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Abstract—The rising tide of single household prosumers leads
to a paradigm shift for power grid operators. Those prosumers
are characterized by their consumption, production and storage
capabilities. Via buying and selling electricity, every prosumer
becomes a rational agent in the smart grid, trying to maximize
one’s utility. The optimal short- and long-term behavior can now
be analyzed using methods of game theory. In this paper, we
present a game theoretic model for smart grids with rational
prosumers. Using real-world data, we equipped every agent with
a growing class of strategies and then compute the resulting Nash
equilibria. The differences in prosumers’ utility between optimal
and almost optimal strategy selection is given as the price if not
knowing the future.

Keywords—smart grid; game theory; nash equilibrium; pro-
sumer; battery energy storage system.

NOMENCLATURE

D(a)
C Daily consumption of agent a.
D(a)

P Daily production of agent a.
`C,t Consumption of agent a at time t.
`M,t Market power of agent a at time t.
`P,t Production of agent a at time t.
`R,t Residual of agent a at time t.
Mmax Maximum price for buying electricity.
MHT Time interval for high-tariff.
MLT Time interval for low-tariff.
mbuy,t Price for buying at t.
msell,t Price for selling at t.
Pmax Maximal production power.
Rt Sum of all agents’ residual loads.
SOCmax Maximal storage capacity.
Scharge Maximal storage charging power.
Sdischarge Maximal storage discharging power.
π
(a)
σ Payoff of agent a for strategy σ.

I. INTRODUCTION

Stable and reliable electricity supply is mandatory for our
everyday life. Over the past 100 years, our power grid has been
steadily evolving to ensure this supply. Now, with the increas-
ing amounts of electric vehicles and the simultaneous shift of
generating process from fossil energy resources to Renewable
Energy Resources (RESs), the power grid is facing a Her-
culean task to maintain this function. The ongoing integration
of Distributed Renewable Energy Resourcess (DERs) into the
existing power grid, due to its highly volatile behavior, leads
to an increase of complexity for network management tasks

in terms of stability and security. But not only the power grid
is evolving, consumer equipped with production capabilities,
e.g., photovoltaic, wind turbine, or diesel generators, are now
producer at the same time–so-called prosumers.

In [1], we define prosumers, which are capable of producing
and storing electricity, as atomic entities in smart holonic
micro grids. To achieve stable Smart Grid (SG) operation,
especially on low-voltage level, accurate forecasting is nec-
essary to handle the volatile nature of RESs. The increasing
capacitiy of battery energy storage systems with the simul-
taneous decreasing costs, lead to more usage in households
may they be residential or commercial. Unfortunately, this
introduce more unpredictability into the power grid because
every prosumer now has more possible decisions to make.
To handle this kind of uncertainty, the study of complex
interactions between independent rational actors is needed,
which falls in the domain of Game Theory (GT). Therefore,
we propose a game of rational prosumers and different kind
of electricity markets and give the following contributions:

1) Model for SGs with different kinds of actors represented
as rational agents under varying market conditions.

2) Determination of a stable system state by calculating the
Nash equilibrium for a finite set of defined strategies.

3) Implementation on a real-world data set and evaluating
the game results.

The remaining paper is structured in the following manner.
Section II gives an overview of existing research approaches
for strategic operation of Battery Energy Storage Systems
(BESSs). In Section III, we give a detailed description of
the developed model, the agent representation, the different
electricity markets, as well as explicit strategy implementa-
tions. Afterwards, a game is run on a real-world data set
and the system equilibrium is calculated in Section IV. We
summarize and discuss the results and conclude with possible
improvements and ideas for future works.

II. RELATED WORK

Ensuing from our previous definition of atomic units in a
holonic SG, and the need for accurate forecasting models and
strategic energy storage operation, we focus on the latter in this
paper [1]. Therefore, this section provides an overview of the
existing research approaches and their impact on our work. For
a clearer description, we break them down into the two main
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areas of BESS management in general and GT approaches in
particular.

