
Improving Energy Efficiency of Scientific Data Compression with Decision Trees

Michael Kuhn, Julius Plehn and Yevhen Alforov
University of Hamburg

Hamburg, Germany
Email: michael.kuhn@ovgu.de,juplehn@me.com,alforov@gmx.de

Thomas Ludwig
German Climate Computing Center

Hamburg, Germany
Email: ludwig@dkrz.de

Abstract—Scientific applications, simulations and large-scale ex-
periments generate an ever increasing deluge of data. Due to the
storage hardware not being able to keep pace with the amount
of computational power, data reduction techniques have to be
employed. Care has to be taken such that data reduction does
not impact energy efficiency as it is an important cost factor
for supercomputer systems and infrastructures. Data reduction
techniques are highly data-specific and, therefore, unsuitable or
inappropriate compression strategies can utilize more resources
and energy than necessary. To that end, we propose a novel
methodology for achieving on-the-fly intelligent decision making
for energy-efficient data compression using machine learning.
We have integrated a decision component into the Scientific
Compression Library (SCIL) and show that, with appropriate
training, our approach allows SCIL to select the most effective
compression algorithms for a given data set without users
having to provide additional information. This enables achieving
compression ratios on par with manually selecting the optimal
compression algorithm.

Keywords–Data Compression; Energy Efficiency; Decision Tree.

I. INTRODUCTION

Even though the rate of improvement for processors has
slowed down, the gap between the computational power of
processors and other hardware components, such as main
memory and storage, is still widening [1]. To keep pace,
additional investments are necessary for storage hardware. This
also results in additional costs for energy because new hardware
used in computing systems requires additional power. Therefore,
especially in data-intensive fields, costs for storage and energy
are increasing. For instance, for each PetaByte (PB) of disk-
based storage space, the German Climate Computing Center
(Deutsches Klimarechenzentrum, DKRZ) has to pay investment
costs of roughly 100,000e and annual electricity costs of
3,680e. For its 54 PiB storage system, this amounts to almost
200,000e per year for electricity alone (one PB of storage
needs 3 kW of power and 1 kWh of energy costs 0.14e).

Data reduction techniques, such as compression, trans-
formations and deduplication are straight-forward solutions
to minimize the energy consumption of storage systems by
reducing the amount of storage hardware required to store
the same amount of data. However, data reduction itself can
consume significant amounts of energy, potentially negating
its beneficial effects on energy efficiency. While the energy
efficiency of supercomputers should be increased, the impact
on runtime performance should be minimal. A number of
approaches and mechanisms to reduce energy consumption in
supercomputers have been suggested at the different levels of
computing systems. However, the impact of data reduction on
High-Performance Computing (HPC) systems’ energy efficiency

remains largely unexplored, even though more and more HPC
applications produce enormous volumes of data and data
reduction techniques are increasingly adopted.

Developers of scientific software have a great interest in
data reduction. However, to make best use of it, the used
methods and algorithms have to be appropriate for their data
sets and must be tuned to achieve optimal results. Additionally,
decreasing runtime performance should be avoided both for
performance reasons and for its impact on energy consumption.
For these users, choosing a suitable compression algorithm is
a technical decision that is difficult to make since the choice
depends on the data set in question as well as the software and
hardware environments. Data reduction schemes and options
are highly data-specific and, therefore, our ultimate goal is
to automatize the decision making process on behalf of the
users. Poor manual choices can lead to low compression ratios,
decreased performance and increases in energy consumption.
In this paper, we are focusing on scientific applications in
the context of HPC, where defining data reduction strategies
with high performance and energy efficiency suitable for the
generated deluge of scientific data is a challenging task.

Based on the methodology first introduced in [2], we define
and extend mechanisms for intelligently selecting algorithms
from a variety of state of the art reduction techniques with an
emphasis on their energy consumption. In addition to employing
machine learning to pick the most suitable compression strategy
for a data set, users are able to specify additional criteria.

