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Abstract—This paper reviews existing literature that focuses on
optimizing Hybrid Renewable Energy System (HRES) regarding
their incorporation of resilience and robustness properties and
gives an overview of commonly used techniques in the field.
HRES are energy systems consisting of renewable energy sources,
as well as traditional fuel based generators as backup. In the
current transformation phase of energy generation, it is important
to size those systems large enough but as small as possible.
Today, a plethora of optimization goals and techniques, as well
as approaches to model and simulate the systems are known
to researchers. Since no common definition of resilience and
robustness exists for cyber-physical systems like HRES, different
definitions are compared and explained. The review shows that
a research gap exists in taking resilience and robustness into
account when optimizing HRES. An outlook on how to address
this research gap using Adversarial Resilience Learning (ARL)
is also given.
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I. INTRODUCTION

In order to reach the climate targets defined in the Paris
Climate Agreement [1], the supply of electrical energy needs to
be shifted from fossil to renewable sources. This often requires
a redesign of the power grid as renewable energy sources are
less dependable and therefore require ways of storing energy
not necessarily needed before. At this point, the question of
how to transform energy systems arises. This transformation
will most likely not happen over night, which results in an
intermittent state. The mix of renewable energy sources, energy
storage and fossil sources as backup forms a Hybrid Renewable
Energy System (HRES) [2]. Those systems can be built with a
connection to the energy grid [3][4], or as standalone systems
that provide electricity with low dependence on fuel in remote
areas [5][6].

In order to design efficient and reliable HRES, a lot of
research has been done on HRES optimization. Often, the
optimization focuses on economical and technical aspects of
the system like the cost of the generated energy or the system’s
ability to meet the energy demand. Recently, environmental
and socio-political goals such as CO2 emission of the system
and impact on the local community have been scrutinized as
well [7].

Renewable energy systems are often highly distributed and
thus require extensive communication between components [8].
This leads to more and more digitization, effectively making
the energy grid a large cyber-physical system [9], which poses
different challenges. The recent blackout in the Ukraine [10]

for example was caused by a cyber attack on the energy
infrastructure. Other unpredictable events like the overloading
of a substation in Europe in 2021, which lead to a system
separation [11] or the increasing amounts of natural disasters
like earthquakes, storms and floods show that energy grids
can be disrupted in unforseeable ways [12][13]. In order to
withstand such challenges, HRES must be resilient and robust,
which begs the question whether resilience and robustness
are considered in HRES optimization. Therefore, this paper
gives an overview of HRES optimization, explains common
techniques and reviews them regarding their incorporation of
resilience and robustness.

Since no common definition of resilience and robustness
exists, in Section II, we first compare existing definitions and
decide on how we use the terms in this paper. In Section
III, HRES components are introduced and their function is
clarified. We describe optimization problems in general in
Section IV, and methods used in HRES optimization in Section
V. After that, in Section VI, common simulation techniques
are explored. Section VII explains frequent optimization goals
and reviews their consideration of resilience and robustness
properties. Those findings are combined in Section VIII to
identify a research gap. Finally, in Section IX a summary is
given, as well as an outlook on how the research gap will be
addressed.

II. ENERGY GRID RESILIENCE AND ROBUSTNESS

Throughout the literature exists no commonly agreed upon
definition of resilience of cyber-physical systems. Arghandeh
et al. [14] define cyber-physical resilience as

Definition 1. The resilience of a system presented with an
unexpected set of disturbances is the system’s ability to reduce
the magnitude and duration of the disruption. A resilient system
downgrades its functionality and alters its structure in an agile
way.