A. BESS Management

The efficient integration of BESSs into the existing power
grid is a major research topic [2] [3]. The majority of them
focus on solving optimization problems like sizing [4] [5] or
scheduling [6]–[9]. The authors in [10] propose a optimization
model for microgrids with generation capacities, e.g., diesel
generator, wind turbine, and one scenario with additional
battery storages. Their results show that BESS can assist
microgrids in the power generation sector. In [11], an genetic
algorithm (NSGA-II) for multi-objective optimization in terms
of minimize generation costs and battery life loss is presented.
Simulated on two scenarios, abundant and short renewable
resources, their method reduces both objectives. One major
application of BESSs is peak shaving to reduce peak demand
on a power system. In [12] two optimization methods in
combination with load forecasting are presented. Furthermore,
the authors in [13] also take different electricity tariffs into
account to shave and shift peak consumption and conclude that
strategic operation can lead to reasonable pay-back investment
times.

B. Game Theoretic Approach

One problem of modeling and simulating strategic behavior
of an arbitrary number of actors or players within a SG, is the
rational thinking and the variable goals of each individual. To
overcome this problem, game theoretic approaches gain more
attention in recent years [14]–[16]. Basically, GT approaches
can be divided into cooperative [17] and non-cooperative
games. In [18], the authors propose a cooperative game for
sharing storage capacities and the results show effective in-
fluence on the power grid. Furthermore, a distributed solution
for coalition formation to reduce households’ electricity costs
within a SG is offered in [19]. Similar, consumers are trading
energy with each other to minimize their own electricity bill
formulated as a centralized optimization problem in [20].
Another application is the examination of trading mechanism
in energy markets. In [21], a detailed review of GT methods
for local energy trading scenarios is given.

The previous mentioned related work influence this paper,
specifically, led to the consideration of modeling prosumer as
rational agents with strategic behavior. Within the scope of
this paper, every rational agent tries to maximize their own
payoff and never negotiate with other participants in the SG.

III. MODEL DESCRIPTION

In this paper, we implement prosumer as rational agents
within a multi-agent system. To analyze different strategies
for buying and selling electricity and also–if available–for
charging and dischargin battery storage systems and their
respective outcome under varying market conditions, a game
theoretic approach is presented. Therefore, we introduce in
this section a game (Section III-A) of an arbitrary number
of agents (Section III-B) and one specific electricity market

(Section III-C). Following this, we define a set of strategies
agents can choose from and the selected utility function to
evaluate their respective outcome (Section III-D).

A. Game

We propose a game G to analyze the interactions between
a set of players modeled as rational agents and a specific
electricity market: G = (A,M,S). Where every agent a ∈ A
is able to buy and sell electricity from respectively to the
market M based on their chosen strategy σ ∈ S. Figure 1
depicts the information flow between agents and the electricity
market. In every time interval t ∈ T , the market sends the
price for buying and selling 1 kWh electricity to every agent
a within the game. It can be also seen from Figure 1, that no

M

a(0) . . . a(n)

pr
ic
e t

price
t

Figure 1. Every agent a ∈ A within the game is connected to the same
market M and receive the identical price in every time step t

communication between the agents is allowed. This feature
is out of scope of this paper but will be implemented in
future work to enable coalition formations between agents.
Besides buying and selling electricity, a prosumer+ is also
able to charge and discharge their storage unit. To handle
this additional behavior, a definition and classification of the
used agents based on their available actions is given in the
following.

B. Agent

The goal of this paper is to find the optimal battery charge
and discharge strategy based on each individual prosumer’s
rational utilization. Therefore, every player a ∈ A in our game
is represented by an rational agent. Agents within our game
can be classified into consumer, producer, prosumer with or
whitout storage. Depending on this classification, the agents
have different properties shown in Figure 2. From Figure 2 can
be seen, that a prosumer+agent has a consumption, production,
and storage. Furthermore, every agent is connected to the
power grid. The daily consumption D(a)

C of an agent a is fixed
in our game and is given by the sum of the consumption in
every time interval `(a)C,t. Similar, the daily production D(a)

P is
the sum of the electricity produced `(a)P,t in every time interval

D(a)
C =

∑
t∈T

`
(a)
C,t (1)

D(a)
P =

∑
t∈T

`
(a)
P,t. (2)

For the remaining paper, electricity produced by the production
unit or discharged from the storage device is represented by
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Figure 2. An agent a is composed of at least one of the following properties:
Consumption, Production, or Storage

negative values by convention. Therefore, the provided power
in kW per time interval by an agent’s production unit with
maximum power Pmax is given by

−P(a)
max ≤ `

(a)
P,t ≤ 0. (3)

Additionally to the charge and discharge power constraint in
(4), the storage unit has also a maximum capacity SOCmax

in kWh given in (5). Taken all together, this leads to the
state-of-charge calculation of the storage in time interval t in
(6).