The remaining of the paper is structured as follows: In
Section II, we give an overview of a common HPC I/O stack as
it is used in earth system science. We introduce our framework
for scientific data compression through high-level I/O interfaces
in Section III. In Section IV, we present data collected for
several compressors used to train our decision component. A
detailed evaluation is performed in Section V using a real-
world ecosystem simulation. After a review of related work in
Section VI, we conclude in Section VII with a summary of
our findings and describe our future work in Section VIII.

II. HPC I/O AND DATA REDUCTION

Applications typically use high-level I/O libraries to access
data, which in turn uses I/O middleware to communicate with an
underlying file system (see Figure 1). Two popular and common
high-level I/O interfaces in the scientific community to access
data in both serial and parallel manner are the Hierarchical
Data Format (HDF5) and the Network Common Data Form
(NetCDF). They allow HPC applications written in various
programming languages to manipulate and store data in a self-
describing and portable way by using multidimensional arrays.
Self-describing data formats contain a description of the file
layout and are thus easy to share and distribute.

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

While NetCDF provides a convenient programming inter-
face, the actual data format and I/O routines are implemented
as part of HDF5. HDF5, in turn, uses the I/O implementation
of the Message Passing Interface (MPI). MPI employs the I/O
operations of the underlying parallel file system using optimized
backends for a wide range of different file systems. In the end,
I/O operations are posted by the file system to the underlying
I/O driver. If the application performs data writing, it uses the
high-level I/O library, and the data is going through the stack
down until it is placed in the driver layer. A data read works
in the opposite direction.

There are two main levels of the data path where data
reduction mechanisms can be deployed: They are system
(low) and application (high) levels, which each have different
benefits and drawbacks. Data reduction usage on higher
levels of HPC I/O stack is typically advantageous. Unlike
low layers, it is possible to access and exploit additional
meta information provided by the high-level I/O libraries.
Different HPC applications for, e.g., climate change and weather
forecasting, are using a common I/O stack, making it easier to
employ application-level data reduction for them. Thus, usage
of data reduction at the application level can be fine-tuned
by taking application requirements and metadata into account.
Among others, techniques such as deduplication, compression
and transforms can be used on the application level. Moreover,
as long as these techniques perform lossless data reduction,
they can be deployed in a way that is transparent for users.

III. ENERGY-EFFICIENT DATA COMPRESSION

Based on these observations, we have extended the Scientific
Compression Library (SCIL) to support energy-efficient data
reduction by using machine learning approaches. SCIL already
provides a rich set of features. In general, SCIL is a meta-
compressor that aims to exploit knowledge on the application
level [3]. The library should ultimately pick a suitable chain of
algorithms satisfying the user’s requirements. This is currently
done based on the capabilities of the algorithms but has been
extended by a decision component that can use different criteria,
such as an energy-aware selection of the algorithms.

The overall architecture of using SCIL in scientific applica-
tions is depicted in Figure 1. Our main goal is providing the
most appropriate data reduction strategy for a given scientific
data set on the basis of semantical information and performance
of algorithms. SCIL currently supports a wide range of lossless
and lossy compression algorithms. Any application using the
HDF5 data model can use SCIL via its HDF5 filter.

A. Decision Component
Instead of relying solely on user-provided hints, we have

extended SCIL with a decision component that takes into
account information about the data’s structure to provide
improved data reduction capabilities. The decision component
uses machine learning techniques to infer which compression
algorithms and settings are best suited for a given data set.
To provide enough information for the decision component to
use, a separate training step is necessary. Currently, training
is done separately from application runs by post-processing
existing output data. The output data set is split up into its
individual variables, which are then analyzed. For each variable,
information about achievable compression ratios, processor
utilization, energy consumption, etc. is collected. This is done

Figure 1. General architecture of Scientific Compression Library (SCIL) when
integrated into the I/O workflow of scientific applications

for a wide range of data sets to provide the decision component
with a sufficiently large pool of training data. The exact
setup will be explained in more detail in Section V. Based
on these measurements, it is possible to statically compute
the appropriate compression algorithm for any given HDF5
variable. This information is then used to train the decision
component, which currently makes use of decision trees but is
planned to be extended with other techniques. In order to gain
insights into the accuracy of those decision trees and to prevent
overfitting, the data is split into a train and a test set. Those
pre-processing steps are necessary in order to gather data that
adds valuable information to the learning phase of the decision
tree classifier.

