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Abstract —This paper describes the medical Decision Support 
System (DSS) designed in the framework of the Bravehealth 
(BVH) project. The DSS is the heart of the data processing 
performed in Bravehealth, and it is aimed at enriching the 
medical experience to support the doctors in the decision-
making processes. The paper focuses on the flexible and 
effective DSS architecture placed at a Remote Server side. 
Moreover, a Data Mining prototype algorithm, supported by 
the architecture, is proposed, along with encouraging test 
results. 

Keywords–Medical Decision Support; Data Mining; Machine 
Learning. 

I.  INTRODUCTION 

Recently, machine learning methods have been largely 
applied to a high number of medical domains. Improved 
medical diagnosis and prognosis have been shown to be 
achieved through automatic learning from past experiences, 
to detect and translate regularities in analytic rules that can 
be used to classify new patient records. Machine learning 
algorithms have been shown to be very successful in 
cardiovascular disease analysis and detection [2,6,10] and 
electrocardiogram (ECG) beat classification [3,4,5].  

In a recent study [7], the cardiovascular diseases are 
indicated as the first mortality cause in women. In Europe, 
approximately 55 percent of women’s deaths is caused by 
cardiovascular diseases, especially coronary disease and 
stroke. The Framingham heart study [8] gave a significant 
contribution by revealing the impact of factors as smoking, 
hypertension, dyslipidaemia, diabetes mellitus, obesity, male 
gender, and age on developing of cardiovascular disease. 
That was the basis for defining a classification system for 
identifying the cardiovascular risk class (low, medium, and 
high) for women on the basis of their characteristics in terms 
of relevant impact factors [7,9,16]. In Europe, the 
cardiovascular mortality and morbidity in women are some 
of the highest. Typically, for confirming the presence of 
cardiovascular disease, the patients are submitted to different 
tests (biochemical tests, rest ECG, stress test, 
echocardiography or angiography). Some of them are 
invasive for patients, and expensive and time consuming.  

In [6], Data Mining techniques were used to identify the 
high risk patients and evaluate the relationships between 
cardiovascular risk factors and resulting cardiovascular 
diseases, differently by the gender of patients. The purpose 
of study proposed in [6] was to compare the capacity of 
different data mining methods: the study was conducted on 
an 825 people sample and the data were collected from 
general practitioners’ files (including, for every patient, 
information about blood pressure, hypertension, body mass 
index, glycaemia, the presence or absence of cardiovascular 

disease on the basis of standard medical definition, etc.). The 
complete sample included 825 data records of 145 attributes, 
which reduced, after data cleaning up process, to 303 of the 
initial set of patients. Two data mining algorithms were used 
to analyse the sample and to identify the relationships 
between the attributes and the label indicating the presence 
or absence of cardiovascular disease. The former one, the 
Naїve Bayes approach, provided acceptable results regarding 
identification of patients with coronary artery disease and 
acceptable results in identification of patients without stroke 
or without peripheral artery disease (in particular, only 62% 
of patients with coronary artery disease (in particular, only 
62% of patients with coronary artery disease were 
classified). The latter was a decision tree training algorithm 
that succeeded to capture 72.6% of relevant information in 
patients with coronary artery disease but was also incapable 
to capture relevant information for those with strokes or 
peripheral artery disease (percentages being also equal to 
zero). These results were absolutely satisfactory if compared 
with the success rate achieved by data mining methods 
applied to different medical test (Liver diseases, Breast 
Cancer, etc.) and, in particular, to specific heart disease data 
sets (as the Cleveland HEART data set of UCI repository). 
Nonetheless, they were totally unsatisfactory for safe clinical 
protocols. This was due, in authors’ opinion, to: (i) the 
number of patients in the data set and the cleaned data were 
insufficient to assess the quality of any method; (ii) the use 
of standard methods, taken “off the shelf” from the literature, 
without any specific reference to heart disease environment, 
was not able to produce effective classifiers.  