`
(a)
discharge,t ≤ `

(a)
S,t ≤ `

(a)
charge,t (4)

0 ≤ SOC
(a)
t ≤ SOC(a)

max (5)

SOC
(a)
t = SOC

(a)
t−1 + (`

(a)
S,t ×

24 h

T
) (6)

The initial daily SOC for every agent is set to the max-
imum capacity SOC

(a)
0 = SOC(a)

max. We are fully aware
of inverter efficiencies at production and storage units, but
for convenience and to keep our model simple, we exclude
these factors for the scope of the presented work. Since we
are focusing on short-term analysis, battery aging due to
calendaric or chemical effects are ignored as well. For long-
term investing and operating optimization, these factors will
be given thorough considerations in future work. Taken all
together leads to the main constraint in (7). In every time
interval t, an agent’s consumption needs to be covered either
by produced electricity, discharged storage, or bought from the
connected market.

`
(a)
C,t + `

(a)
P,t + `

(a)
S,t + `

(a)
M,t = 0 (7)

To ensure this constraint, we assume that the power provided
by the market/grid is not restricted to any boundaries.

C. Electricity Market

Every prosumer+within our game is connected to one shared
market M. In this paper, three different types of market

Figure 3. Available different market structures: (a) Time-Of-Use, (b) Demand-
Offer, and (c) Hybrid

structures are used for our model implementation: (I) Time-
of-Use (TOU), (II) Demand-Offer (DO), and (III) Hybrid. The
first market MTOU returns the price of buying and selling
electricity based on the time of day divided into low-tariff
(nighttime) and high-tariff (daytime) givin in (9). In contrast,
the second market typeMDO calculates the price dynamically
on the basis of the residual loads (see 8) of every participant in
(10). The third market MHybrid is a combination of the other
two and calculates the price dynamically within the high-tariff
rate.

Rt =
A∑
a

`
(a)
R,t (8)

mbuy,t =

{
Mmax, if t ∈ MHT

k ×Mmax, otherwise
(9)

mbuy,t = Mmax −
j

Rt
, for Rt 6= 0 (10)

mbuy,t =

{
k ×Mmax, if t ∈ MLT

Mmax − j
Rt
, otherwise

(11)

The price for selling electricity to the market is tied to the one
for buying msell,t = mbuy,t × l with l ∈ ]0, 1[, this ensures
that rational prosumers prefer self-consumption over selling
produced electricity. An example of the daily price calculations
for the different markets based on the same residual load is
shown in Figure 3.

D. Strategy

In our game, every agent can select a strategy σ ∈ S . We
define a strategy σ as a sequence of actions for an agent in
every time interval t ∈ T . An action α is a tuple of storage
and market operation. Basically, these actions are power values
for `(a)S,t and `

(a)
M,t after strategy execution. Depending on the

agent type and their corresponding properties and actions (see
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TABLE I
AGENT CLASSIFICATION AND THEIR ACTIONS

Agent Property Action

Consumption Production Storage Market Storage

aC √ × × √ ×
aC+ √ × √ √ √
aP × √ × √ ×
aP+ × √ √ √ √
aS × × √ √ √
aCP √ √ × √ ×
aCP+ √ √ √ √ √

Table I), unable actions are set to zero. In the following, two
concrete strategy definitions are given: (a) SPILLOVER and (b)
PRICEDEPENDING(τ )

a) Spillover: This strategy prioritize the storage uti-
lization over selling overproduced electricity. In every time
step t, the difference between production and consumption is
calculated. This strategy is described in detail in Algorithm 1.

Algorithm 1 Strategy definition for SPILLOVER

Input: Agent a, time step t
Output: Market power `(a)M,t, Storage power `(a)S,t

1: procedure SPILLOVER(Agent a, t)
2: r ← `

(a)
R,t

3: s← SOC
(a)
t

4: `
(a)
M,t, `

(a)
S,t ← 0

5: if r < 0 then
6: `

(a)
S,t ← CHARGE(s, r) . From Equations (4-6)

7: `
(a)
M,t ← r − `(a)S,t

8: else
9: `

(a)
S,t ← DISCHARGE(s, r) . From Equations (4-6)

10: `
(a)
M,t ← r − `(a)S,t

11: end if
12: return `

(a)
S,t , `

(a)
M,t

13: end procedure

It can be seen that the strategy returns values for market
and storage power. If an agent doesn’t utilize these properties
(see Figure I), the strategy return zero for that value.