The Presidential Policy Directive 21 [15] of the United States
of America defines it as

Definition 2. The ability to prepare for and adapt to changing
conditions and withstand and recover rapidly from disruptions.
Resilience includes the ability to withstand and recover from
deliberate attacks, accidents, or naturally occurring threats or
incidents.
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The definitions show, that resilience of cyber-physical sys-
tems is concerned with the handling of unexpected disturbances.
In order to remain functional, a resilient system downgrades
its functionality and recovers back to the regular operating
mode quickly. In energy grids the downgrade of functionality
might mean shutting down subgrids in order to keep the rest of
the grid stable. Resilience often gets confused with robustness.
Arghandeh et al. [14] define cyber-physical robustness as

Definition 3. Robustness is the ability of a system to cope
with a given set of disturbances and maintain its functionality.

The main difference is that a robust system maintains it’s
functionality, while a resilient system can downgrade and
recover it’s functionality. In energy grids robustness is, e.g.,
achieved with control energy [16]. Control energy is used to
level frequency deviations that occur when energy demand and
generation are not equal.

III. HYBRID RENEWABLE ENERGY SYSTEM COMPONENTS

Hybrid Renewable Energy Systems are built from different
components. They combine renewable energy sources like
photovoltaic and wind turbines with traditional fossil fuel based
generators to provide energy locally without high dependence
on fossil fuels [17]. Traditionally, HRES are built for specific
use cases like power sources for cities [18], small villages [19]
or even buildings [20]. They can exist as standalone systems
to provide power in remote areas [5] [6], or can be connected
to the power grid [3] [4] in areas, where electricity is available
anyways. This section explains commonly used components
of HRES and describes their function.

A. Photovoltaic

Photovoltaic (PV) cells generate electricity by absorbing
light. They consist of semiconductor material that forms an
electric field. Once light hits the cell, electrons are knocked
loose from the semiconductor’s atoms. The electrons flow
between the positive and negative side of the electric field,
which creates a current and thus electricity. PV cells are usually
connected and mounted to form PV modules, which can then
be installed to harvest energy [21].

B. Wind turbine

Wind turbines convert the kinetic energy of wind into
electricity. They achieve that by capturing the wind energy with
rotor blades that make the rotor turn. The rotor is connected to
a generator that turns the kinetic energy of the rotating motion
into electricity. Usually, the rotor and generator are mounted
on a tower to allow for large rotor diameters and thus a higher
energy output [22].

C. Battery

Batteries are a form of energy store. They can store electrical
energy as chemical energy. Batteries are composed of two
electrodes, called anode and cathode, that are submerged in an
electrolyte. When discharging a battery, a reduction-oxidation
reaction occurs at the electrodes. At the anode, electrons are

set free, which flow through the electric circuit attached to
the battery to the cathode, thus creating a current. To balance
that, positively charged ions move from the anode through
the electrolyte to the cathode. If the right electrode material
is used, batteries can be recharged by attaching an electricity
source to the battery, which reverses the aforementioned process.
Batteries can be used to store energy created by whether
dependent energy sources if supply is higher than demand [23].

D. Diesel generator

Diesel generators are diesel engines that are connected to
a generator. By compressing air and combusting diesel fuel,
pistons in the engine move up and down cylinders. This motion
is converted into a rotation of the crankshaft via connecting rods
that connect the crankshaft to the pistons. The rotation powers
a generator that transforms the kinetic energy to electrical
energy [24]. The generator operates on the same principle as
the generator in a wind turbine. The difference between a diesel
generator and a wind turbine is the creation of the rotation.

E. Gas turbine

Gas turbines burn gas to create a rotating motion. The turbine
compresses an air and gas mixture with rotating blades attached
to a center shaft. The mixture is then ignited and the hot
gases spin blades connected to the same shaft. The rotation is
used to compress air on the compressor side and to power a
generator similar to the generators used in wind turbines or
diesel generators. An added benefit is the usage of the hot gas
mixture for heating purposes, which allows for very efficient
operation of gas turbines [25].