The decision trees are created using the Decision-
TreeClassifier component provided by scikit-learn,
which produces a tree representation that is then parsed into
a file that is usable in SCIL. Every time data is passed
to SCIL, the decision component infers which compression
algorithm and settings should be used before invoking its
integrated compressors. The decision component’s behavior
can be separated into two distinct modes, as described below.

If the data’s structure is known because it was part of the
training set, the decision component can select the optimal
compression algorithm and settings. This is currently done by
comparing the data set’s name but can be extended easily
if necessary. This mode of operation is mainly useful for
production runs of known applications. For instance, the
decision component can be trained for a specific application and
will be able to choose the best compressor for each subsequent
run without the developers having to modify the application.

If the data’s structure is unknown, the decision component
will use machine learning techniques (currently, decision trees)
to infer which compression algorithm and settings are best
suited for the data set in question. The decision component will
make use of information about the storage size, the number of
elements, the data’s dimensions, the data’s type (float, double,

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

etc.) and other factors. Moreover, it is possible to influence the
decision based on whether energy efficiency, compression ratio
or performance should be prioritized.

IV. TRAINING OF THE DECISION COMPONENT

Our current approach requires collecting several metrics,
such as compression ratio, processor utilization and energy
consumption for each supported compressor. Since the data’s
structure can heavily influence a compressor’s behavior, these
metrics are collected per data set. This collected information can
then be employed in selection of power-aware data reduction
techniques for a given data set. In the next paragraphs, we
will gather the distinct performance and energy consumption
characteristics of a wide range of compression algorithms
through the use of HDF5 filters. Algorithms like LZ4 [4] and
Zstandard [5] are fast and provide high throughputs. However,
their compression ratios can be lower compared to slower
algorithms that consume more energy. To exclude the influence
of SCIL and the computation present in the actual applications,
the training step uses output data generated by several real-
world applications and experiments. The output data is split
up into individual data sets and compressed using HDF5’s
h5repack utility. Overall, the evaluation has been conducted
by repacking the data 10 times to obtain averaged metrics.

Hardware and Software Environment: In order to investigate
the performance of data compression at the application level, we
used a cluster, which operates with the parallel distributed file
system Lustre. Since performance is not a priority, only a single
node outfitted with two 2.80 GHz quad-core Intel Xeon X5560
processors and 12 GB of RAM was used to collect the required
metrics. Due to this, the maximum throughput was limited
to roughly 110 MB/s. To capture each compressor’s energy
consumption, the ArduPower wattmeter was used [6]. It is
designed to simultaneously measure the power consumption of
different components (e.g., motherboard, CPU, GPU and disks)
inside computing systems even at very large scale. ArduPower
provides 16 channels to monitor the power consumption with
a variable sampling rate of 480–5,880 Hz.

Metrics: The main metrics in which we were interested
are the Compression Ratio (CR) to quantify the data reduc-
tion, runtime of each algorithm to see how slow or fast is
it, and consumed energy. We define compression ratio as
CR =

original size
compressed size .

Data Sets: For the evaluation of data reduction techniques,
we used three data sets from different scientific domains:

1) ECOHAM: 17 GB data set produced by the 3-
dimensional ecosystem model for the North Sea
ECOHAM [7] (from climate science)

2) PETRA III: 14 GB data set of tomography experi-
ments from PETRA III’s P06 beamline (PCO 4000
detector) [8] (from photon science)

3) ECHAM: 4 GB data set produced by the atmospheric
model ECHAM [9] (from climate science)

Evaluated Techniques: To perform the reduction of data sets,
different HDF5 compression filters have been leveraged. As part
of our experimental evaluation, we have compared the following
algorithms commonly used in HPC. While others, such as
DEFLATE, LZMA or xz also offer high compression ratios,
their performance is typically not sufficient for HPC workloads.