b) PriceDepending: In contrast to Spillover, this strategy
focuses the price given by the market. An agent always buys
from the market if the price is less than a percentage of
the maximum market price Mmax defined by an individual
threshold τ ∈ [0, 100]. Only if this is not the case, an agent
charges its storage system at overproduction `

(a)
R,t < 0 and

discharges it to cover consumption.
To evaluate the different strategies, we define the following

utility function

π
(a)
σ =

∑T
t (`

(a)
M,t × ct)

ct =

{
mbuy,t, if `(a)M,t ≤ 0

msell,t, otherwise.

(12)

Algorithm 2 Strategy definition for PRICEDEPENDING

Input: Agent a, time step t, threshold τ
Output: Market power `(a)M,t, Storage power `(a)S,t

1: procedure PRICEDEPENDING(a, t, τ )
2: r ← `

(a)
R,t

3: s← SOC
(a)
t

4: `
(a)
M,t, `

(a)
S,t ← 0

5: if mbuy,t < Mmax × τ
100 then

6: `
(a)
M,t ← r

7: else
8: if r < 0 then
9: `

(a)
S,t ← CHARGE(s, r) . From Equations (4-6)

10: `
(a)
M,t ← r − `(a)S,t

11: else
12: `

(a)
S,t ← DISCHARGE(s, r) . Equations (4-6)

13: `
(a)
M,t ← r − `(a)S,t

14: end if
15: end if
16: return `

(a)
S,t , `

(a)
M,t

17: end procedure

An agents’ payoff π(a) for a specific strategy σ is the sum
of money paid or earn in every time step t in (12). Since
electricity purchase from the market results in negative costs
(see (7)) and vise-versa, the payoff is denoted as the inverse
costs. Therefore, a rational agent tries to maximize their
resulting payoff. Taken all the previous definitions together, we
run in the following a concrete game with specified settings
and evaluate the corresponding results.

IV. EVALUATION

After the formal description of the used game model, we
evaluate our defined strategies with real-world data described
in Section IV-A. Therefore, we present an algorithm for cal-
culating the optimal state for our game–the Nash equilibrium
(Section IV-B). After defining a concrete game setup, we
present the agents’ payoffs under the three previous defined
types of electricity markets in Section IV-C.

A. Data Set

For our game implementation, we are using a real-world
data set recorded by AUSGRID in the New South Wales (NSW)
region in Australia [22]. As part of the Solar Bonus Scheme
program introduced by the Australian government, electricity
consumption and photovoltaic production data from a total of
300 randomly selected residential households were recorded.
Altogether, the half hour resolution of the meter data over a
time period of three years from 1st July 2010 till 30 June 2013
results in more than 50.000 data points.

B. Nash Equilibrium

To determine the optimal strategy for every agent, we first
calculate the Nash equilibrium for the proposed game. In
game theoretic approaches the Nash equilibrium is the solution
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TABLE II
GAME EVALUATION WITH AGENT SPECIFICATIONS AND RESULTS

Agent Equipment Strategy Selection Market Price of not knowing the future

Demand-Offer Time-of-Use Hybrid Demand-Offer Time-of-Use Hybrid

a(0)

C = 290.87 kW Optimal −29.45 −30, 49 −28, 28 – – –
P = −73.17 kW Yesterday −29.55 −30, 49 −28.36 0.10 0 0.08
Pmax = 1.7 kWp Steady −29.54 −30.49 −28.34 0.09 0 0.06
SOCmax = 2kWh No Battery −29.82 −30.86 −28.63 0.37 0.37 0.35

a(1)

C = 151.05 kW Optimal −11.19 −11.76 −10.88 – – –
P = −63.83 kW Yesterday −11.43 −11.92 −11.11 0.24 0.16 0.23
Pmax = 1.36 kWp Steady −11.20 −11.97 −10.90 0.01 0.21 0.02
SOCmax = 2kWh No Battery −12.73 −13.17 −12.25 1.59 1.41 1.37

a(2)