F. Hydrogen fuel cell

Hydrogen fuel cells use hydrogen and oxygen to create
electricity. Although they are not energy stores, but rather
energy converters, they work similarly to batteries. They consist
of anode, cathode and electrolyte membrane. Hydrogen is
passed through the anode and oxygen through the cathode. The
hydrogen is split into electrons and protons. As in a battery,
the electrons go through the attached circuit and the protons go
through the electrolyte membrane. At the cathode, the electrons,
protons and the oxygen combine again to form water, which
is the only byproduct of this reaction apart from heat. Fuel
cells differ from batteries in that they need a constant flow
of hydrogen and oxygen, which is why fuel cells are not
considered energy stores by themselves [26].

G. Hydrogen storage

Hydrogen is often stored in tanks. In order to maximize the
amount of hydrogen that can be stored in a given tank, it is
often compressed or liquefied. Pressures can reach up to 700
bar and in order to liquefy hydrogen it has to be cooled to
-253◦C. Compressing and liquefying hydrogen to store it adds
costs to hydrogen handling. Liquefying for example, can use up
to 30 % of the energy contained in the liquefied hydrogen [27].
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H. Hydrogen Electrolyzer

Hydrogen electrolyzers use electricity to split water into
hydrogen and oxygen. They can therefore be used to create
hydrogen to power fuel cells. Electrolyzers work similarly to
fuel cells. They also consist of an anode, cathode and electrolyte.
At the anode, water is split into oxygen and positively charged
hydrogen ions. The electrons from this reaction flow through
an external circuit, which powers the electrolyzer and the
hydrogen ions travel through the electrolyte to the cathode.
At the cathode, electrons from the external circuit and the
positively charged hydrogen ions form hydrogen gas, which
can then be extracted. Electrolyzers can be used to store energy
in conjunction with hydrogen storage, if energy created by,
e.g., a wind turbine is not currently needed [28].

IV. OPTIMIZATION PROBLEMS

The goal of optimization is generally to tune parameters of
a system in a way, that makes the resulting system optimal.
In order to know what is optimal, an optimization goal needs
to be defined, which measures the performance of a certain
set of parameters. Formally, an optimization problem can be
described as [29]:

Minimize/Maximize : F (x) (1)
subject to : gj(x) ≤ 0; j = 1, 2, ...,m , (2)

where F (x) is the target function representing the optimiza-
tion goal and x is the parameter vector. The problem might
be subject to a total number of m constraints gj(x) that limit
the solution space.

Commonly used optimization goals and techniques in HRES
optimization will be explained later in this paper.

A. Multi-Objective optimization

In order to incorporate multiple optimization goals into the
optimization process, multi-objective optimization is often used.
It also finds usage in HRES optimization frequently [3]–[5]
[30]–[32]. Multi-objective optimization allows for goals to be
combined and aims to find solutions that are good compromises
regarding different targets.

In general, a multi objective optimization problem can be
described as [33]

Minimize/Maximize : Fmo(x) = [F1(x), F2(x), ..., Fk(x)]
(3)

subject to : gj(x) ≤ 0; j = 1, 2, ...,m , (4)

where Fmo(x) is the multi objective function to be optimized,
containing k single objective functions Fk(x) and gj(x) the
constraints like above.

There are two main approaches to multi-objective optimiza-
tion. One combines the different objective functions into a
weighted sum [33]

Fmo =

k∑
i=1

wi · Fi , (5)
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Figure 1. Example of Pareto front for 2 dimensional minimization
problem

where wi is the weight or importance of objective i and
Fi(x) is the ith objective function. In order to make this work,
the different objective functions must either all be minimized
or all be maximized. This can be achieved by multiplying
objective functions by -1 to get the desired direction. The
individual objective functions might also be normalized to
allow the weight choice to directly represent an objectives
importance without taking range of values into account [30].
For the other approach, each single objective function is
evaluated separately. A set of solutions is retained, within
which each solution is Pareto optimal. Pareto optimality is
based on the hypothesis that solutions cannot be compared
if one is better at one objective and the other at another. A
solution is only better if it is better for at least one objective and
at least equally good on all other objectives. In this case, the
better solution Pareto-dominates the other solution. Formally a
solution x Pareto-dominates a solution x′ in a minimization
problem if and only if

∀i ∈ 1, ..., k : Fi(x) ≤ Fi(x
′),

and ∃j ∈ 1, ..., N : Fi(x) < Fi(x
′) (6)

Figure 1 shows an example of Pareto-optimal and Pareto-
dominated solutions and the Pareto front for a 2 dimensional
minimization problem.

