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Abstract—Due to the extensive growth of Internet of Things
(IoT), the number of wireless devices connected to the Internet
is increasing and will continue to increase remarkably in the
near future. In wireless networks, the available bandwidth is
always restricted. Much of the bandwidth is consumed by protocol
overheads, while the actual data payload may be only couple of
bytes. In this paper, we propose to use header compression to
minimize the protocol overhead, especially for IoT-based com-
munication using the new lightweight Constrained Application
Protocol (CoAP). We define a CoAP compression profile for
Robust Header Compression (ROHC) framework and evaluate
its performance in the name of compressed packet size, delay
caused by the compression and decompression, behavior in
(wireless) lossy links, and energy efficiency. In our tests, the
packet size could be reduced by 91.2% at best by using the
proposed header compression. The round-trip delay increased
slightly due to the extra processing needed for compression and
decompression; however in lossy links with bit error rates ≥ 10−3

the smaller packet size due to the header compression turned out
to be extremely beneficial due to the smaller need for packet
retransmissions. In single packet transaction in our test bed,
the header compression increased the energy consumption by
2.5%. However, in lossy links energy may be saved due to the
smaller need for packet retransmissions. Other possible scenarios
for energy savings were also identified as future work items.

Keywords–Constrained Application Protocol (CoAP); Robust
Header Compression (ROHC); delay; energy efficiency.

I. INTRODUCTION
Due to the extensive growth of Internet of Things (IoT),

the number of connected devices to the Internet is increasing
and will continue to increase remarkably in the near future.
For example, Gartner estimates that the IoT, which excludes
PCs, tablets and smartphones, will grow to 26 billion units
installed in 2020 representing an almost 30-fold increase from
0.9 billion in 2009 [1]. Most of the new IoT devices are
wireless, communicating locally for example via Bluetooth
Low Energy, IEEE 802.15.4, or IEEE 802.11ah. Usually, a
gateway node is needed to connect this local wireless network
into the Internet. The Internet connection is in many cases also
wireless; it can be for example based on cellular networks
(3G, 4G LTE) or satellite networks. In wireless networks,
the available bandwidth is always restricted. Usually, the IoT
devices are for example sensors that periodically report their
data values to the cloud services in the Internet. Thus, the
transmitted data may be only couple of bytes. The problem
is the protocol overheads: at the network layer, IPv4 or IPv6
header takes 20 or 40 bytes, respectively, and TCP or UDP
on the transport layer takes 20 or 8 bytes, respectively. On
the application layer, Hypertext Transfer Protocol (HTTP), for
example, can take easily over 40 bytes.

Constrained Application Protocol (CoAP) [2] is a new
proposed standard for a lightweight application layer protocol.

It can be thought as a lightweight HTTP that can connect, for
example, IoT devices to the Internet. CoAP has a small header
overhead and it works on top of UDP, so it has considerably
smaller protocol overhead than, for example, HTTP running
on top of TCP.

For the IoT devices using CoAP, for example, a sensor
node, a very common behavior is to send periodically the
sensor data to the server, or vice versa, the server (or user)
periodically asks the data value from the sensor. The header
part of the packet remains almost constant all the time while
only the data part changes. Since there are possibly many
wireless hops along the path from the sensor to the server
or user, the header overhead consumes the wireless bandwidth
much more than the actual transmitted sensor data.

In this paper, we propose to use header compression to
further minimize the protocol overhead in wireless links.
We define a CoAP compression profile for Robust Header
Compression (ROHC) [3] and evaluate its performance in the
name of compressed packet size and delay caused by the
compression and decompression. We also study its behavior
in (wireless) lossy links and its energy efficiency.

The rest of the paper is organized as follows: Section II
explores the related work and Section III shortly presents the
principles of ROHC. In Section IV we define the CoAP profile
for ROHC and in Section V we evaluate its performance in
a real test bed environment. Finally, Section VI concludes the
paper with future work items.

II. RELATED WORK

Header compression is based on the redundancy between
header field values within packets, and especially between
consecutive packets belonging to the same flow. For example,
many header fields remain constant between packets, or change
according to a known pattern. Over a single link, not all
that information is needed and part of it can be temporarily
removed, i.e., the full IP packet has to be re-created on the
receiving side of the link.

Header compression is not a new idea. The first header
compression scheme was compressed TCP (CTCP) [4] devel-
oped in 1990. IP Header Compression [5] can compress IP,
UDP and TCP headers. CRTP [6] adds RTP header compres-
sion ability to IP Header Compression.