00:00

00:15

00:30

00:45

01:00

01:15

01:30

01:45

02:00

02:15

off blosc-lz4 mafisc lz4 zstd zstd-11 zstd-22 scil

R
u

n
ti

m
e
 [

H
:M

]

Compression algorithm

ECOHAM PETRA III ECHAM

Figure 2. Runtime of evaluated compressors

0.0

100.0

200.0

300.0

400.0

500.0

600.0

off blosc-lz4 mafisc lz4 zstd zstd-11 zstd-22 scil

E
n

e
rg

y
co

n
su

m
p

ti
o
n

 [
k
J]

Compression algorithm

ECOHAM PETRA III ECHAM

Figure 3. Average energy consumption depending on the HDF5 filter used for
data compression

Note that the following results only include compression as
decompression is usually much faster and thus negligible.

off : No filtering is applied. This represents the baseline.
blosc: The Blosc meta-compressor using the LZ4 compres-
sor. Additionally, Blosc’s shuffle pre-conditioner was used.
mafisc: The MAFISC compression algorithm that uses several
pre-conditioners and the LZMA compressor. lz4: The LZ4
compression algorithm using its default acceleration factor.
zstd: The Zstandard compression algorithm using its default
aggression parameter. The zstd-11 and zstd-22 variants represent
Zstandard with aggression parameters of 11 and 22, respectively.
scil: SCIL’s LZ4 compressor with some pre-conditioners.

Figure 2 shows that the runtimes vary wildly depending on
the internal structure of the datasets. The consumed energy and
obtained compression ratios for the ECOHAM, PETRA III and
ECHAM data sets are plotted in Figures 3 and 4, respectively.
It can be seen that different configurations achieve comparable

0.00

1.00

2.00

3.00

4.00

5.00

6.00

off blosc-lz4 mafisc lz4 zstd zstd-11 zstd-22 scil

C
o
m

p
re

ss
io

n
 r

a
ti

o

Compression algorithm

ECOHAM PETRA III ECHAM

Figure 4. Average compression ratios depending on the HDF5 filter used for
data compression

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

DM2≤71.5
gini=0.637

samples=104
value=[41,2,10,46,5]

class=zstd-11

Storage_Size≤2816.0
gini=0.727

samples=16
value=[5,2,6,1,2]

class=zstd

True

Number_of_Elements≤1400704.0
gini=0.568

samples=88
value=[36,0,4,45,3]

class=zstd-11

False

gini=0.735
samples=7

value=[2,2,1,0,2]
class=blosc

gini=0.568
samples=9

value=[3,0,5,1,0]
class=zstd

gini=0.0
samples=1

value=[0,0,0,0,1]
class=zstd-22

gini=0.559
samples=87

value=[36,0,4,45,2]
class=zstd-11

Figure 5. Decision component trained with ECOHAM data, optimized for
maximal compression ratio per time

compression ratios with significantly different runtimes and
energy consumptions (for instance, compare mafisc and zstd
for the ECOHAM dataset). It is, therefore, necessary to
select the compression algorithm intelligently to avoid wasting
performance and energy. For a detailed analysis of the results
for the ECOHAM and PETRA III datasets, please refer to [2].

V. EVALUATION

Compressors behave very differently depending on the data
structure. Based on the results and data obtained in the previous
section, we have trained the decision component using two
different sets of training data and will run ECOHAM using
our SCIL HDF5 plugin to evaluate our approach. All relevant
code and data for this paper are available at [10].

ECOHAM data used as training data: This configuration
represents the case that the application in question is known and
has been run before on the system. The decision component has
knowledge about this particular application’s data and can take
informed decisions regarding data reduction. However, only a
random subset consisting of 75 % of ECOHAM’s output data is
used for training to make sure there is a degree of uncertainty
left. This uncertainty could correspond to updated versions of
the application or slightly changed output structure.

ECHAM data used as training data: This configuration
represents the case that a new application is run on a system
and the decision component has to use information gathered
from other applications to try to compress the application’s
data as best as possible. In this case, the decision component
will try to map decisions that make sense for other data sets
to the current application’s data.