The set of solutions contains only solutions that are Pareto-
optimal, meaning that all solutions within the set are not
comparable and they Pareto-dominate every other solution.
This set is called Pareto-optimal set or Pareto front [34].

This approach does not result in one best solution, but a
set of solutions, from which a human can choose a suitable
solution for the underlying problem. It is also regularly used
in the context of HRES optimization [3][32][35].

V. OPTIMIZATION METHODS

A. Evolutionary Algorithms
Evolutionary Algorithms (EAs) are optimization algorithms

inspired by evolution theory. They use a combination of
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recombination, mutation and selection operators to find good
solutions in the search space. In general, EAs first create an
initial set of solutions, called population. For each iteration
of the algorithm, solutions undergo the aforementioned steps.
First, individuals recombine, which combines parts of two or
more individuals into one or more so called offspring solutions.
Those are then mutated, which adds random changes. From
the old population, called parents and the new offsprings, a
new population is selected, which is the new generation of
parents for the next algorithm iteration. Selection is done by
comparing the fitness of individuals, which is measured with
objective functions such as those described in the previous
section. They also work well on multi-objective optimization
problems [29].

EAs are used frequently to optimize HRESs [32][36]–[38].

B. Particle Swarm Optimization

Another common technique in HRES optimization is Particle
Swarm Optimization (PSO) [5][30][35][39]. It is inspired by
the behavior of biological swarms and was first introduced by
Kennedy and Eberhart [40]. Similar to EAs, PSO uses multiple
individuals to carry out the search. In this case the population
is called swarm, and the individuals particles.

Each particle in the swarm has knowledge about it’s personal
best and the global best solution that was previously found, as
well as a velocity of it’s movement through search space. This
velocity depends on the distance to the current personal and
global optima. It is lower, the closer the current solution is to
the optima and higher, if it is further away. This encourages
exploitation close to and exploration far from known optima.

In an iteration of the algorithm, the particle positions are
updated by adding the velocity to their current position. Next,
the fitness values of the particles are evaluated and the current
personal and global optima are updated. Finally, the new
velocities are calculated [29].

C. Other optimization methods

Less popular optimization methods used for HRES opti-
mization include Honey Bee Mating Optimization [3], Ant
Colony Optimiztion [41], Harmony Search [42], Sampling
Average Method[31], Simulated Annealing [43] and Tabu
Search [44]. This is not an exhaustive list, since in theory
every optimization technique is usable in HRES optimization.
Hybrid optimization methods that combine those algorithms
are also investigated [45][46].

D. Software Solutions

Many software solutions exist for modeling, simulating and
also optimizing HRES. Their main advantage is allowing
optimization of HRES for users without algorithmic and
programming skills. They also include modeling and simulation,
which makes it possible to optimize and evaluate with one
single program. Cuesta et al. [47] recently carried out a study
of those software solutions.
The most popular HRES tool is HOMER. It allows optimization
of systems regarding the Net Present Cost (NPC) [47]. Although

this is the only possible optimization goal when using HOMER,
it is frequently used for HRES optimization [4][48]–[50].

According to the study of Cuesta et al. other software capable
of optimization are DER-CAM, iHoga and the open source
Calliope. Calliope allows only optimization regarding Cost of
Energy generation (COE), DER-CAM COE and CO2 emissions,
iHOGA NPC, CO2 emissions, loss of load, human development
index, and job creation. DER-CAM and iHoga can make use
of multi objective optimization, iHOGA even allows for Pareto-
optimization. From those tools only iHOGA is used somewhat
regularly in HRES optimization [49][51].

