and forwarded to the server infrastructure 
(D2S), whereas the server infrastructure will share the 
various device data (S2S), possibly providing it back to 
devices, analytical environments, people and any other 
subscriber for a specific type of data. 

In regards to a VNS, the specific machines are handheld 
or wearable devices and corresponding servers. Hence, a 
device-to-server (D2S) infrastructure and a protocol that will 
secure this communication environment against data loss and 
eavesdropping, fulfills the basic requirement in the context 
of a VNS approach. A communication protocol of this type 
is the commonly used MQ Telemetry Protocol (MQTT) [5]. 
As device-to-device communication is not necessarily 
needed within a VNS approach, a pub/sub messaging system 
similar to a push notification system as lightweight as MQTT 
offers a suitable approach to fulfil the systems’ 
communication requirements. A more in-depth view about 
MQTT and similar pub/sub systems will be discussed in 
Section II.  

D. Big Data in the context of a VNS 

In a data-driven society, massive amounts of data are 

being collected from people, sensors, algorithms and of 

course, the Web itself; storing it in conventional database 

systems (i.e., online transaction processing) or data 

warehouses (i.e., online analytical processing) that itself 

conform to an additional layer on top of single or multiple 

databases. The term Big Data describes the challenge for 

handling this continuously increasing data, whereas mainly 

three reasons posture the arising difficulties: the sheer 

volume, the velocity (how fast new data is continuously 

produced) and the variety of different data-types. For some 

time, an additional challenge has been observed; the so 

called veracity, which describes the challenge to exclude 

uncertainty and inconsistency within the collected data. 

The VNS must handle these challenges gracefully and 

overcome the resulting difficulties with scalability and 

reliability in terms of the technologies that are being 

implemented. In general, the system approach that is to be 

illustrated in the upcoming sections of this work will be able 

to handle large amounts of continuously generated input 

data and will furthermore be able to detect faulty (i.e., 

inconsistent) information in an online matter. 

 

Figure 1. Big Data Analytics within a VNS 

E. Stream Processing 

As computer systems are creating ever more data at 

increasing speeds, Hadoop-style batch processing has 

awakened engineers to the value of big data analysis, 

whereas the current trend is focusing on the demand for 

real-time processing. In essence, people do not only want all 

of their data analyzed, but they want it done as soon as 

possible, which is driving the current Big Data research 

trend towards so called high-velocity data [7]. Exemplary 

use cases within this context are real-time analytics, 

machine learning, and new generation of decision support 

and fraud detection systems [8]. 
The desire to extract real-time insight from high-velocity 

data led to the creation of so called Stream Processing 
Engines. These engines include open source projects, such as 
Twitter’s Storm [9], Apache Spark [10] and LinkedIn’s 
Samza [11] as well as proprietary solutions, such as Amazon 
Kinesis [12] or Google's BigQuery [13]. These engines 
provide functionalities for routing, transforming and 
analyzing streams of data at high-velocity for a specified 
time window or near real-time (depending of the velocity 
and volume of streamed data chunks). The classical approach 
in this context would instead store the real-time data in order 
to apply data warehousing techniques for batch-processing in 
a subsequent matter. Figure 1 illustrates the conceptual 
coherence of the IoT paradigm and real-time Big Data 
Analytics within the context of an intelligent volunteer 
selection system. 

II. STATE OF THE ART 

A. Pub / Sub Messaging Systems 

Publish-subscribe is a messaging pattern in which 

occurring messages are not sent directly to a target receiver 

but rather published to a channel. Subscribers have the 

option to subscribe themselves on specific topics or 

channels and hence express their interest on receiving 

specific messages. The result is a lose coupling between 

publisher and subscriber, as they are unaware of each other. 
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In many pub/sub systems, publishers post messages to 

an intermediary message broker or event bus, and 

subscribers register subscriptions with that broker, letting 

the broker perform any type of necessary filtering. Pub/sub 

Messaging Systems allow implementation of a device-to-

device, device-to-server and server-to-server interface, as 

have been introduced earlier. 