Moreover, we will look at two different optimization targets
for the decision component, which correspond to different use
cases: First, we optimized for minimal energy consumption
per compression ratio. This strategy allows shrinking the data
with the least amount of energy possible, which is typically of
importance to data center operators. Second, we optimized for
maximal compression ratio per time. This strategy makes sure
that performance is not degraded excessively, which is usually
one of the main concerns of data center users. For instance,
Figure 5 shows a configuration using ECOHAM training data
with a decision tree that has been optimized for maximal
compression ratio per time. As can be seen, a multitude of
metrics are taken into account, including the array dimensions,
the data set’s storage size, as well as the number of elements.
In addition to these metrics, the size of each dimension and

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

off blosc lz4 zstd ecoham-1ecoham-2echam-1 echam-2

R
u

n
ti

m
e
 [

M
:S

]

Compression algorithm

Figure 6. Runtime of evaluated compressors

0.0

50.0

100.0

150.0

200.0

250.0

off blosc lz4 zstd ecoham-1ecoham-2echam-1 echam-2

E
n

e
rg

y
co

n
su

m
p

ti
o
n

 [
k
J]

Compression algorithm

Figure 7. Energy consumption of evaluated compressors

information about data types can be used. In this specific
case, the decision tree makes sure that a mix of the Blosc
and Zstandard compressors are used. Moreover, Zstandard’s
compression level is adapted for maximum effect.

To compare our approach to static approaches, we have
chosen to run ECOHAM with the most important compressors
in static mode (that is, all data is compressed with the selected
algorithm) and four of our decision trees. It is important to
note that, although only Blosc, LZ4 and Zstandard are used
as static approaches, the decision trees have access to all of
SCIL’s compressors, which also include different aggression
parameters for Zstandard. Figures 6, 7 and 8 show the runtime,
energy consumption and compression ratio of ECOHAM when
run with the following configurations.

off : No HDF5 filter is used and, thus, no compression is
performed. blosc: SCIL’s HDF5 filter is configured to compress
ECOHAM’s data using Blosc. lz4: SCIL’s HDF5 filter is
configured to compress ECOHAM’s data using LZ4. zstd:
SCIL’s HDF5 filter is configured to compress ECOHAM’s data
using Zstandard. ecoham-1: The decision component has been
trained with ECOHAM data and is optimizing for minimal
energy consumption per compression ratio. ecoham-2: The
decision component has been trained with ECOHAM data and
is optimizing for maximal compression ratio per time. echam-
1: The decision component has been trained with ECHAM
data and is optimizing for minimal energy consumption per
compression ratio. echam-2: The decision component has been
trained with ECHAM data and is optimizing for maximal
compression ratio per time.

As can be seen in Figures 6 and 7, fast compression algo-
rithms, such as LZ4 reduce runtime and energy consumption
by causing less data being written to the file system and thus
slightly speeding up the whole application. The same is true
for the other light-weight algorithm Blosc and SCIL’s default
configuration. However, slower algorithms, such as Zstandard

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

0.00

1.00

2.00

3.00

4.00

5.00

6.00

off blosc lz4 zstd ecoham-1ecoham-2 echam-1 echam-2

C
o
m

p
re

ss
io

n
 r

a
ti

o

Compression algorithm

Figure 8. Compression ratio of evaluated compressors

have the opposite effect and cause increases in runtime and
energy consumption. Most importantly, the decision component
correctly uses energy-efficient algorithms when optimizing for
minimal energy consumption per compression ratio, which can
be seen in the ecoham-1 and echam-1 configurations. In the
ecoham-1 case, ECOHAM’s data structure is known and this
information can be used to effectively reduce the amount of
data. In the echam-1 case, however, the decision component
only has knowledge about ECHAM’s data structures but is still
able to choose appropriate compressors. The ecoham-2 and
echam-2 configurations both increase the runtime and energy
consumption. This is expected since, in contrast to the previous
cases, the optimization for maximal compression ratio per time
puts more emphasis on data reduction instead of low energy
consumption. Since the data structure is not known in the
echam-2 case, the decision component’s choices are not as
effective as in the ecoham-1 case and increase runtime and
energy consumption to a higher degree. Overall, the results
show that the decision component can be used both for known
as well as unknown applications. However, if the application’s
data structure are known, better decisions can be made.