VI. SIMULATION METHODS

A very important part of HRES optimization is the simulation
of solutions. In order to calculate the target functions of the
optimization, the performance of solutions must be evaluated.
Since it is usually not feasible to build the proposed HRES
and measure it’s performance in real life, simulation is often
employed.

In order to be able to simulate a HRES, energy demand
and generation need to be modeled. Demand is modeled by
load profiles. The energy generation of photovoltaic systems
and wind turbines mainly depends on the weather. Because of
that, sun radiation and wind speed profiles are important to
calculate the output of those components. Practically, all of
the surveyed work relies on those profiles to simulate HRES
performance.

One common way to simulate the system is using mathe-
matical models of the HRES components to calculate their
output [5][30][32][35]–[37]. For every simulation step, the
generated energy of renewable sources is calculated with
equations that depend on the sun radiation or wind speed,
as well as efficiency of the device. This generation is then
compared to the load. If there is a surplus of energy, it is
stored in the respective storage device of the system. Since
those processes are not 100 % efficient, equations are used
to calculate the stored energy depending on input and device
efficiency. For electrolyzers, the amount of created hydrogen
is calculated here. If not enough energy to meet the load is
generated by the renewable sources, the stored energy is usually
used first. Depending on the storage device it is calculated how
much the storage has to be drained to supply the necessary
load. In case the renewable and stored energy is not enough to
supply the load, fallback solutions like diesel generators and
gas turbines have to be used. The fuel consumption needed to
supply the load can then be calculated by mathematical models
as well.

Many different equations exist for modeling HRES compo-
nents, which will not be discussed in detail here, because of
varying complexity and accuracy. The review by Bhandari et
al. [52] provides a good overview.

HRES tools such as the previously mentioned HOMER,
DER-CAM and iHOGA include simulations of the created
systems [47]. This is a key aspect of what makes these tools
popular since no own implementation of the mathematical
models is required.
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Failures of components or other disturbances could be
included into the simulation e.g, by deactivating certain energy
sources for some time in the simulation run. This would mimic
real life failures in the system and allow for the investigation
of the systems robustness and resilience. For resilience testing,
further logic would need to be implemented into the simulation
models that allows for the downgrading of functionality by e.g,
cutting power to certain loads or by removing the connection to
parts of the system in order to stabilize the system as a whole.
Of the reviewed publications, none have incorporated system
disturbances or the ability to downgrade into their simulations
and thus did not challenge the robustness or resilience of the
system.

VII. OPTIMIZATION GOALS

Optimization goals are used as target functions for optimizing
HRESs. Different configurations can be compared by compar-
ing those target functions. This section gives an overview of
commonly used goals in HRES optimization and evaluates
their incorporation of robustness and resilience properties.

A. Economic optimization goals

A common economic optimization goal for HRESs is the
COE [4][5][36]. The COE describes how expensive the average
annual energy creation of a system is per unit of energy and
is often given in USD/kWh. Similarly, the Levelized Cost
of Energy generation (LCOE) describes the average energy
creation cost per unit over the entire project lifespan [30]. The
LCOE can be calculated as [30][53]

LCOE =
TPV

EL
CRF [USD/kWh] , (7)

where the Total Present Value (TPV) depends on the
components of the system:

TPV =

k∑
d=1

Cd [USD] , (8)

where d is the device of k total devices and Cd are the costs
associated with said device calculated as:

Cd = Initd + CO&Md
[USD] , (9)

comprised of initialization costs Initd and operation and
maintenance costs CO&Md

, which also include replacement
costs if necessary.

In equation 7, EL [kWh] is the total load over the simulation
period. Capital recovery factor (CRF) takes the interest rate
into consideration and is calculated as:

CRF =
i(1 + i)n

(1 + i)n − 1
, (10)

where i [%] is the nominal interest rate and n [years] is the
system life.