6LoWPAN Header Compression [7] defines a scheme
for header compression for IPv6 packets transmitted over
IEEE 802.15.4 networks, i.e., packets transmitted in Low
Power Wireless Personal Area Networks (6LoWPANs) [8].
The compression format relies on shared context to allow
compression of arbitrary prefixes. The approach is able to
compress IPv6 and UDP headers. Also, it is meant to be
used only inside 6LoWPANs. [9] is an addition to 6LoWPAN
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Header Compression that enables the compression of generic
headers and header-like payloads next to IPv6 header, without
a need to define a new header compression scheme for each
new such header or header-like payload.

ROHC [3] is a general and extendable framework for
header compression, on top of which profiles can be defined
for compression of different protocol headers. Currently, there
are ROHC compression profiles for RTP, UDP, IP, UDP-Lite,
ESP and TCP protocols. Especially, RTP profile is widely used
in multimedia transmissions. ROHC has been incorporated
into 3G and WiMAX network specifications and standards. Its
performance has been evaluated, for example, in [10] and [11].
As can be seen, ROHC does not support CoAP protocol yet.
In the next section, we shortly summarize the principles of
ROHC, and then we define a missing CoAP profile for ROHC
in Section IV.

III. ROBUST HEADER COMPRESSION (ROHC)
PRINCIPLES

ROHC consists of a compressor and a decompressor lo-
cated on the ends of a link with limited capacity. Redundant
information in packet headers is transmitted only in the first
packets; in the next packets, only dynamic header parts are
transmitted. Packets are classified into flows to take advantage
of inter-packet redundancy. A compression profile defines the
rules how the packet headers are compressed.

ROHC has three operational modes [12]:
• In Unidirectional Mode the packets are sent only in

one direction, from compressor to decompressor. This
mode is always used in the beginning.

• In Bidirectional Optimistic Mode the decompressor
uses feedback channel to send error recovery requests
and acknowledgments of significant context updates
to the compressor.

• In Bidirectional Reliable Mode the feedback channel
is used more intensively. It aims to maximize robust-
ness against loss propagation and damage propagation,
i.e., minimize the probability of context invalidation,
even under heavy loss/error burst conditions.

The ROHC compressor has three states [12]:
• The compressor starts in the Initialization and Re-

fresh (IR) state, in which it sends full header header
information.

• When the compressor is fairly confident that the de-
compressor has received the static header information
correctly, it may proceed to First Order (FO) state.
In this state, the compressor sends all the irregularities
in the packet flow.

• In Second Order (SO) state, the compression is
optimal. The change patterns of all dynamic header
fields are fully exploited.

The ROHC decompressor has three self-explanatory states: No
Context, Static Context, and Full Context. The used ROHC
packet type depends on the current state of the compressor and
decompressor. An interested reader can take a look at [3] for
more details on ROHC.

IV. CONSTRAINED APPLICATION PROTOCOL (COAP)
PROFILE FOR ROHC

The first step in the header compression consists of iden-
tifying and grouping packets together into different ”flows”,

Payload Marker

Token (if any, TKL bytes) ...

Options (if any) ...

1 2 3 40 bytes

Payload (if any) ...

T Message IDCodeTKLVer

Figure 1. CoAP message format [2]

so that packet-to-packet redundancy is maximized in order
to improve the compression ratio [3]. Grouping packets into
flows is usually based on source and destination host (IP)
addresses, transport protocol type (e.g., UDP or TCP), process
(port) numbers, and potentially additional unique application
identifiers, such as the synchronization source (SSRC) in RTP.
The compressor and decompressor each establish a context
for the packet flow and identify the context with a Context
Identifier (CID) included in each compressed header.

For the sensors using CoAP protocol, a very common
behavior is to send periodically the sensor data to the server, or
vice versa, the server (or user) periodically asks the data value
from the sensor. CoAP PUT and GET request messages are
used for these two, respectively. So, the PUT or GET request
messages form one flow, and the corresponding responses
to these requests (i.e., the ACK/RESPONSE messages) form
another flow in the opposite direction.

The second step is to understand the change patterns of the
various header fields. On a high level, header fields fall into
one of the following classes [3]:

• INFERRED: These fields contain values that can be
inferred from other fields or external sources, for
example, the size of the frame carrying the packet can
often be derived from the link layer protocol, and thus
does not have to be transmitted by the compression
scheme.