Consequently, a double effort was necessary. On one side 
the Bravehealth project will be able to collect, validate and 
clean large amount of patient data. In this respect the idea of 
remotely collecting patient data directly from a so-called 
Wearable Unit (see [1] for further details) was crucial. The 
reported description of the logical architecture of the 
Bravehealth Decision Support System (DSS) highlights its 
capability to collect and validate large amount of data related 
to “real” patients. The second effort  was that to devise new 
classification methods, able to cope with the large datasets 
and to be “tuned in” the specific medical application of 
Bravehealth. For this purpose, Bravehealth proposed a 
Boosting algorithm based on a “problem specific Kernel”. 
The Kernel of a boosting algorithm embodies the similarity 
(or dissimilarity) of the different patients. One could use a 
simple Linear Kernel (inner product of the data vectors) or a 
standard Gaussian Kernel (as in many algorithms proposed 
in the general literature). The Bravehealth approach is to 
devise, on the contrary, a specific Kernel for the problem and 
data faced in Bravehealth and testing its efficiency. This 
definition, along with the test, could be done only using the 
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massive amount of patient data collected in Bravehealth. 
Nevertheless, the authors had already started the design of a 
prototype algorithm briefly described in Section IV, based on 
the boosting algorithm, in order to check, on well known and 
available test problems, the effectiveness of the boosting 
method. The results obtained by the proposed prototype 
algorithm on the widely used for new data mining methods 
validation Cleveland HEART dataset (available at the UCI 
Data Mining repository and comparable, in size, with the 
experiment in [6]) are very promising (as reported in Section 
IV) compared to the literature. As far as the authors know, 
the best results obtained by all the other research groups 
oscillate around 80% of accuracy (better than the results 
obtained by the “off the shelf” algorithms of [6]).  

This paper is structured as follows. Section II illustrates 
the DSS architecture. Section III, IV, V and VI focus on the 
description of the sub-components defining the whole DSS 
(in particular Section IV illustrates the proposed algorithm 
and the results of the performed test). Finally, brief 
conclusions are drawn in Section V.  

II. BVH DECISION SUPPORT SYSTEM (DSS) 

The Bravehealth Decision Support System (DSS) has 
been conceived as a patient-centric, adaptive and flexible 
system capable to meet both patients’ and physicians’ needs, 
in order to support medical decisions and to account the 
actual expectations of both patients and physicians. Two 
main guidelines led to the Bravehealth DSS design and 
development: (i) the DSS is expected to be “close” to the 
patient, in the sense that the decision making process is fully 
affected by the patient’s actual health conditions and, in 
some cases, does actively involve the patient; (ii) the main 
users of the DSS (hospital physicians and medical 
researchers – hereinafter, these kind of users will be referred 
to as Medical Supervisors) must be granted the access the 
DSS and to insert or to update data about patients in a secure, 
immediate, efficient and effective way. Moreover, they 
expect that standard clinical models are implemented in the 
Bravehealth DSS ensuring that routine clinical consultations 
are made more consistent and informative. In addition, the 
DSS is supposed to support decision making by possibly 
providing additional information about potential new clinical 
models, that means useful information extracted from 
patients’ data by means of sophisticated data retrieval and 
Data Mining techniques. Taking into account these 
expectations, the Bravehealth DSS was designed to enhance 
the standard basic features of current medical DSSs. 

On one side, the Bravehealth DSS is close to the 
physicians, in the sense of being a real decision support tool 
(not a “Doctor Substitution System”, as explicitly refused by 
physicians). Thus, the main components of the Bravehealth 
DSS are located at proper Remote Servers (RSs) located at 
the Medical Supervisors premises (e.g., in the hospitals). 
Hereinafter we will refer to these components as RS DSS.  
Using standard medical protocols, the RS DSS is able to 
classify patients affected by CVD into one of three 
categories: High, Medium or Low Risk. These definitions are 
based on rules drawn from clinical practice. Accordingly, the 
RS DSS can automatically generate notifications to be sent 

