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Abstract—We consider sparse random networks of Kuramoto
phase oscillators with inertia in order to investigate the dynamics
emerging in high-voltage power grids. The corresponding natural
frequencies are assumed to be bimodally Gaussian distributed,
thus modeling the distribution of both power generators and
consumers, which must be in balance. Our main focus is on
the theoretical analysis of the linear stability of the frequency-
synchronized state, which is necessary for the stable operation of
power grids, and the control of unstable synchronous states. We
demonstrate by numerical simulations that unstable frequency-
synchronized states can be stabilized by feedback control. Fur-
ther, we extend our study to include stochastic temporal power
fluctuations and discuss the interplay of topological disorder
and Gaussian white noise for various model configurations. Our
results are compared with those obtained for the real power grid
topology of Italy.

Index Terms—power grids, sychronization, stability, control,
diluted network.

I. INTRODUCTION

The traditional way to generate power by using fossile
energy has induced the risk of global warming caused by
large emission of carbon dioxide gases. Nowadays, we are
witnessing a drastic regime shift in the operation of power
grids towards renewable energy sources, since more and more
energy generating units become supplied by natural sources,
such as wind parks and photovoltaic arrays, see [14], [15]. This
regime shift has triggered three major issues that have to be
considered to provide the sustainable operation of power grids.
The first issue is decentralization meaning that the power sys-
tem based on renewable energy sources represents a distributed
network carrying many small units of energy to the consumers
(unlike conventional power grids), see [2]. The second issue
is a strong spatial separation between power generators and
consumers [4], e.g., wind energy is usually produced near the
sea, and solar energy is harvested in sunny areas, while power
consumption is highest in industrial agglomerations in other
parts of the country. Finally, the third issue is related to the
strong dependence on weather conditions, which leads to the
increasing fraction of strongly fluctuating power output [8].
Thus, the focus of this study is on power grids based on
renewable energy sources characterized by sparse networks.

For this reason, we have considered random Erdös-Renyi
networks with low average connectivity to model the network
topology underlying high voltage transmission grids [11], [13].

The Kuramoto model with inertia presented in [1] is a stan-
dard mathematical model used to study the dynamical behavior
of power generators and consumers [5]–[7], [11], [12], [16].
Thus, we consider sparse random networks of Kuramoto phase
oscillators with inertia to investigate the dynamics emerging in
high-voltage power grids. In general, power grids tend to syn-
chronize their frequencies to the standard ac power frequency
Ω = 50 Hz (or 60 Hz in some countries). We distinguish the
power generated by power sources (P isource > 0) from the
power consumed by passive machines or loads (P icons < 0)
by assuming the bimodal Gaussian distribution of natural
frequencies of power generators and consumers with opposite
picks as in [5]. Although the bimodal frequency distribution
is a very important feature of the model, most of the previous
studies consider either a unimodal frequency distribution [6]
or δ-function shaped bimodal distributions [7]. In our work we
use the bimodal Gaussian distribution of frequencies, which
models consumed and generated power in a more realistic way.

For the stable operation of power grids the produced power
must be equal to the consumed power, which implies main-
taining a synchronous state of the entire network. We provide
the theoretical analysis of the linear stability of the frequency-
synchronized state, and the control of unstable synchronous
states that are usually characterized by large differences of
initial phases. The stability criteria were derived based on the
properties of the initial phase differences of the oscillators. We
demonstrate by numerical simulations that unstable frequency-
synchronized states can be stabilized by feedback control if the
coupling between oscillators is strong enough. Additionally,
we include stochastic temporal power fluctuations by adding
Gaussian white noise to the Kuramoto model and discuss how
does it influence the frequency synchronization.

The present extended abstract is structured as follows.
In Sec. II, the Kuramoto model with inertia, the network
topology and natural frequency distribution are presented. In
Sec. III we characterize frequency synchronization and discuss
the conditions under which this state occurs, as well as we
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apply a control method to stabilize the unstable frequency-
synchronized solutions. The results and main contributions of
this study are discussed in Sect. IV.

II. MODEL

We consider a system consisting of a population of i =
1, ..., N coupled Kuramoto oscillators with inertia that reads

mθ̈i + θ̇i = Ωi +
K

Ni

N∑
j=1

Aij sin (θj − θi) , (1)

where θi and θ̇i are the instantaneous phase and frequency,
respectively, of the oscillator i. Parameters m > 0 and K >
0 indicate the inertial mass of generators and the coupling
constant of the network equivalent to the transmission line
capacities between loads and generators, respectively. A is the
connectivity matrix: its entries Aij are one if nodes i and j are
connected, and zero otherwise. Ni is the node degree of the
i-th element, thus denoting the number of the links outcoming
from this node. Finally, Ωi represents the natural frequency of
the oscillator i, whose value is chosen in accordance with the
bimodal Gaussian distribution

g(Ω) =

[
pg√
2π
e−

(Ω−Ω
0+)2

2 +
1− pg√

2π
e−

(Ω+Ω
0− )2

2

]
. (2)

III. FREQUENCY SYNCHRONIZATION AND CONTROL

In particular, we aim to investigate the stability of the
synchronous solution emerging in a power grid network by
linearizing the state around the frequency-synchronized solu-
tion, which gives a Jacobian matrix with constant coefficients,
and analyzing the eigenvalues of this linearized system. The
calculation of the eigenvalue with the largest real part λmax
will be the main criterion for determining the synchronization
stability. Stability means that the sign of the largest real part
is negative.