The Net Present Value (NPV) is the difference between the
present value of cash inflow and the present value of cash
outflow of a system over a period of time and therefore a

measurement for the return of investment [54]. In the context
of HOMER (see Section V-D), the NPV is called NPC [55]
and is used under that name in several publications [4][31].

Using the notation from above, it can be calculated as

NPV = (EL − TPV ) CRF [USD] . (11)

The LCOE is the selling price needed to yield a NPV of
0 [56].

The aforementioned measurements take into account costs
and earnings. Goals focused exclusively on the costs of a
system are also used in the context of HRES optimization.

One such approach is the Annualized Cost of System (ACS),
which annualizes all costs of the entire system [32] and can
be described as

ACS =
∑
d=1

Cad [USD] , (12)

where Cad are the annualized costs of a device that occur
over the project’s lifespan. A similar approach is the Life Cycle
Cost (LCC). It sums all costs over the project but does not
annualize them [37].

The Initial Capital Cost (ICC) measures how high the initial
investment of a system is. This can be useful in situations with
limited initial budget and calculated as [37]

ICC =
∑
d=1

Initd [USD] . (13)

None of the presented economic optimization goals measure
the robustness or resilience of the system. Since they are
concerned with the cost of the system or the generated energy,
they rather work contradictory to the idea of a robust and
resilient system. Enabling a system to be able to handle
disturbances usually means adding redundancies, which in turn
increases costs. Balancing those opposing objectives would
be a key challenge when robustness and resilience should be
implemented into HRES optimization.

B. Technical optimization goals

Technical optimization goals aim to formulate target func-
tions that measure service security and reliability of the
system. A widespread technical optimization goal is the
Loss of Power Supply Probability (LPSP) [5][30][32][39][57].
Some publications refer to it as Loss of Load Probability
(LLP) [31][36]. It measures the probability of the system being
unable to supply enough power to satisfy the energy demand
at any given time and can be calculated as [58]

LPSP =

∑T
t=1EDE(t)∑T
t=1EL(t)

[%] , (14)

where t is the current time step of T total time steps of the
simulation, EDE(t) the energy deficit at time step t and EL(t)
the total load at time step t.

Apart from the usage as a regular optimization goal, the
LPSP is often used as a constraint. In that case, solution
candidates must achieve a LPSP under a chosen constant to
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even be considered. This is done to ensure a certain level of
reliability while optimizing other aspects of the system.

The LPSP could be a measure of the system’s robustness
and resilience, if the system is exposed to disturbances. If the
system was exposed to threats, the LPSP would be improved
if the system was robust enough to withstand the threats. If the
HRES also had the ability to downgrade it’s functionality, the
LPSP would increase less than in the case of a total collapse,
which would then be a measure of resilience. In the reviewed
publications that use it, the system is not exposed to such
events and therefore the LPSP only measures the reliability in
regular operation.

The minimization of power losses aims to improve the
efficiency of a HRES [3]. It can be described as

LossP =

T∑
t=1

Nbr∑
i=1

(Ri · |Ii|2 · δt) [Wh] , (15)

where i is the current branch, Nbr is the total number of
branches, Ri is the resistance of branch i, Ii is the actual
current of branch i and δt is the time step in the simulation.

While the minimization of power losses is an important goal
for creating an effective system, it has no direct impact on the
robustness and resilience of the system.

C. Environmental optimization goals

One of the most present goals in HRES optimization is the
reduction of emissions. The direct emission of CO2 from the
combustion processes within a diesel generator or gas turbines
over the course of the project or a year is often used as a target
function [31][32]. It can be calculated as [35]

Emission =

D∑
d=1

T∑
t=1

consd(t) · EFd [kg] , (16)

where consd(t) is the fuel consumption of device d at time t
and EFd is an emission factor that is specific to the device’s and
the fuel’s characteristics. The emission factor usually ranges
from 2.4 to 2.8 kg/l [59].