to the physicians on the basis of deterministic rules derived 
by clinical practices and medical protocols. Each notification 
is part of a specific patient model, derived by standard 
Clinical Models, whose description is fully provided by the 
medical responsible. In addition, the Bravehealth RS DSS 
analyzes medical parameters and context data in order to 
extract useful information, in terms of rules and patterns for 
patient classification and profiling, by means of the Data 
Mining module. This additional feature is the most 
innovative part of the RS DSS, since advanced Data Mining 
algorithms, tailored to the Bravehealth environment, are 
adopted. These algorithms can require rather heavy 
processing capabilities; nevertheless, as hereafter explained , 
the RS DSS is organized so that the heavier calculations are 
performed off-line. The extracted information is real-time 
presented to the Medical Supervisors as suggestions. 

On the other side, the Bravehealth DSS is close to the 
patient in the sense that a secondary subsystem, namely the 
Lightweight Decision Support System (LDSS), is completely 
dedicated to the patient care. The LDSS component is de-
centralized with respect to the main RS DSS components and 
is located at the Patient Gateway (PG): so, hereinafter we 
will refer to this component as PG LDSS. The main aim of 
the LDSS is that of filling the gap between patients and 
physicians when the patients are at home, especially in 
critical situations (emergencies, PG-RS communication link 
problems, RS server problems, etc.). Even the PG LDSS is 
supported by Data Mining algorithms; nevertheless, these 
algorithms have been designed with the requirement of being 
particularly light so that they can run even on a low 
processing computer implementing the PG located at the 
patient's premises. This paper mainly focuses on the 
description of the architecture, the features and the 
embedded algorithms of the DSS at the RS. Nevertheless, the 
concept of a Data Mining intelligent agent “close to the 
patient”, represented by the PG LDSS, is an innovative 
concept proposed and being developed within the 
Bravehealth project and further research papers will be 
dedicated to its architectural, algorithmic and test results. 

Figure 1 shows, using the UML formalism, the functional 
blocks of the DSS at the Remote Server (RS DSS), and 
details its components and both its internal and external 
interfaces. The architecture components are described in 
detail in [1]. The following sub-sections describe in detail the 
subcomponents of the Runtime Environment, namely the 
core of the RS DSS, which is in charge of extracting from all 
the available data the useful information to be presented in 
real-time to the Medical Supervisors. 

III. NOTIFICATION RULES ENGINE AND SUGGESTED RULE 

ENGINE (ON-LINE PROCESSING) 

The Sensor Data Management System and the User 
Management System store patients’ measured data (ECG, 
Breath rate, SpO2, Arterial Blood Pressure, Activity level, 
Fluid Index or bioimpedance, Temperature), and 
consolidated medical evaluation (e.g., in terms of risk 
classes: Low Risk, Medium Risk, High Risk provided and 
validated by doctors and physicians), respectively. All these 
data are provided to the Runtime Environment via the Data 
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CRUDS and the Patient Record CRUD interfaces, 
respectively. These data are properly pre-processed by an ad 
hoc pre-processing module as explained below.  

The above-mentioned data are used, on the one hand, by 
the Notification Rules Engine, which is in charge of applying 
to these data the logic rules defined on the basis of medical 
protocols and standard procedures adopted by the physicians. 
These last rules are uploaded by the Rule Supervisors (these 
are particular kinds of Medical Supervisors authorized to 
manage the DSS rules) by means of the Rule Supervisor FE 
in the Medical Knowledgebase Management System 
(MKMS), in charge of storing the various rules. Since these 
rules are trusted, they are labeled in the MKMS as “Active 
Standard Rules”. Thus, the Notification Rules Engine 
uploads the Active Standard Rules from the MKMS and on-
line applies each Active Standard Rule to the data acquired 