We analyse the frequency synchronized solution for the
network characterized by coupling beyond some critical value
(for K < Kc no frequency synchronized solution is possi-
ble). We have obtained that stable frequency synchronization
occurs in systems whose initial phases are close enough, i.e.,∣∣θ0j − θ0i ∣∣ < π

2 . If this condition on phases is violated, we deal
with unstable solutions, which we stabilize with a control loop.

Further, we search for sets of initial phases that sat-
isfy the frequency-synchronized solution numerically using
Levenberg-Marquardt algorithm, which might find stable and
unstable solutions. For example, Fig.1a),b) presents a stable
frequency-synchronized solution that is obtained for almost
identical initial phases, while for the case of largely varying
initial phases we obtain an unstable frequency-synchronized
solution as illustrated in Fig.1c),d).

We further stabilize such unstable frequency-synchronized
solutions obtained for

∣∣θ0j − θ0i ∣∣ ≥ π
2 by introducing a control

term ui into the original system (1)

θ̇i = ωi

ω̇i = αΩi − αωi +
K

Ni

N∑
j=1

Aij sin(θj − θi) + ui,

Fig. 1. Spatio-temporal evolution of phases θi and frequencies ωi, which
satisfy the condition for frequency-synchronized solution. Stable solution:
(a) phases; (b) frequencies; parameters: Re(λmax) = −0.083, K = 10.
Unstable solution: (c) phases; (d) frequencies; parameters: λmax = 2.41,
K = 70. Other parameters: m = 6, p = 0.20 (connectivity ratio), Ω0 = 2,
N = 500.

In particular, the control term u can be chosen as a feedback
control loop such that

u = −C
(
δθ
δω

)
,

where C ∈ RN×2N is chosen to minimize the following cost
functional

J(u) =

∫ ∞
0

∣∣∣∣∣∣∣∣(δθ(t)δω(t)

)∣∣∣∣∣∣∣∣2 + ||u(t)| |2dt.

This problem is solved via the application of a linear quadratic
regulator for each set of phases θ∗i . Basically, the regulator
chooses the time-independent matrix C such that the eigenval-
ues for the closed-loop system are non-positive when solving
the eigenvalue problem for the Jacobian. Thus, the frequency-
synchronized solution is stabilized for each particular set
of chosen phases θ∗i , and, regardless of the initial phase
differences

∣∣θ0j − θ0i ∣∣, we are always able to obtain a stable
solution if K > Kc.

An example is illustrated in Fig.2, where plots a) and
b) represent phase evolution without control. We see that
these phases lose synchrony with respect to frequencies, since
their initial phases do not have close values. However, if a
control action is performed, the frequency-synchronization is
stabilized as it is shown in Fig.2c) and d).

IV. CONCLUSIONS

In conclusion, we have considered sparse networks of
Kuramoto oscillators with inertia to investigate the optimal
conditions for the emergence of synchronization in power
grids. Going beyond previous work [11] devoted to this type
of networks, we have provided a linear stability analysis of
the frequency-synchronized solution that is necessary for the
stable operation of power grids. We have derived the stability
criteria, based on the initial phase differences of the oscillators,
and have estimated the critical coupling strength Kc above
which a frequency-synchronized solution is possible in the
deterministic system. For sufficiently large coupling we have
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Fig. 2. Spatio-temporal evolution of phases θi without (top panel) and
with control (bottom panel). Left column: K = 50 and initial phases
θ∗1 = ... = θ∗150 = π, θ∗151 = ... = θ∗500 = 0, (a) control off,
λmax = 2.802; (c) control on, λctrl = −0.759. Right column: K = 70
and uniformly distributed initial phases, (b) control off, λmax = 2.41; (d)
control on, λctrl = −0.823. Other parameters: as on Fig. 1.

also found unstable solutions that are usually characterized by
large differences of initial phases. A similar stability analysis
was performed by Mirollo et al. [3] and by Delabays et al. [9]
for networks of classical Kuramoto oscillators (without inertia)
with different topologies (fully coupled networks and planar
graphs respectively). Here we used the stability analysis to
characterize unstable synchronous states in diluted networks,
which we subsequently stabilize by a control loop. It turns
out that our linear feedback control scheme is very efficient
in stabilizing unstable frequency-synchronized solutions for
arbitrary initial phases, and all K > Kc.

Furthermore we have investigated diluted networks with
stochastic dynamics due to temporally fluctuating power in
order to infer the similarities and differences occurring in the
transition to synchronization with respect to the deterministic
case. We have added a simple noise term, i.e., Gaussian white
noise, rather than correlated noise or intermittent noise, in
order to gain insight into the general role played by noise in
power systems. Previously, the transition to synchronization
has been investigated mainly in deterministic systems [6] or
in globally coupled networks [11]. On the other hand, when
stochastic systems with Gaussian white noise were considered
[10], the focus has not been on the synchronization transition,
thus neglecting possible consequences of hysteresis in power
systems. In particular, here we have observed that for synthetic
diluted networks (independently of the frequency distribution),
intermediate noise intensities might play a constructive role in
lowering the critical coupling value required to reach (almost
complete) frequency synchronization, since noise suppresses
intermediate states and reduces the hysteretic region.

Future perspectives of this work might be aimed at a deeper
understanding of the applicability of the control scheme within
noisy systems, for non-Gaussian noise and realistic topologies.
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