• STATIC: Fields classified as STATIC are assumed to
be constant throughout the lifetime of the packet flow.
The value of each field is thus only communicated
initially.

• STATIC-DEF: Fields classified as STATIC-DEF are
used to define a packet flow as discussed above.
Packets for which respective values of these fields
differ are treated as belonging to different flows. These
fields are in general compressed as STATIC fields.

• STATIC-KNOWN: Fields classified as STATIC-
KNOWN are expected to have well-known values, and
therefore their values do not need to be communicated.

• CHANGING: These fields are expected to vary ran-
domly, either within a limited value set or range,
or in some other manner. CHANGING fields are
usually handled in more sophisticated ways based on
a more detailed classification of their expected change
patterns.

The CoAP message format [2] is depicted in Figure 1. As
can be seen, a CoAP message consists of a fixed length header
information, followed by a (possibly zero-length) token, and
optionally options and payload. The option format is depicted
in Figure 2.

Version (Ver) is a 2-bit unsigned integer indicating the
CoAP version number. Currently, it has to be set to 1, so it
can be treated as STATIC-KNOWN in ROHC for now. In the
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Option Delta (extended)

Option Value

Option Length (extended)

0 1 bytes

1 byte

0 – 2 bytes

0 or more bytes

0 – 2 bytes

Option Delta Option Length

Figure 2. CoAP option format [2]

future, there might be other versions of CoAP, so the version
number could then be STATIC.

Type (T) is a 2-bit unsigned integer indicating if this
message is of type Confirmable (0), Non-Confirmable (1),
Acknowledgement (2) or Reset (3). As said in the first step,
the type of the packet is used to define the flow, so the Type
could be treated as STATIC-DEF.

Token Length (TKL) is a 4-bit unsigned integer indicating
the length (0-8 bytes) of the Token value. Token value is used
for correlating requests and responses. The server shall use the
same token in the response as it was in the request. The tokens
currently in use for a given source/destination endpoint pair
shall be unique. Thus, when sending the requests sequentially
and having piggy-packed responses, the token can be kept as
constant (or even as zero-length). In that case, the Token and
Token Length can be considered as STATIC-DEF. In other
cases, it should be treated as CHANGING.

Code is a 8-bit unsigned integer indicating if the message
carries a request (1-31) or a response (64-191), or is empty
(0). In case of a request, the Code field indicates the Request
Method; in case of a response a Response Code. Code can be
used to define the flow, so it can be treated as STATIC-DEF.

Message ID is a 16-bit unsigned integer that is used
for the detection of message duplication, and to match mes-
sages of type Acknowledgement/Reset and messages of type
Confirmable/Non-confirmable. The same Message ID should
not be re-used in the communication with the same endpoint
within EXCHANGE LIFETIME, so the Message ID should
be treated as CHANGING. An Acknowledgement or Reset
message related to a Confirmable message has to repeat the
same Message ID as in the Confirmable message.

Option Delta is a 4-bit unsigned integer indicating the
difference between the Option Number of this option and the
previous option (or zero for the first option). In other words, the
Option Number is calculated by simply summing the Option
Delta fields of this and previous options before it. Values 13-
14 together with the Option Delta extension field are used for
deltas larger than 12, and the value of 15 is reserved for the
payload start marker (see below).

Option Length indicates the length of the Option Value,
in bytes. Normally Length is a 4-bit unsigned integer allowing
value lengths of 0-12 bytes. For longer options, values 13-14
together with the extension field are used. Length of 15 is not
allowed.

Value is a sequence of exactly Option Length bytes.
The length and format of the Option Value depends on the
respective option. Option Value may be an unsigned integer
(uint), a string, opaque, or empty.

Options include for example the Uri-Host, Uri-Port, Uri-
Path, Uri-Query, Content-Type, and some matching options (If-
Match, If-None-Match) [2]. Uri-Path and Uri-Query specify

the path to the resource requested, which can be treated as
STATIC-DEF in the flow. Content-Type is usually constant
in the flow (e.g., sensor sending periodically the same mea-
surement data), so it can be treated as STATIC-DEF. Also
other options can usually be treated as STATIC-DEF in the
flow. The only exception is perhaps the Location-Path that
is normally used in a response to POST method and that
defines the location path for the newly created resource, and
thus it is CHANGING. But remember that POST is only used
when creating the resources in the beginning. After that, the
resources are updated by using PUT method. So POST is used
much more seldom than PUT, and it is perhaps not wise to
create a flow for POST messages at all, only for PUT and
GET messages and their responses. Thus, basically all the
options in the CoAP PUT and GET flows can be treated as
STATIC-DEFs. Moreover, all the options can be treated as one
combined bundle; there is no need for handling every single
option as separate in compression/decompression.