from the Sensor Data Management System and from the 
User Management System; the application of such rules 
possibly leads to “notifications”, which are sent to the 
Medical Supervisors. On the other hand, such acquired data 
are also used by the off-line Data Mining component, 
detailed in the next section, to produce new rules, which are 
stored in the MKMS being labelled as "Suggested Rules", 
since these rules, differently from the ones based on medical 
protocols, are inferred on the grounds of Data Mining 
techniques and therefore need to be validated by the Rule 
Supervisors case by case. For this reason, the Suggested 
Rules are not active by default. Nevertheless, as these rules 
are validated by the Rule Supervisors, they become “Active 
Inferred Rules” and can be used on-line by the Suggested 
Rule Engine. Thus, the Suggested Rule Engine uploads the 
Active Inferred Rules from the MKMS and on-line applies 
each Active Inferred Rule to the data acquired from the 
Sensor Data Management System and from the User 
Management System; the application of such rules possibly 
leads to “suggestions”, which are eventually received by the 
Medical Supervisors. All the rules (both the Suggested and 
the Active Standard/Inferred ones) are stored in the MKMS. 

IV. DATA MINING (OFF-LINE PROCESSING) 

The RS Data Mining component is in charge of the main 
advanced features of the Bravehealth DSS. The Data Mining 
component is split in the following four sub-modules: 

A. Pre-processing module 

Data Mining algorithms cannot be fed with raw data: 
pre-processing of data greatly increases the reliability and 
the performance of the algorithms. This module is in charge 
of selecting, organizing and processing the available data in 
the most suitable way for the data analysis, performed by 
the Data Mining Engine. The data available in this module 
are: (i) medical parameters coming from the Wearable 
Units through the PGs and stored at the Sensor Data 
Management System; (ii) ECG descriptors and/or other 

physiological parameters coming from the Signal 
Processing performed at the PG and/or at the RS and stored 
at the Sensor Data Management System; (iii) context factors 
elaborated at the PG and stored at the Sensor Data 
Management System; (iv) configuration and patient data 
coming from Medical Supervisors and stored in the User 
Management System.  

The first task of the pre-processing module is to render 
all the data homogeneous. Then, three main pre-processing 
techniques are applied: (i) Sample selection: some data may 
be unreliable (e.g., because of typos in data enter, imprecise 
medical measurements, etc.); and an expert (doctor or 
medical researcher) is needed to decide their relevance for 
data analysis. If the sample selection is not provided, the 
system extracts the sample data in unsupervised way, 
according to the statistical distribution of the available data 
set. The well known structured k-fold cross validation 
procedure is adopted by Bravehealth system for sample 
validation and test. (ii) Feature selection: besides the sample 
selection, proper feature selection and extraction algorithms 
can be adopted in order to complete the set of significant 
features by means of specific indexes defined ad hoc by pre-
processing environment. In the Bravehealth system, these 

Figure 1. RS Decision Support System (DSS) 
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algorithms are based on a well known supervised machine 
learning model, namely the L1-norm Support Vector 
Machines [14]. (iii) Denoising: finally, standard denoising 
algorithms are applied to correct statistical errors. 

B. Data Mining (DM) Engine 

The Bravehealth RS DM engine is the “core” of the RS 
Data Mining component. It includes innovative models 
based on data analysis and machine learning algorithms able 
to infer, in an off-line fashion, new rules which, after being 
properly validated by the Rule Supervisors, are applied by 
the on-line Suggestion Rules Engine to the pre-processed 
data. The DM engine conceived in Bravehealth includes 
several machine learning based models, all tailored to the 
specific cardiac diseases considered in Bravehealth: all these 
models are simultaneously active and automatically 
selected. These models have to operate under the control of 
specialized Rule Supervisors, not only authorized to access 
the DSS (via the Rule Supervisor FE and the Medical 
Feedback interface), but also to manage the models in 
question and tune specific parameters. 