C = 170.74 kW Optimal −14.32 −14.44 −13.57 – – –
P = −68.73 kW Yesterday −14.46 −14.44 −13.70 0.14 0 0.23
Pmax = 1.48 kWp Steady −14.37 −14.44 −13.61 0.05 0 0.04
SOCmax = 2kWh No Battery −15.56 −15.68 −14.80 1.24 1.24 1.23

where no agent increases their payoff in varying only his
strategy unilateral [14]. To reach the equilibrium state in our
game, we propose an iterative approach in Algorithm 3 where
systematically strategies are ruled out. The set of resulting

Algorithm 3 Iterative Nash calculation
Input: Agents A, Strategies S, Iterations i

1: procedure NASH(A,S, i)
2: Initialize Agents A with random Strategy from S
3: count ← 0
4: while count < i do
5: for all a ∈ A do
6: P empty list of length |S|
7: for all σ ∈ S do
8: π(σ)←CALCULATEPAYOFF(a, σ)
9: P ← P + π(σ) . Append π and σ to list

10: end for
11: σmax ← max(P ) . Strategy with max. payoff
12: a(σ)← σmax . Set σmax as agent’s strategy
13: end for
14: count ← count +1
15: end while
16: end procedure

strategies for every agent σ(a) defines the optimal state within
our game. Based on this state, the difference in every agents’
payoff for choosing another strategy is calculated and named
as the price of not knowing the future.

C. Game Results

For our proposed game G, we choose three different agents
A = {a(0), a(1), a(2)} from the data set. The set of available
strategies is composed of the previously described Spillover
and PriceDepending as well as no battery utilization at all S =
{σSpillover, σPriceDepending(τ), σNoBattery} with τ ∈ [0, 100].
Markets are initialized with k = 0.75, l = 0.5 and Mmax =
0.30C. We play the game for a whole week from Monday
till Friday. For every day in the week and every market type
MDO,MTOU,MHybrid, the optimal strategy based on the

previous calculated Nash equilibrium (see Algorithm (3)) is
taken as a benchmark. For every agent a ∈ A, we replay
the game with the following three different strategy selection
methods (1) Yesterday: the agent selects yesterday’s optimal
strategy; (2) Steady: the agent initially selects SPILLOVER and
never changes it; (3) No Battery: the agent never uses its stor-
age unit at all. Afterwards, we present the difference between
the agents’ optimal payoffs and the almost optimal payoffs–the
so-called price of not knowing the future. The specifications of
every agents’ storage and production capacities as well as the
total sum of production and consumption over the whole week
are given in Table II. The last three columns correspond to the
price of not knowing the future, where the lower values are
better–indicated in bold font. A final discussion of the results
in Table II and an extensive summery follows next.

V. CONCLUSIONS

With the rise of prosumers and the ongoing integration of
RESs, the existing power grid is evolving from a centrally
managed critical infrastructure to more and more distributed
SGs. Prosumers capable of producing electricity are now able
to buy from and sell to the market based on their individual
rational goals. To study these interactions between actors in
a SG and market operators, a agent-based representation of
the prosumers with different properties (see Section III-B and
Table I) is presented. These properties and their resulting
actions are used to define strategies for varying storage unit
utilization in Section III-D. Furthermore, different types of
electricity markets in terms of price calculation are defined
in Section III-C. A dynamic market (MDO), where every
agent influences the price depending on their actual demand.
A time based price mechanism, where the tariff is divided into
day-tariff and night-tariff (MTOU) as well as a combination
of both types (MHybrid). All of this, can be modeled and
evaluated in a game between rational prosumer agents and an
electricity market.

After the formal definitions, a game composed of three
agents, an electricity market M, and a concrete strategy
set S = {σSpillover, σPriceDepending(τ), σNoBattery} is played.
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Therefore, every market type is studied for a stable config-
uration, the Nash equilibrium, with an iterative Algorithm
(3). Divergent from the resulting agents’ payoffs, three other
strategy selection methods are compared and the divergence
is presented–the so-called price of not knowing the future.
It can be seen from presented results in Table II that no
major difference between strategies in the TOU market is
noticed with one exception for agent a(1)–except at no battery
utilization at all. This can be explained by the fact that neither
of the proposed strategies exploit this circumstances. For the
remaining market types, a steady usage of the SPILLOVER
strategy is a pretty good choice for an almost optimal strategy–
or in reducing the price of not knowing the future.

The promising results of our presented game theoretic
approach encourage us for further developments and improv-
ments. Possible extensions are implementations of broader
strategy spaces or simulating more agents or whole real-
world grid structures. Another interesting aspect are long-term
analyses in terms of grid stability as well as reliability.
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