Payload is preceded by the Payload Marker (0xFF). This
marker can be treated as STATIC-KNOWN. It can be handled
together with the options. Payload naturally changes and it is
not part of the packet header, so header compression is not
used for the payload.

Our CoAP profile was implemented for the open source
ROHC library [13]. A version 1.6.1 of the ROHC library was
used as the basis for the implementation. Basically, the CoAP
profile had to implement the CoAP context for the flow, profile
and flow identification function, and rules for compressing and
decompressing the CoAP header part of the packet. The CoAP
context for the flow basically consists of one CoAP header
belonging to the flow’s packet, in addition to the CID. The
profile and flow was identified by using IP addresses, UDP
ports, and CoAP Type and Code fields, i.e., the fields defined as
STATIC-DEFs earlier. The compression of CoAP header part
was based on the static and dynamical header parts discussed
earlier in this section. The UDP and IP header parts of the
packet were compressed as in the existing UDP/IP profile.

V. EVALUATION OF THE COAP PROFILE

The performance of the developed CoAP profile was tested
in a real test bed environment. First, we tested the compression
ability, i.e., how much the packet headers could be compressed
by using the CoAP profile. Secondly, we measured the de-
lay caused by the compression and decompression. Thirdly,
we studied the performance of header compression in lossy
(wireless) links. Finally, we studied the energy efficiency of
the header compression.

A. Test bed and testing scenario
Our test bed (see Figure 3) consisted of an old laptop

connected to the VTT’s CNL laboratory’s Willab network
via WiFi and a Raspberry Pi (RPi) computer connected to
the Willab using Ethernet. An UDP-tunnel was established
between the laptop and the RPi by using the tunnel appli-
cation provided by the ROHC library for easy testing of the
library. It is to be noted that the tunneling was used only for
practical testing reasons since we do not have a real ROHC
implementation integrated in the protocol stack in the both
ends of the link. The laptop served as a CoAP server running
the example CoAP server software provided by the C-based
libcoap-4.0.3 library [14]. The RPi acted as a CoAP client
requesting periodically the ’time’ resource from the server
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Figure 3. The test bed

using libcoap’s example CoAP client software. Thus, it created
a GET request flow to the server. The server responded to
the requests by sending acknowledgements piggy-packing the
CoAP RESPONSEs. The laptop had a 1.73 GHz Intel Pentium
M processor and 1 GB of RAM. RPi was a Model B having
a 700 MHz ARM CPU processor and 512 MB of RAM.

In the energy-efficiency studies, we used 2 RPis, one as a
server and another one as a client. RPis were communicating
via an IEEE 802.11g WLAN access point using 54 Mbit/s
bit rate. We used D-Link DIR-300 as a wireless access point.
The client RPi was connected to the access point with D-Link
DWA-121 USB-WLAN dongle and the server RPi with Ether-
net connection. The current as a function of time was measured
from the client RPi with a current probe (AM503B amplifier)
connected to the oscilloscope (Tektronix TDS3032B). The
client RPi was Model B+, which is an improved version
of prior Model B, having a lower power consumption, for
example.

B. Compressed packet size
The created CoAP GET request message consisted of the

following CoAP header fields:
• version = 1
• type = 0 (confirmable)
• tkl = 0 (no token)
• code = 1 (GET request)
• message ID = 58468 (changing number)
• option Uri-Path = ’time’ in TLV format =

0xb474696d65; Type=11, Length=4, Value=’time’
• no payload
In the beginning, the compressor starts in the ROHC