The DM engine analyses all historical pre-processed 
data with the aim of identifying correlations, regularities and 
patterns in such data and to serve as a prediction on the 
patients’ health conditions. Information is extracted in the 
form of general patterns, such as logical rules or decision 
trees, that are stored in the Medical Knowledgebase 
Management System (MKMS) as "suggested rules" and 
then are studied by Rule Supervisors both to validate the 
suggested rules in question and to further refine the adopted 
models. In addition, the DM engine is able to identify 
abnormal behaviors or risk situations which are notified to 
the Medical Supervisors. The above-mentioned analysis is 
performed by both unsupervised (e.g., data clustering) and 
supervised (e.g., data classification and regression, pattern 
recognition) machine learning algorithms. Some of the 
models adopted for performing this analysis are open source 
implementation (e.g., WEKA), whereas other ones (e.g., 
exact boosting model) have been developed and 
implemented ad hoc for the Bravehealth purposes. Data 
Mining based medical models are independent of the 
medical protocols and standard procedures; conversely, they 
are totally based on proper Data Mining models, such as 
Decision Trees, Bayes Networks, Rule Induction 
Algorithms and Neural Networks, Boosting and Kernel 
models (e.g., Support Vector Machines). In particular, 
Boosting techniques have emerged in machine learning as 
ones of the most promising and powerful methods for 
supervised learning [11]. These techniques are the ones 
which have been selected for being designed, developed and 
implemented in Bravehealth. In this respect, the innovative 
Boosting model which has been defined and is being 
developed ad hoc for the Bravehealth environment, is 
obtained through a proper combination of a set of given 
base classifiers, usually called weak learners, to yield one 
classifier that is stronger than each individual base classifier. 
In Bravehealth we coped with the problem of combining 
Support Vector Machines (SVMs), properly adapting to the 
Bravehealth environment the approach presented in [12]. 

Following [14], the Boosting problem is formulated as a 
Linear Programming problem (LP). The dimension of the 
LP problem is related (via the Kernel matrix representing 
the similarity measure) to the number of test points (number 
of patient records) and hence the LP to be solved will be 
larger as the patient data will be collected, cleaned and 
stored by the DSS. The algorithm proposed in Bravehealth 
tackles the problem of solving LP problems with a huge 
number of variables by improving the solution scheme 
proposed in [14] and adapting to the boosting environment a 
standard technique used in LP theory: Column Generation. 
Column generation is a general method for solving large LP 
problems by iteratively solving a “reduced problem” on a 
subset of variables and fixing the others to zero. The 
solution of the “reduced problem” is optimal for the original 
problem if suitable values associated with the zeroed 
variables (the “reduced costs”) are non-negative. At each 
step, the reduced costs of the variables fixed to zero are 
evaluated, and only a limited number of “promising” 
variables (named entrant columns) with negative reduced 
cost are included in the set of variables considered in the 
current iteration (the so called “auxiliary problem”). Each 
entrant column is chosen by a “look up” procedure that 
automatically evaluates the reduced cost of the variables 
fixed to zero. The related Support Vector Machine is 
inserted in the subset of promising columns. By generating 
automatically one additional column at each iteration, the 
dimensions of the master problem to be solved increase 
slowly, and the solution algorithm is very fast. When the 
number of generated columns becomes considerable, the 
algorithm selects a subset of columns of the master problem 
that can be removed without affecting the current solution. 