Other approaches try to incorporate all CO2 emissions of a
device over it’s entire lifetime [30]. This includes emissions
from harvesting the used materials, manufacturing, transporting,
installing, operating and maintaining the device, as well as
disposing it [60]. By dividing the emissions by the amount of
generated energy, the Carbon Footprint off Energy (CFOE) can
be calculated. It quantifies the emission of equivalent CO2 mass
per kWh of produced energy and can be described as [30][61]

CFOE =
εsys
EL

[kgCO2eq/kWh] , (17)

where εsys are total the emissions of the entire system:

εsys =

D∑
d=1

εd [kgCO2eq] (18)

and εd the total emissions of device d, which can be broken
down into

εd = εmat + εman + εtrans + εinst

+ εo&m + εdisp [kgCO2eq] , (19)

which are the emissions for material gathering, manufac-
turing, transporting, installing, operating and maintaining and
disposing the device.

The Renewable Energy Ratio (RER) is the ratio of energy
created by renewable sources vs. conventional sources an is
used as a environmental optimization goal [31]. It can be
calculated as

RER =
Eren

Econv
, (20)

where Eren and Econv are the amounts of energy created by
renewable and conventional sources respectively.

A similar approach is the Renewables Factor (RF) [30]
calculated as

RF = 1− Econv

Eren
. (21)

None of the described goals measure robustness and re-
silience or directly impact those properties.

D. Socio-Political optimization goals

Recently, socio-political optimization goals are being scru-
tinized, since HRES impact communities in which they are
installed beyond technical or environmental criteria, e.g., by
creating jobs or shaping the landscape [47].

Eriksson et al. [30] have proposed a way to quantify the socio-
political impact of a HRES to include it into the optimization
process. The approach incorporates qualitative and quantitative
factors to create an index-based measurement that represents the
expected public satisfaction of a HRES. The used parameters
are:
• Aesthetics: Acceptance of visual appearance, noise dis-

turbance etc.
• Employment: Employment opportunities
• Perceived hazard: Potential hazard risk
• Land requirement and acquisition: Public resistance to

land acquisition
• Perceived local environmental impact: Impact such as

eco-system disturbances
• Local ownership: Ratio of local ownership in the pro-

posed system
• Local skills availability: Availability of local workforce

suitable for the project
• Local resource availability: Availability of local re-

sources needed for the project
• RF: Penalty for reliance on non-renewable energy
• Perceived service ability: Level of improved service

ability, such as improved availability of social electricity
services

A score is assigned to each parameter ranging from 1 to 5 in
order to rate a system or component. The scores are weighed
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to represent their importance on the given project, since every
project has different priorities and different factors are important
to the community. The weighed scores are then summed to
give a single score named Socio. The perceived service ability
parameter of the socio is impacted by a robust or resilient
system, since the availability of the electrical services rises
with robustness and resilience. Since no disturbances were used
in it’s original publication, that potential metric of robustness
and resilience is yet unused.

VIII. RESEARCH GAP

Some work has been done on resilience of HRES without
specifically targeting optimization. Kosai et al. [62] proposed a
method to analyze system resilience regarding batteries. They
measure resilience of a HRES by assessing how much of
the batteries can fail for how long throughout a day without
impacting self sustainability of the system. Using those two
performance indices, the authors size batteries of HRES to have
sufficient resilience at minimal cost. Approaches like these only
mimic failures and downgrading of certain components and
cannot sufficiently evaluate the entire systems vulnerability to
attacks or disasters due to this.