Initialization and Refresh (IR) state and transmits full headers.
The uncompressed packet size was 37 bytes consisting of IPv4
header of 20 bytes, UDP header of 8 bytes, and CoAP header
of 9 bytes. One extra byte was needed for the CID in ROHC,
so the compressed packet size was in the beginning 38 bytes.
However, after couple of packets when the context was created
and the compressor changed into First Order (FO) state, only
the dynamical (changing) header parts were transmitted and
the compressed packet size decreased to 15 bytes with the
CoAP profile. The only dynamical part of the CoAP header

is the Message ID that takes 2 bytes. So the 9-byte CoAP
header was compressed to only 2 bytes, i.e., the savings in the
CoAP header part were 77.8%. The rest of the compressed
packet was used by the UDP and IPv4 headers. The savings for
the whole packet were 59.5%. When the compressor changes
into Second Order (SO) state, also the change patterns of the
dynamical header parts are taken into account. Since the CoAP
Message ID may vary totally randomly, there were no further
saving possibilities in the CoAP header part. However, further
compression was still available in the other (UDP and IPv4)
headers, and the packet could be compressed to only 5 bytes
at best. Thus, the savings for the whole packet were 86.5%.
The achieved gains are equivalent to the gains of about 85%
reported, e.g., in [11] and [15] for RTP profile.

The same packet flow was also compressed with the
UDP/IP and IPv4-only profiles. With these profiles, the com-
pressed packet sizes decreased to 22 and 28 bytes, respectively,
in the FO state. The savings were 40.5% and 24.3%, respec-
tively. UDP/IP profile compresses only the UDP and IP header
parts, while the IP-only profile compresses only the IP header
part. These profiles do nothing for the CoAP header part. In
SO state, the IPv4 compression profile compressed the packet
to 18 bytes at best, so the savings were only 51.4%.

The server’s acknowledgement message piggy-packed also
the response, and its length was 51 bytes uncompressed. IPv4
header took 20 bytes, UDP header 8 bytes, CoAP header 8
bytes, and CoAP payload 15 bytes. The CoAP header part
consisted of the following header fields:

• version = 1
• type = 2 (ACK)
• tkl = 0 (no token)
• code = 69 (2.05 Content)
• message ID = 58468 (changing number)
• options Content-Format (Length = 0) and Max-Age

(length 1 and value 1) in TLV format = 0xc02101;
• Payload Start Marker = 0xFF
• Payload = ’Oct 14 19:45:32’
For the ack/response packet, the header parts could be

compressed as much as in the request messages, but the overall
savings were smaller because the payload part could not be
compressed. Some of the messages also contained ROHC
feedback data. With the CoAP profile, the compressed packet
size (including the payload of 15 bytes) was 53 or 58 bytes
in IR state (depending on the amount of feedback data), 31 or
22 bytes in FO state, and 21 bytes in SO state. So the savings
in the total packet size were 58.8% at best in SO state. With
IPv4-only profile, the packet size could be compressed to 33
bytes at best, meaning 35.3% savings in total packet size.

We also studied the packet sizes of the same CoAP request
and ack/response messages when using IPv6 protocol. IPv6
protocol header takes 40 bytes, i.e., 20 bytes more than IPv4.
Thus, the uncompressed CoAP request packet size was now 57
bytes and the corresponding ack/response packet 71 bytes. In
the IR state, the compressed packet sizes (with ROHC header
and feedback information) were 61 or 68 bytes for the CoAP
request packet and 75 bytes for the ack/response packet. In the
next state, when only dynamical header parts were transmitted,
the compressed packet sizes decreased to 12 and 27 bytes,
respectively. Finally, in the SO state, the compressed packet
sizes were only 5 and 20 bytes, respectively, with the devel-
oped CoAP profile. As percentages, these mean total savings
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of 91.2% and 71.8% in the request and ack/response packet
sizes, respectively. With the UDP profile, the SO state packet
sizes were 12 and 26 bytes, respectively, meaning 78.9% and
63.3% savings. With IPv6-only profile, the SO state packet
sizes were 18 and 32 bytes, respectively, meaning 68.4% and
54.9% savings. Compared to the IPv4 packet sizes, IPv6 results
in larger packets in the beginning of the compression, but in
the end, the packets can be compressed to about the same sizes
(or even smaller) as with IPv4. Thus, the percentile savings in
the packet sizes are actually bigger with IPv6 than with IPv4.

So, even if the CoAP header is designed to have only a
small overhead, header compression can still make it even
smaller. The used CoAP GET message was practically almost
as small as a CoAP packet can be and the savings were 77.8%
in the header part. In theory, if the CoAP packet does not have
any options or token, the minimum size would be 4 bytes. This
could be compressed to 2 bytes, so the savings are always at
least 50% in the CoAP header part. If the CoAP Message
ID field had a certain known change pattern, the compression
could be enhanced still by 2 bytes.