This can also be seen in Figure 8, which illustrates the
compression ratios achieved by all configurations. As expected,
Blosc’s compression ratio is the lowest (3.79), followed by
LZ4 (4.95) and Zstandard (5.64). For ecoham-1 and ecoham-2,
the decision component has knowledge about ECOHAM’s data
structures and chooses the optimal algorithms for both opti-
mization targets. When optimizing for low energy consumption
(ecoham-1), the decision component favors LZ4 and achieves
a compression ratio of 4.95. When a higher compression ratio
is preferred (ecoham-2), Zstandard is chosen most of the time,
leading to a compression ratio of 5.64. When the decision
component has been training with ECHAM’s data, the results
are different: For echam-1, the decision component chooses
Blosc most of the time, which achieves the goal of reaching a
low energy consumption but boasts a lower compression ratio
of 3.79. For echam-2, however, the decision component does
end up using significantly more energy than ecoham-2 but also
provides a higher compression ratio of 5.69. This is due to the
fact that the decision component also chooses Zstandard with
higher aggression parameters.

In order to put the possible energy savings of this approach
into perspective, the initially required energy consumption of
the training has to be compared. For every variable existing
in the data set, all available compression algorithms and
selected compression levels are applied. In case of ECOHAM,
1,953 tests have been performed, resulting in 10,633 kJ being
consumed. For ECHAM, 833 tests were necessary with a total

energy consumption of 1,169 kJ. A comparison of the energy
consumptions from Figure 7 shows that our approach can save
roughly 10 kJ per run in contrast to using no compression.
Even though these savings appear small, the presented runs
were relatively short with 11–12 minutes. Production runs of
these applications typically take several days or weeks and
are repeated many times for comparison purposes. Therefore,
significant cost savings are possible even though initial training
costs appear high. Moreover, training costs can be decreased by
eliminating algorithms and settings that prove to be inefficient.

VI. RELATED WORK

The results by Welton et al. [11] show that the achievable
throughput is highly dependent on the chosen algorithm and
data properties because slow algorithms or incompressible data
can decrease throughput significantly. One way to compensate
for this drawback is to implement these algorithms in hardware.
Abdelfattah et al. [12] have implemented gzip on Field-
Programmable Gate Arrays (FPGAs) using OpenCL, which
offers higher throughput and a better performance-per-watt
ratio. Intel’s QuickAssist technology can also be used to lower
the total cost of ownership by executing popular encryption and
compression algorithms in hardware, as shown by Hu et al. [13].
However, all of these approaches still require developers
to manually select a compression algorithm and settings.
Inappropriate choices can lead to suboptimal performance
and compression ratios. It is, therefore, important to foresee
which reduction method will produce the best results. For
example, Chen et al. [14] present a decision algorithm for
MapReduce users to decide whether to use compression or not.
They reported that compression provides up to 60 % energy
savings for some jobs.

Machine learning techniques (especially Deep Learning)
are being increasingly used to compress images and videos,
as shown by Liu et al. [15]. They show that new approaches
based on deep networks can produce comparable results to
traditional coding approaches. Neural networks have also been
used by Park et al. [16] to compress data gathered by Internet
of Things devices in a lossy fashion. Rippel et al. [17] created a
machine-learning-based approach for lossy image compression
that outperforms traditional approaches, such as JPEG, JPEG
2000 and even WebP. A similar approach has been taken by
Toderici et al. [18], who have created a compressor based on
Recurrent Neural Network (RNNs) that also outperforms the
traditional lossy JPEG compressor. The same is possible for
lossless image compression, as shown by Mentzer et al. [19]:
The proposed image compression system L3C outperforms
PNG, WebP and JPEG2000. Machine learning can also be used
for indirect space savings: Kraska et al. [20] have used machine
learning to replace traditional data structures for b-trees, hash
maps and bloom filters, which allowed reducing the amount
of data needed by these data structures while simultaneously
delivering competitive performance. However, in these cases,
the actual compression is replaced using machine learning.
This has the downside of not being able to perform lossless
compression, which our approach can achieve.