The MQTT protocol on the other hand is a lightweight 

messaging protocol that uses a publish/subscribe 

architecture to deliver messages over low bandwidth or 

unreliable networks with a low footprint. Compared to a 

classical REST/HTTP implementation [14], MQTT imparts 

various advantages for the use within mobile applications, 

such as faster response times, higher throughput, higher 

messaging reliability, lower bandwidth usage and lower 

battery consumption 

In this context, Apache Kafka [15] is a publish/subscribe 

log for integrating data between applications, stream 

processing, and Hadoop data ingestion. The project aims to 

provide a unified, high-throughput, low-latency platform for 

handling real-time data feeds. The design is heavily 

influenced by transaction logs to prevent data corruption 

and/or loss. On the server side, Apache Kafka will be used 

to create a pipeline between the MQTT broker cluster and 

the Hadoop/Spark environment to persist and stream process 

data; it will be managed by Apache Zookeeper for 

scalability and reliability purposes. 

An alternative to MQTT in a proprietary environment 

are Amazon SNS, Amazon SQS as well as Amazon Kinesis, 

which are all capable of real-time streaming/distributing 

data between applications merely within Amazon Web 

Services (AWS) [16]. 

B. The Apache Hadoop Ecosystem 

Apache Hadoop [17] is an open source software project 

that enables the distributed batch processing of large data 

sets across clusters of commodity servers. It is designed to 

scale up from a single server to thousands of machines, with 

a very high degree of fault tolerance. Hadoop is 

supplemented by an ecosystem of Apache projects, such as 

Pig, Hive and Zookeeper and many more, which extend the 

value of Hadoop and improves its usability. The core part of 

Hadoop is the Hadoop file system (HDFS) which comprises 

two major components: namespaces and block storage 

service. The namespace service manages operations on files 

and directories, such as creating and modifying files and 

directories, whilst the block storage service implements the 

actual data node cluster management, resulting block 

operations and replication.  

Hadoop was often criticized [18] [19] for its open-source 

implementation of the MapReduce model [20] based on so 

called JobTrackers, which due to its problematic structure 

have be resolved with the implementation of Apache YARN 

[21] and MapReduce 2 in the scope of Hadoop 2.x. YARN 

is a resource manager that is based on separating the 

processing engine and resource management capabilities of 

MapReduce as it was implemented in Hadoop’s original 

approach. YARN is often called the operating system of 

Hadoop because it is responsible for managing and 

monitoring workloads, maintaining a multi-tenant 

environment, implementing security controls, and managing 

high availability features of Hadoop. One crucial advantage 

of YARN in the context of using the Hadoop ecosystem for 

the VNS implementation is that is allows multiple 

processing models to be implemented on top of HDFS, 

thereby allowing Apache Spark to fit into the Hadoop 

Ecosystem [22]. The resulting flexible architecture allowed 

companies as Amazon and Google to create cloud 

computing platforms (e.g., Amazon EMR and Google's 

Cloud Platform) which implement enterprise-features out of 

the box and give a transparent in-depth cost overview. 

C. Apache Spark 

Apache Spark is a cluster computing platform similar to 

Hadoop designed to be fast and of general-purpose. Spark 

extends the popular MapReduce model to efficiently support 

more types of computations, including interactive queries 

and stream processing. One of the main features that Spark 

offers, is the ability to run even huge computational queries 

fully in memory (split over various clusters), reaching 

performance gains of up to 100 times compared to general 

Hadoop MapReduce implementations under specific 

circumstances. However, the system itself is also faster than 

MapReduce when running merely on disc operations. 

At its core, the Spark Engine itself is responsible for 

scheduling, distributing, and monitoring applications 

consisting of many computational tasks across many worker 

machines powered by a high-level structure of components. 

These components are designed to interoperate closely, 

supporting a library-like combination of the various data 

representations (graphs, matrices, SQL like queries). Spark 

revolves around the concept of a resilient distributed dataset 

(RDD), which is a fault-tolerant collection of elements that 

can be operated in parallel. There are currently two types of 

RDDs: firstly parallelized collections, parallelizing an 

existing collection in your driver program, and secondly by 

referencing a dataset in an external storage system 

supported by Hadoop (e.g., the local file system, HDFS, 

Cassandra, Amazon S3). This allows Spark to interoperate 

with various stable established solutions in order to 

efficiently focus on problems regarding the introduced big 

data challenges. A recent cloud service that is entirely based 

on Spark and runs on AWS has been introduced by 

Databricks (who also drove the adoption of the Apache 

Spark ecosystem) in 2014. It allows developers to create 

scalable computing clusters running on Apache Spark for 

data analysis, machine learning and similar use cases.  