C. Delay measurements
First, we measured the compression and decompression

processing delay, using the same traffic as in packet size
measurements, but now sent locally over loopback interface
at the laptop and the RPi. So the laptop and RPi both ran the
CoAP server and the CoAP client, and the communication was
only inside the device. Tables I and II represent the processing
delays due to the compression and decompression for different
ROHC packet types at the laptop and RPi, respectively. As can
be seen, the processing delay is bigger in the beginning when
the context is created for the flow. After reaching the SO state
and the smallest ROHC packet sizes, the delay is much smaller.
It is to be noted that the IR state with longer delay is needed
only in the beginning of the flow, or if the context needs to be
updated for some reason (e.g., because of corrupted context
due to the dropped packets). All the first 6 IR packets are
reported individually since the packet size varies a little bit
due to the feedback information, and also because the very
first GET and RESP packets need more processing time due
to the initialization of the flow context. There are two UOR-
2 packets in each flow before switching to the SO state; the
processing time does not differ between them. Also, in the SO
state, the delay remains in the same level all the time. Each
reported measurement in the tables is an average of at least 5
packets of that type. As can be seen, the total processing delay
in the SO state is less than 0.3 ms at the laptop and 0.9 ms at
RPi.

Next, we measured the round-trip delay from CoAP request
sent from the RPi to the CoAP response from the laptop
received at the RPi. As the ROHC library needs the tunnel
application between the communicating devices, there is some
extra delay caused by the tunnel itself. For that reason, we also
measured the round-trip delay without the tunnel and ROHC by
using only CoAP client and server to see what is the overhead
caused by the tunneling. The measurements were done for both
IPv4 and IPv6. The results are based on the average (Avg) of
20 packets and are depicted in Tables III and IV. Minimum
(Min) and maximum (Max) values are also reported in the
tables. As can be seen, if ROHC is used, the delay is the
shortest with the uncompressed profile, i.e., when the packet
is not compressed at all. This is because of the processing

TABLE I. ROHC COMPRESSION AND DECOMPRESSION PROCESSING
DELAY AT LAPTOP.

ROHC packet type packet size comp decomp total
state ROHC/CoAP (bytes) (ms) (ms) (ms)
IR IR/GET 38 0.322 0.365 0.687
IR IR/RESP 58 0.215 0.283 0.498
IR IR/GET 44 0.248 0.265 0.512
IR IR/RESP 53 0.143 0.217 0.360
IR IR/GET 38 0.175 0.235 0.409
IR IR/RESP 53 0.143 0.228 0.371
FO IR-DYN/GET 15 0.148 0.191 0.339
FO IR-DYN/RESP 31 0.130 0.167 0.297
FO UOR-2/GET 6 0.172 0.211 0.384
FO UOR-2/RESP 22 0.112 0.164 0.276
SO UO-0/GET 5 0.139 0.145 0.254
SO UO-0/RESP 21 0.101 0.138 0.216

TABLE II. ROHC COMPRESSION AND DECOMPRESSION PROCESSING
DELAY AT RASPBERRY PI.

ROHC packet type packet size comp decomp total
state ROHC/CoAP (bytes) (ms) (ms) (ms)
IR IR/GET 38 1.506 1.618 2.976
IR IR/RESP 58 1.837 1.009 2.846
IR IR/GET 44 0.703 0.803 1.627
IR IR/RESP 53 0.603 0.723 1.326
IR IR/GET 38 0.578 0.688 1.266
IR IR/RESP 53 0.511 0.811 1.321
FO IR-DYN/GET 15 0.507 0.616 1.124
FO IR-DYN/RESP 31 0.476 0.611 1.087
FO UOR-2/GET 6 0.545 0.617 1.162
FO UOR-2/RESP 22 0.428 0.584 1.012
SO UO-0/GET 5 0.397 0.427 0.824
SO UO-0/RESP 21 0.370 0.469 0.838

delay needed for compression and decompression. If any
compression is used, we can see that it is then worth to
compress all the packet headers, since the CoAP profile seem
to have a smaller delay than UDP/IP or IP-only profiles. There
is no difference whether we use IPv4 or IPv6, the order of the
profiles remains the same. Without the tunneling between the
laptop and the RPi, and without any ROHC profile, the delay is
about 8 ms shorter than with uncompressed profile with IPv4,
and about 3 ms with IPv6. So, that is the overhead caused
by the tunneling and ROHC without any compression. It is to
be noted that tunneling would not be needed if ROHC was
implemented directly on both sides of the link; the tunnel is
meant only for easy testing of the ROHC library.