Currently, robustness and resilience is not considered in
HRES optimization, as we have explained in the previous
sections. Some of the optimization goals like the LPSP (see
Section VII-B) and the Socio (see Section VII-D) have the
potential to measure robustness and resilience of the system. In
the reviewed publications, they could not fulfill that potential,
because no disturbances were incorporated while simulating
system performance. Also, none of the systems had the ability
to downgrade their functionality (see Section VI), which is the
key part of a resilient system according to the definitions we
showed. Recent cyber attacks, e.g., the blackout in Ukraine [10]
and the increasing amounts of natural disasters like earthquakes,
storms and floods, as well as disturbances due to system
overloads [11] show that energy grids can be disrupted in
unforseeable ways [12]. Because of this, it would make sense
to include resilience and robustness against such events into
HRES optimization by challenging the systems with these
occurrences.

In summary, a research gap exists in scrutinizing HRES
robustness and resilience by confronting them with disruptions.
Also, no distinct measures of system resilience or robustness
against such disruptions have been used in HRES optimization.

IX. CONCLUSION

This paper provided an overview of HRES optimization by
explaining frequently used techniques to optimize and simulate
HRES. Since no commonly agreed upon definition exists for
resilience and robustness of cyber-physical systems, a selection
of definitions from literature was presented and applied to the
energy grid and in extension HRES in Section II. We explained
common optimization goals and techniques in Sections V-VII,
which are summarized in tables I and II and highlighted a lack
of consideration of robustness and resilience against unexpected
disruptions in literature.

TABLE I
SUMMARY OF OPTIMIZATION GOALS

Economic optimization goals
Goal Formula

LCOE LCOE = TPV
EL

CRF [USD/kWh]

NPV NPV = (EL − TPV ) CRF [USD]

ACS ACS =
∑
d=1 Cad [USD]

ICC ICC =
∑
d=1 Initd [USD]

Technical optimization goals
Goal Formula

LPSP LPSP =
∑T

t=1 EDE(t)∑T
t=1 EL(t)

[%]

Power loss LossP =
∑T
t=1

∑Nbr
i=1 (Ri · |Ii|

2 · δt) [Wh]

Environmental optimization goals
Goal Formula

CO2 emission Emission =
∑D
d=1

∑T
t=1 consd(t) · EFd [kg]

CFOE CFOE =
εsys
EL

[kgCO2eq/kWh]

Socio-Political optimization goals
Goal Formula

Socio Weighted score of
multiple parameters

TABLE II
SUMMARY OF OPTIMIZATION AND SIMULATION METHODS

Optimization method Possible goals Simulation method

EA All Mathematical modeling

PSO All Mathematical modeling

HOMER NPC Internal simulation

Calliope COE Internal simulation

DER-CAM COE
CO2 emission Internal simulation

iHOGA
NPC

CO2 emission
LLP

Internal simulation

In order to address this research gap, we will develop opti-
mization goals that measure system reliability and robustness in
future work. The main concept used for this will be Adversarial
Resilience Learning (ARL) [13][63][64]. It allows two agents
to compete on the same environment. In the context of ARL,
those agents usually take the role of attacker and defender and
one key showcase of the concept is the energy grid. Here,
the attacker tries to destabilize the grid and the defender
tries to keep the grid in a stable state. It is possible to use
many different types of agents such as rule based, learning
or random agents. The defender could be realized as a multi-
agent system, as those have been frequently used in smart grid
management applications [65]–[70]. Learning agents can be
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used to uncover vulnerabilities of the underlying environment
by learning attack strategies in the attacker agent. This approach
could be expanded to HRES optimization by using proposed
HRES configurations as environments and analyzing how easy
the attacker agent could disrupt it. Possible measures in terms
of optimization goals could be the time needed to disrupt
the system, the amount of successful disruptions over multiple
experiments, the ability of the system to downgrade and recover
from those attacks or the time needed to fully recover. This
could be integrated nicely into an optimization loop with
the python framework palaestrai [64][71]. Palaestrai allows
for easy setups of ARL experiments from configuration files,
which is well suited for changing environments (changing
configuration of HRES).

With this new approach robustness and resilience could
be considered in HRES optimization, which would improve
reliability of those systems in the future.
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