This paper shows the results obtained through the 
implementation of this algorithm when applied to the 
problem Cleveland HEART (303 patient data concerning 
heart diseases) available at the UCI data mining repository 
[15]. These results indicate that the “boosting + column 
generation” approach is capable to find very good accuracy 
results and ready to solve the mining problems (of 
increasing dimension) generated by the routine activity of 
Bravehealth DSS (patient data collection via Wearable Unit, 
in primis). A brief description of the main features of the 
proposed method must start from a quick sketch of the 
standard learning protocol. The preliminary action is the 
partition of the dataset in two sets: the training and the test 
set. The training set simulates the data available in the (off-
line) learning phase. The classifier (its parameters) is (are) 
defined on the basis of the information carried by the 
training set, ignoring the data included in the test set. The 
test set simulates the data that will become available on line 
(i.e. the vital parameters measured by the Wearable Unit of 
a new patient and acquired by the DSS). The DM Engine 
uses the “boosting+column generation” approach to define a 
classifier which consists of a linear combination of Support 
Vector Machines (SVM). The classifier is defined on the 
basis of known and clean data represented by the training 
set. The classifier will subsequently be used on-line to 
assess the criticality of the vital parameters of unknown 
patients (represented by the test set in our experiment).  
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The main purpose of the training phase is to define a 
classifier which determines whether a patient is in critical 
conditions or not, under some pre-defined medical point of 
view, only for those patients in the training set that it is 
known in advance that they were in critical conditions for 
that parameter. Such a knowledge is used to assess the 
quality of the algorithm. The most diffuse wrong idea is to 
consider the “best” classifier as the one that provides the 
correct answer for every patient in the training set, but this 
simply means that the classifier is tailored for the training 
set and often unable to generalize its diagnosis to a new, 
unknown, patient. This is the so called overtraining effect. 
Conversely, the correct learning strategy is that of 
optimizing a functional which takes into account both the 
prediction accuracy over the training set and the capability 
of recognizing cases not included in the training set 
(generalization). In the proposed algorithm, this multi-
objective problem is solved by maximizing the accuracy on 
the training set, while constraining the capabilities of the 
classifier (reduced set). By constraining the classifier into 
not performing excessively well on the training set, it should 
be able to generalize to the test set. In more detail, the 
proposed classifiers are linear combinations of Support 
Vector Machines (SVM) and each SVM is defined by an 
hyperplane whose variables correspond to the components 
of the training points (indeed this is true only if the Kernel is 
not used but let assume it for simplicity). The proposed 
solution to the “overtraining effect” is to reduce the set of 
SVM to be included in the linear combination (boosting) by 
imposing an upper bound to the norm of the coefficients of 
the hyperplane defining the SVM (norm-UB). A very low 
value of the upper bound produces classifiers unable to 
properly classify the elements of the training set, while a 
very high value (infinite) for the upper bound imposes no 
limit upon the choice of the optimal classifier and produces 
the feared “overtraining effect”. The optimal upper bound 
and hence the optimal classifiers in terms of accuracy and 
generalization must lay in the middle and correspond to the 
optimal value of the norm-UB. 

 
Figure 2. Value Function test results 

A way to visualize the overall behavior of the learning 
process is by plotting the so called value function of the 
proposed optimization problem for increasing values of the 
norm-UB. The value function is the value of the error 

percentage of the optimal classifier on the training set 
obtained by restricting the choice of the SVMs to those 
having coefficient smaller than a suitable value of the norm-
UB. The value function of the tests performed by the 
authors is plotted (in blue) in Figure 2. The y-axis reports 
the percentage error while the x-axis represents 23 different 
and increasing values of the norm-UB (the values are not 
important since it is important to have an increasing series 
of upper bounds). The behavior of a value function for 
increasing values of the norm-UB is quite predictable. It 
starts from high values of prediction error in correspondence 
of the lowest values of the norm-UB and decreases to 0 
(equivalently 100% prediction accuracy on the training set).  

But what happens to the prediction accuracy on the test 
set? Two phases are present: a first phase in which the 
quality of the results on the test set follows the quality of the 
result in the training set and the prediction error on the test 
set decreases; and a second phase in which the improvement 
of the accuracy on the training set produces an increasing 
percentage of wrong answers on the test set. This second 
phase can be defined the overtraining phase and the error 
correspond to the fact that the algorithm is performing “too 
well” on the training set. The best classifiers should be 
searched at the interface of the two phases. This area is here 
informally defined as the knee of the curve corresponding to 
the accuracy error on the test set. Figure 2 reports the 
experimental results, in terms of prediction error in 
percentage constrained by the norm-UB on the x-axis, of the 
proposed prototype algorithm upon the Cleveland HEART 
data. The 303 patients of the data set have been partitioned 
in a training set containing 270 of them (a lower number 
would have made the test of the boosting+column 
generation procedure non significant) and leaving 33 
patients unknown to the algorithm (test set). The value 
function starts from a 35% error for the lowest value of the 
norm-UB. In this case, the UB is so low that it is not 
possible to find a classifier which properly classifies the 
patients in the training set. By increasing the norm-UB the 
error percentages decreases until it reaches the value zero 
(the fifth value of the norm-UB). The error percentage 
remains to zero even though it is related to different 
classifiers for each different value of the norm UB (with 
different generalization capabilities).  