TABLE III. ROUND-TRIP DELAY WITH DIFFERENT ROHC PROFILES (IN
MS), IPV4.

Profile: CoAP UDP IPv4 uncompressed no tunnel
Avg: 20.194 22.368 21.511 18.824 10.627
Min: 6.769 7.480 7.261 5.962 2.209
Max: 37.577 34.496 43.166 34.596 25.325

TABLE IV. ROUND-TRIP DELAY WITH DIFFERENT ROHC PROFILES (IN
MS), IPV6.

Profile: CoAP UDP IPv6 uncompressed no tunnel
Avg: 20.085 22.366 21.089 16.289 13.365
Min: 8.428 8.070 8.493 5.851 2.389
Max: 46.282 34.950 37.598 39.564 59.472

D. Performance over lossy links
We also studied the effect of smaller packet size to the

delay and throughput in lossy (wireless) links. Every real
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wireless link has bit errors. For example, for 3G links bit error
rates 10−3 or even higher are possible [10]. The smaller packet
has a smaller probability to have bit errors, so it has a bigger
probability to go through the lossy link without errors, meaning
less retransmissions, shorter delay, and greater throughput.

The tunnel application provided by the ROHC library sup-
ports setting a given bit error rate (BER) to the tunnel. We used
it to generate bit errors with a given rate according to a uniform
distribution. The tunnel application generates the bit errors on
the sender side of the tunnel, and packets with bit errors are
not actually transmitted through the tunnel. Retransmissions
are then triggered at the CoAP client application because of a
missing ACK to the sent message.

With the bit error rate of 10−4 (and less than that), the
uncompressed profile was still slightly better than compressed
profiles, since there were not so many errors. The round-trip
delays were almost the same as in Table III, being 20.961 ms
for the CoAP profile and 18.503 ms for the uncompressed
profile. Tables V - VI represent the round-trip delays with
the bit error rate of 10−3. The results for each profile are
based on the average (Avg) of 20 sent packets. Also minimum
(Min) and maximum (Max) values are reported in the tables.
With the uncompressed profile, 5 packets out of 20 were
dropped totally due to the exceeding the number of maximum
CoAP retransmissions (= 4 times); with other profiles, this
did not happen due to the smaller packet size and hence less
errors and retransmissions. As can be seen, with high bit error
rates such as 10−3, it is useful to use header compression,
since it results in shorter delay, less dropped packets, and
hence better throughput. Note that the delay increases from
milliseconds to seconds! The difference between different
profiles is also clear: it is beneficial to compress all the headers
to get the packet size as small as possible. There was also
a small difference between unidirectional and bidirectional
ROHC modes: bidirectional mode (i.e, with feedback) seems to
recover faster from corrupted flow context caused by dropped
packets and hence it seem to have a slightly shorter delay.

TABLE V. ROUND-TRIP DELAY (S) AND PACKET LOSS WITH DIFFERENT
ROHC PROFILES IN LOSSY LINKS, BER=10−3 , BIDIRECTIONAL MODE

Profile: CoAP UDP IPv4 uncompressed
Avg: 1.040 1.715 2.873 22.342
Min: 0.008 0.007 0.007 0.019
Max: 8.048 8.275 14.324 44.452
#Dropped: 0 0 0 5

TABLE VI. ROUND-TRIP DELAY (S) AND PACKET LOSS WITH DIFFERENT
ROHC PROFILES IN LOSSY LINKS, BER=10−3 , UNIDIRECTIONAL MODE

Profile: CoAP UDP IPv4 uncompressed
Avg: 1.373 2.399 3.250 21.512
Min: 0.007 0.013 0.008 0.015
Max: 8.562 17.549 20.738 44.395
#Dropped: 0 0 0 5

The effect of BER to ROHC has also been studied, e.g.,
in [10] and [16]. They both show significant decrease in packet
loss when the BER is high and ROHC is used. In both of
these, RTP profile was used with video and voice applications,
respectively.

E. Energy efficiency
In energy efficiency point of view, compression and decom-

pression processing will consume extra energy. On the other
hand, as a result of compression, the packet size is reduced,
which will save energy during packet transmission.