This work will incorporate Apache Spark and its core 

components as the main cluster computing platform to 

overcome weaknesses of classical Hadoop architectures and 

to support the incorporation of the various proprietary 
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solutions, such as Amazon Web Services and the Databricks 

Cloud Platform. 

D. Data Streaming & Processing 

LinkedIn's Kafka was designed to support not merely the 

distribution of data, but also to provide the infrastructure 

primitives that will enable real-time data processing. Samza 

on the other hand provides elastic, fault-tolerant processing 

as being layered on top of real-time feeds. A simple analogy 

in respect to the batch domain is described by Kafka taking 

the role of HDFS while Samza relates to MapReduce. 

While this architecture scales horizontally due to its 

MapReduce nature, speed is an important factor which 

needs to be considered. A combination of Apache Kafka 

with various Spark components (i.e., Spark SQL, MLlib and 

Streaming Processor) will result in a more reliable, 

vertically and horizontally scalable high-velocity 

architecture. The lack of security options within Kafka and 

Samza are an important criteria for using Spark's Security 

implementation and an integrated secure tunnel between 

Kafka and the corresponding MQTT brokers. 

In terms of security, scalability and reliability a 

commercial solution with Amazon Kinesis and Amazon 

Elastic MapReduce provides leverage to these problems, 

including the high-velocity implementation of Spark 

components, which replicates the scenario in a more 

enterprise-ready fashion.  

As the fault tolerance plays an additional key role for a 

successful scalable VNS implementation, Apache Cassandra 

[23] is the state-of-the-art database system in combination 

with Spark technologies; highly robust and fault tolerant. It 

protects against data loss or corruption by replicating blocks 

of data to multiple nodes and supporting replication between 

geographically distributed nodes. Amazon and Google offer 

similar enterprise ready data stores, such as Amazon 

Redshift [24], Amazon DynamoDB [25] and Google Cloud 

Datastore [26], whilst a general comparison between the 

Cassandra File System (CFS) and HDFS is given in [27]. 

E. Webinterfaces & API 

Responsive web design architecture and supporting the 

HTML5 specification, esp. Websocket support [28], is 

efficiently incorporated by implementing Nginx [29] as a 

high-performance HTTP server for both, static web data as 

well as proxy requests to an underlying Node.js [30] 

runtime environment running server-side applications. 

Node.js applications are entirely written in JavaScript, 

whereas Express.js constitutes an adaptable MVC 

framework [31]. Node.js is characterized to be fast (due to 

event based architecture), offer high throughput, support 

high amounts of concurrent connections, support clustering 

and generally has a very low resource footprint. Offering 

advanced scalability, load balancing, health checks and 

some additional features, the Nginx Inc. released an 

enterprise version under the label: Nginx+ [32]. Node.js in 

this context enables the implementation of simple server 

applications as well as the requirements in respect to APIs. 

 

 

Figure 2. Realtime Data Pipeline 

III. SYSTEM ARCHITECTURE 

This section will illustrate the main strategy that 

incorporates the introduced technologies into a general 

system architecture that conforms to the requirements of an 

enterprise application. 

A. Realtime Data Pipeline 

Within a VNS, the data that is to be analyzed is 

generated by individual mobile or wearable devices. As 

illustrated in Figure 2, clients publish their data to a server 

which is connected to a message broker, which is 

responsible for broadcasting the received messages to the 

corresponding subscribers. Whilst a standard MQTT broker 

solution is lightweight and performant for a limited amount 

of connected clients (due to limits in the port range), a 

horizontally scalable approach will have to balance the 

various connections between multiple instances (load 

balancing) residing on different machines. As clients 

generally subscribe to specific topics in order to achieve 

push-like notifications, horizontal scaling will result in 

brokers having different information and topic structures. 

To solve this problem, the various brokers (i.e., nodes) 

need to be connected with each other and share their 

message structure and permissions, forming a cluster of 

machines that can be scaled at will. Modern systems, such 

as RabbitMQ [33] and Apache’s ActiveMQ [34], support 

the application of efficient clustering. Mirroring the 

message queues between all machines will allow the 

subscribers to connect to any existing node while still 

having access to the whole cluster. Established commercial 

projects that support scalable messaging systems and 

efficient load balancing for MQTT connections are: 

HiveMQ [35], CloudAMQP [36] and CloudMQTT [37]. 