The red plot shows the classification results on the test 
set, obtained by the classifier produced for each value of the 
norm-UB. As one can easily see the prediction error on the 
test set has an almost descending trend up to the 19

th
 value 

of the norm UB (corresponding to a 13.33% error) and then 
it increases above 30% for all the subsequent values of the 
norm-UB. Hence, a “knee” has been found and an optimal 
classifier with 86.66% accuracy corresponding to the knee. 
As far as the authors know, this is the best classifier 
obtained so far for this particular problem. 

V. MODEL SELECTION MODULE 

As a request arrives to the Data Mining component, all the 
realized algorithms implementing different machine learning 
models are executed (Neural Networks, Decision Trees, 
Boosting, etc), and their outputs are automatically evaluated 
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in terms of accuracy and reliability. This module has the 
task of selecting the model (or the combination of models) 
which is the most appropriate to the current request on the 
basis of specific parameters and criteria provided by the 
Medical Supervisors. Driving parameter can be accuracy 
and reliability determined according to the examined case; 
model selection can be automatically performed basing 
those parameters. Moreover, the Bravehealth system 
foresees a hybrid automatic-manual model selection in 
which Medical Supervisors can express their preference to a 
particular model for each examined case. 

VI. PATTERN VISUALIZATION MODULE 

An important issue in Data Mining applications for 
medical diagnosis and risk prediction models is that the 
results of computer-based analysis have to be communicated 
to people in a clear way, to facilitate the interaction in the 
decision making process. The output of the DM Engine is 
represented by general patterns (logical rules, decision trees, 
etc.) that are provided to Rule Supervisors for inspection 
and validation. The output may not be immediately clear to 
non-specialized operators; therefore, a Pattern Visualization 
module is needed, to represent the patterns found by the DM 
Engine in a graphical representation, suitable for doctors 
and medical researchers. The Bravehealth Pattern 
Visualization module stores and displays data in a 
customizable way, offering efficient access to data and data 
managing tools for continuous patient monitoring. 

VII. CONCLUSION AND FUTURE WORK 

A key characteristic of the Bravehealth approach is that all 
the data processing procedures, from the data pre-processing 
to the output visualization, is performed according to a 
patient-centric vision and with tight control of doctors and 
medical researchers, also to encourage its use by the medical 
audience, usually skeptical about automatic assistance. 
Moreover, the Bravehealth approach includes several 
innovative features: (i) the use of a two-scale DSS including 
a light data processing taking place at the PG, and a more 
heavy data processing demanded to the RS; (ii) the adoption 
of a flexible architecture of the RS DSS based on an off-line 
Data Mining engine including several Data Mining models 
which can be adaptively selected (either in an automatic, or 
in an hybrid automatic/manual fashion) on the basis of the 
examined case for providing on-line (real-time) notifications 
and suggestions to the Medical Supervisors; (iii) the adoption 
of Data Mining models tailored to the Bravehealth 
environment (e.g., Boosting models based on SVMs as the 
proposed one); (iv) the adoption in the PG LDSS of powerful 
clustering algorithms tailored to the real-time classification 
of patient records filled with the data received from the WU. 

This paper has presented the basis, along with very 
encouraging results of tests applied on well known available 
data, of the on-going Data Mining algorithms development, 
which, compliantly to the best practice in Data Mining, will 
be carefully tailored to the actual data which will be 
available either during the Bravehealth or other similar 
projects, and/or in eHealth based industrial applications. The 
expectation is that, thanks to specific Kernels, the proposed 

boosting algorithm could represent a ”quantum leap” of the 
capacity of (i) predicting heart diseases and (ii) providing a 
more accurate classification of the patients’ health status. 
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