VII. CONCLUSION

In this work, we have analyzed whether it is possible to
automatically and intelligently pick compression algorithms
for a given data set by making use of machine learning

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

techniques. Our results show that the amount of data which can
be saved after using reduction techniques like compression
heavily depends on the structure of data. Preconditioners,
algorithms and settings might work well for one data set,
but they might increase energy consumption for others. The
preliminary results obtained during the training step have
been taken into account when designing and implementing
the decision unit for intelligent algorithms selection in SCIL.
We have used fine-grained per-variable analyses to identify
the optimal compression strategies for three different data sets
and used this data to train the decision component for our
real-world evaluation. We could demonstrate that the decision
component is able to choose appropriate compressors for both
known and unknown applications, which can be tuned for
energy efficiency or compression ratio. Without providing
additional information, the decision component was able to
achieve satisfactory compression ratios without increases in
energy consumption. Moreover, by changing the optimization
strategy of the decision trees to allow slight increases in energy
consumption, we could significantly boost compression ratios.

VIII. FUTURE WORK

Training currently has to be performed in a separate step.
In the future, we envision training data collection to be more
tightly integrated with production runs of applications. For
instance, a specialized training mode of SCIL’s HDF5 filter
could be used to capture and analyze applications’ output
data during regular runs. In order not to influence application
performance negatively, selected data samples could be sent
to a training service that then takes care of analyzing it in
more detail using a wide range of compression algorithms.
For instance, a preloadable library, which intercepts calls to
HDF5 and integrates filters into applications could offer this
functionality in a transparent way. This would also allow us
to extend our analysis to more compression algorithms and
datasets. Since training is a manual process at the moment, we
have focused on algorithms commonly used in HPC for now.

Additionally, the current interface used by HDF5 filters
is too limiting to fully exploit all possibilities offered by our
decision component. For instance, since HDF5 filters operate
on opaque buffers, it is not easily possible to access single data
points. However, this could be used gather further information
about data variance, such as maximum and minimum values,
which could be used to further tune compressor behavior. We
will also experiment with chains of compressors. Applying
multiple compressors in the correct order can lead to additional
space savings. However, figuring out the order and suitable
compressors is a combinatorial problem that is not easy to
solve manually. Therefore, we want to extend the decision
component to take this fact into account and predict chains of
compressors instead of singles ones.

ACKNOWLEDGMENT

This work was supported in part by the BigStorage project,
funded by the European Union under the Marie Skłodowska-
Curie Actions (H2020-MSCA-ITN-2014-642963). We would
also like to thank Anastasiia Novikova for her support with
using the SCIL library and André Rothkirch from DESY for
providing us with access to parts of their data.

REFERENCES

[1] R. Chen, Z. Shao, and T. Li, “Bridging the I/O performance gap for
big data workloads: A new NVDIMM-based approach,” in 49th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
2016, Taipei, Taiwan, October 15-19, 2016, pp. 9:1–9:12. [Online].
Available: https://doi.org/10.1109/MICRO.2016.7783712

[2] Y. Alforov, T. Ludwig, A. Novikova, M. Kuhn, and J. M. Kunkel,
“Towards Green Scientific Data Compression Through High-Level
I/O Interfaces,” in 30th International Symposium on Computer
Architecture and High Performance Computing, SBAC-PAD 2018,
Lyon, France, September 24-27, 2018, pp. 209–216. [Online]. Available:
https://doi.org/10.1109/CAHPC.2018.8645921

[3] J. M. Kunkel, A. Novikova, E. Betke, and A. Schaare, “Toward
Decoupling the Selection of Compression Algorithms from Quality
Constraints,” in High Performance Computing - ISC High Performance
2017 International Workshops, DRBSD, ExaComm, HCPM, HPC-IODC,
IWOPH, IXPUG, Pˆ3MA, VHPC, Visualization at Scale, WOPSSS,
Frankfurt, Germany, June 18-22, 2017, Revised Selected Papers, pp.
3–14. [Online]. Available: https://doi.org/10.1007/978-3-319-67630-2_1

[4] Y. Collet, “LZ4,” https://lz4.github.io/lz4/, 2020, retrieved: September,
2020.

[5] Facebook, “Zstandard,” https://facebook.github.io/zstd/, 2020, retrieved:
September, 2020.