B. Load Balancing 

Since most standard load balancing approaches, such as 

Amazon's Elastic Load Balancer, only support Round Robin 

(RR) and Session Sticky Algorithms, they are not sufficient 
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for balancing MQTT clients or applications between 

brokers. The already introduced commercial Nginx+ 

solution supports various advanced load balancing strategies 

[38], but even the open-source standard Nginx version can 

be extended with additional functionalities by incorporating 

the programming language LUA and a TCP-proxy module 

to support the programmatic injection of algorithms that can 

filter requests of clients and balance connections between 

brokers with high performance. This added functionality 

enables a distinguished consideration of the various active 

brokers in order to terminate obsolete sessions, run 

additional scripts for scaling the cluster, and perform regular 

health checks on running instances. 

C. Ad-Hoc / Online Computation 

As described in [39], ad-hoc computation on message 

brokers is efficiently achieved by combining Apache Kafka 

with Apache Sparks infrastructure; since Kafka efficiently 

persists the message queue on a data store (e.g., Cassandra 

or HDFS) while Apache Spark handles workloads both in 

real-time as well as by batch processing. Kafka is 

guaranteed to deliver reliable message durability and a fault-

tolerant near real-time computation with Spark Streaming 

[40]. At this point, one might argue about missing security 

measures within Apache Kafka [41].  

Whereas various other messaging platforms (e.g., 

RabbitMQ) support the persistence of incoming data on data 

stores, they are usually not performant enough or simply not 

optimized for processing environments such as Kafka, 

which itself is very robust in throughput of messages and 

during read/write operations [42]. Whilst the Apache Spark 

libraries provide methods for connecting to MQTT brokers 

and streaming data, the underlying communication has to be 

implemented manually. In contrast, Kafka can be 

implemented as a complementing stream processing layer 

between the MQTT cluster and Apache Spark [43].  

Within a VNS, the streamed data will mainly consist of 

location data of individual volunteers and case update data. 

Thus, stream processing will be applied to regulate updates 

concerning a specific case in real-time; deriving decisional, 

predictive or anomaly detection results. However, an 

efficient volunteer selection, based on accumulated profile 

data, will mostly be computed in batches, as discussed in the 

upcoming section.  

As data store, Apache Cassandra constitutes a high 

performance scalable database with linear scaling that 

secures an enterprise-ready solution for this work. Similar, 

proprietary options are Amazon DynamoDB and Amazon 

RedShift, whereas HDFS would partly limit the 

performance of Spark and other NoSQL data stores [44]. 

D. Batch/ Offline Computation  

Batch processing on big amounts of accumulated data is 

commonly implemented based on Hadoop clusters. Within a 

VNS, finding the most reasonable candidates for an ongoing 

medical emergency – within a minimum time interval – 

hereby constitutes a batch processing problem with an 

increasing (raw) data size over time. Location based data 

will be analyzed in order to compute behavioral patterns of 

volunteers; this can be done on a regular basis (iterative) 

based on batch processing of the acquired location data and 

in combination with various machine learning algorithms. 

The results will be available for additional real-time 

computations, whereas details for an AI-driven volunteer 

selection discussed in [45]. 

 

 

Figure 3. Real time Data Processing 

Apache Spark can accomplish both tasks of on- and 

offline computation quite reliable and fast allowing the 

results to be stored in data stores or be directly accessible 

via API or MQTT subscribed topics. While real-time per-

case computation and live updates would amass resource 

consumption it would be possible but unfeasible and 

unnecessary. With a proper modelling of data stores direct 

API access allows fast updates of a case without the need of 

costly computations. Behavioral patterns can be learned 

after an emergency scenario, as well due to the systems 

structure.  

Figure 3 illustrates the general architecture for a real-

time data processing environment, as has been discussed 

within this section. Nowadays, Amazon EMR, Google 

Cloud Platform and Databricks deliver the technologies 

needed for a successful computation environment for similar 

use cases and allow different services like data stores or 

real-time computation ecosystems to be fully implemented 

on commodity hardware. 

IV. CONCLUSION 

This work illustrated details on how to implement a 

VNS into a distributed analytical environment with high 

velocity data support. Scalability and reliability is hereby 

achieved by utilizing merely open-source software solutions 

without relying on any commercially driven software or 

proprietary cloud solutions. While security and special 

solutions for load balancing and regulating the 

corresponding environments cannot be guaranteed by open-
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source Apache software alone, new Big Data challenges 

arise continuously and more open-source projects are being 

incubated or upgraded; hopefully solving both, newer as 

well as older challenges that were formally limited to 

enterprise solutions. 
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