Figure 4 depicts the current consumption on the client RPi
during a single CoAP GET message sending and receiving a
response from the server (as in earlier studies). The current was
measured for both the CoAP and the uncompressed profiles.
With the CoAP profile the packet size was 5 bytes, while with
the uncompressed profile it was 38 bytes. The total energy
consumption for the whole operation was 156.4 mJ for the
CoAP profile and 153.0 mJ for the uncompressed profile.
For this calculation, we used a time interval that was started
when the current rises above 260 mA at about 14 ms and
stopped when the current drops below 260 mA at about 115 ms
(uncompressed) or 117 ms (CoAP profile). Thus, the CoAP
profile seems to increase the energy consumption about 2.2%
compared to the uncompressed profile. However, everything
interesting (compression, decompression, transmission, recep-
tion) happens during the highest peak in the figure. Thus, if
we only observe that part of the figure, we can say that it
takes 15.9 ms from the uncompressed profile and 18.2 ms from
the CoAP profile. The difference is 2.3 ms and it is because
of the compression and decompression processing needed at
the client and the server side. This is in line with our delay
measurements, where it took little bit less than 1 ms for RPi to
compress and decompress a packet. The difference in energy
consumption is then roughly 2.3 ms∗340 mA∗5 V = 3.9 mJ,
which means a 2.5% increase. Note that the extra peak at 77 ms
is due to the 802.11 beacon reception. That is why we used
340 mA in the calculation.

The energy savings due to shorter transmission time are
insignificant because of the high speed of transmission. In case
of uncompressed packet of 38 bytes and compressed one of
5 bytes, the theoretical transmission times with the speed of
54 Mbit/s are 5.6 µs and 0.7 µs, respectively, so the saving in
transmission time is less than 5 µs. However, in lower speed
networks, the packet size and transmission time may play a
bigger role. Studying this remains as one of our future work
items.

So, in these tests, the energy needed for compression
and decompression processing was bigger than the possible
energy saving due to the shorter transmission time. However,
the increase in the energy was only about 2.5%. In lossy
links with bit errors, this amount of energy can be easily
consumed due to the retransmissions because of bit errors.
So, let E be the energy needed for one transmission. For X
transmissions, the needed energy is X ∗E. If the E increases
2.5% due to the header compression, then by solving X from
X ∗ 1.025E ≤ (X + 1) ∗ E, we get X ≤ 40, which means
that if there is a need for one retransmission at CoAP level in
every 40 packets or less, then it turns out to be energy efficient
to use the CoAP profile. In the future, we will test this in a
real test bed.

In these tests, we observed only one sender and receiver.
The smaller packet size due to the header compression saves
the bandwidth in the network. This may also turn out to be
energy efficient when there are more than one sender and more
traffic, since smaller packets may result in less queuing and
less packet collisions. Studying this will be one of our future
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Figure 4. Current as a function of time at the client

work items, too.

VI. CONCLUSION AND FUTURE WORK
This paper defined a CoAP profile for ROHC. Its feasi-

bility was studied by measuring the compressed packet size
and delay caused by the compression/decompression related
processing, by studying its performance in lossy links, and
by studying its energy efficiency. With CoAP profile and
ROHC, the packet size could be reduced by 91.2% at best.
It was found that the delay increased slightly due to the extra
processing required for the compression and decompression.
The total delay was less than 1 ms in SO state and less
than 3 ms in IR state for a single packet compression and
decompression at RPi. Due to the smaller packet size, the
performance (delay, throughput) in lossy (wireless) links with
bit error rates ≥ 10−3 was much better with the header
compression than without. The energy efficiency was also
studied. Due to the extra processing needed for compression
and decompression, the total energy consumption increased
2.5% in a single CoAP message transaction. So, the savings
in the shorter transmission time were not enough to beat
the consumption of extra processing. However, in lossy links
with bit errors, energy will be saved due to the smaller
need for retransmissions. In our test bed, the threshold for
energy efficiency was estimated to be around one CoAP level
retransmission in every 40 packets.

Our future work items include energy efficiency mea-
surements with different hardware and radio technologies.
Especially interesting is to study the energy efficiency with
radio technologies with much slower bit rates, such as IEEE
802.15.4-based XBee or ZigBee radios. We are also planning
to study the energy efficiency and the performance of header
compression in real lossy wireless links instead of using
generated bit errors by the tunnel application. We are also
thinking about possibilities to integrate ROHC directly to the
both ends of the wireless link for avoiding the use of the tunnel
application and its overhead. We will also study the effects of
smaller packet size to the energy efficiency in a larger test bed
with more nodes and traffic. The other ROHC profiles have
been standardized, so standardization of the developed CoAP
profile may be included in our future work, too.
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