[6] M. F. Dolz, M. R. Heidari, M. Kuhn, T. Ludwig, and G. Fabregat,
“ArduPower: A low-cost wattmeter to improve energy efficiency of HPC
applications,” in Sixth International Green and Sustainable Computing
Conference, IGSC 2015, Las Vegas, NV, USA, December 14-16, 2015,
pp. 1–8. [Online]. Available: https://doi.org/10.1109/IGCC.2015.7393692

[7] F. Große et al., “Looking beyond stratification: a model-based analysis
of the biological drivers of oxygen depletion in the North Sea,”
Biogeosciences Discussions, 2015, pp. 2511–2535, retrieved: April,
2020. [Online]. Available: http://www.biogeosciences-discuss.net/12/
12543/2015/bgd-12-12543-2015.pdf

[8] DESY, “PETRA III,” http://petra3.desy.de/index_eng.html, 2015, re-
trieved: April, 2020.

[9] E. Roeckner et al., “The atmospheric general circulation model ECHAM
5,” Max Planck Institute for Meteorology, 2003.

[10] M. Kuhn, J. Plehn, and Y. Alforov, “Supplementary Material for Im-
proving Energy Efficiency of Scientific Data Compression with Decision
Trees,” https://github.com/wr-hamburg/energy2020-compression, 2020,
retrieved: September, 2020.

[11] B. Welton et al., “Improving I/O Forwarding Throughput with Data
Compression,” in 2011 IEEE International Conference on Cluster
Computing (CLUSTER), Austin, TX, USA, September 26-30, 2011, pp.
438–445. [Online]. Available: https://doi.org/10.1109/CLUSTER.2011.80

[12] M. S. Abdelfattah, A. Hagiescu, and D. Singh, “Gzip on a chip: high
performance lossless data compression on FPGAs using OpenCL,”
in Proceedings of the International Workshop on OpenCL, IWOCL
2013 & 2014, May 13-14, 2013, Georgia Tech, Atlanta, GA, USA
/ Bristol, UK, May 12-13, 2014, pp. 4:1–4:9. [Online]. Available:
https://doi.org/10.1145/2664666.2664670

[13] X. Hu et al., “QTLS: high-performance TLS asynchronous offload
framework with Intel QuickAssist technology,” in Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2019, Washington, DC,
USA, February 16-20, 2019, pp. 158–172. [Online]. Available:
https://doi.org/10.1145/3293883.3295705

[14] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to
compress – compute vs. IO tradeoffs for MapReduce energy efficiency,”
in Proceedings of the 1st ACM SIGCOMM Workshop on Green
Networking 2010, New Delhi, India, August 30, 2010, pp. 23–28.
[Online]. Available: https://doi.org/10.1145/1851290.1851296

[15] D. Liu, Y. Li, J. Lin, H. Li, and F. Wu, “Deep Learning-Based Video
Coding: A Review and A Case Study,” CoRR, vol. abs/1904.12462,
2019. [Online]. Available: http://arxiv.org/abs/1904.12462

[16] J. Park, H. Park, and Y. Choi, “Data compression and prediction
using machine learning for industrial IoT,” in 2018 International
Conference on Information Networking, ICOIN 2018, Chiang Mai,
Thailand, January 10-12, 2018, pp. 818–820. [Online]. Available:
https://doi.org/10.1109/ICOIN.2018.8343232

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

[17] O. Rippel and L. D. Bourdev, “Real-Time Adaptive Image Compression,”
in Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pp. 2922–2930, retrieved: April, 2020. [Online]. Available:
http://proceedings.mlr.press/v70/rippel17a.html

[18] G. Toderici et al., “Full Resolution Image Compression with
Recurrent Neural Networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,
USA, July 21-26, 2017, pp. 5435–5443. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.577

[19] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool,
“Practical Full Resolution Learned Lossless Image Compression,” CoRR,
vol. abs/1811.12817, 2018, retrieved: April, 2020. [Online]. Available:
http://arxiv.org/abs/1811.12817

[20] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The Case
for Learned Index Structures,” in Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018,
Houston, TX, USA, June 10-15, 2018, pp. 489–504. [Online]. Available:
https://doi.org/10.1145/3183713.3196909

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-788-7

ENERGY 2020 : The Tenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

