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Abstract—This paper describes a sensor placement algorithm
for real-time parallel power flow computations for transmission
networks. In particular, Phasor Measurement Units (PMUs) can
be such sensors. Graph partitioning is used to decompose the
system into several subsystems and to locate sensors in an efficient
way. Power flow calculations are then run in parallel for each
area. Test results on the IEEE 118- and 300-bus systems show
that the proposed approach is suitable for real-time applications.

Keywords–Parallel computing; power system; power flow calcu-
lation; PMU placement.

I. INTRODUCTION

Fast load flow analysis is essential for the successful
implementations of advanced real-time control of transmission
systems.The natural tool for this is parallel computing. To this
end, various parallel methods have been proposed. Many tradi-
tional approaches [1][2][3] use factorization and the forward-
backward solution of linear equations to achieve parallelism.
As many serial computations are needed for such approaches,
their parallel efficiency is not high.

Another approach to alleviating the computational burden
is to decompose a large problem into a number of small
problems and perform computations for each sub-problem in
parallel. These smaller sub-problems are usually coordinated
by a master process. Rafian et al. [4] presented a method
for load-flow analysis based on tearing the network into 2-
3 subsystems. In every iteration, the subsystems are solved in
parallel and will communicate with a coordinating program.
After the communication, the coordinating program is then
conducted to determine the global solution for the original
system. Chan [5] et al. proposed a parallel solution based on
piecewise method. The Jacobian matrix is converted into a
bordered block diagonal form. The block diagonal form leads
to subproblems that can be solved independently, after which
a problem corresponding to the border is solved to coordinate
the subproblems and obtain a solution to the original problem.
Amano et al. [6] employed a block-parallel method for load-
flow analysis. In particular, the Jacobian matrix is constructed
by applying the epsilon decomposition algorithm, which elim-
inates weak coupling elements from the matrix. One drawback
of this approach is that the transformation of the matrix into
a balanced diagonal matrix takes time; further, the speed of
convergence is affected by the choice of partition method.

Traditional power flow calculations use only power injec-
tion measurements as the input. However, at the present time it
is also possible to have synchronized voltage measurements at
buses. For example, it is possible to use Phasor Measurement
Units (PMUs) for this. These devices provide accurate real-
time measurements at multiple points on the grid. A number of
significant improvements in control and analytical capabilities
have been made possible by this technology. However, due
to their advanced features and the need for communications
infrastructure, PMUs are relatively costly to implement and
maintain. Hence it is typically not economical to install a PMU
at each bus [7]. This has motivated a growing literature on
the optimal placement of PMUs, and various PMU placement
algorithms have been developed for different situations. Xu
and Abur [8] have modeled the PMU placement problem as
an integer linear programming problem with the constraint that
the entire power system should be observable. A mixed integer
linear programming formulation was introduced by Aminifar
et al. [9] for PMU placement that accounts for line and PMU
contingencies. Gou [10] presented a model that allows for re-
dundant PMU placement and incomplete observability, which
can be solved by integer linear programming. Chakrabarti
and Kyriakides [11] proposed an exhaustive search algorithm
for PMU placement that takes so-called zero injection buses,
i.e., buses with neither generation nor load, into account. In
particular, systems with such buses may need fewer PMUs.

This paper investigates the possibility of using additional
sensor measurements, e.g., from PMUs, to decompose the
power system into several parts and conduct power flow
calculation in parallel. The idea of using PMU is motivated
by decomposition method, e.g., [4][5], for solving power flow
problem. Instead of using a master process to coordinate the
subsystems in each iteration, we achieve the coordination
directly with PMU measurements. Using this approach, no data
needs to be transferred between subsystems, which results in a
simple and efficient solution. The placement of PMUs is based
on solving a graph partition problem. By placing a relatively
small number of additional PMUs, a large power system can be
divided into several non-overlapping smaller subsystems that
can be solved in parallel. Numerical results on 118 and 300
bus power networks demonstrate the efficacy of the proposed
approach in significantly reducing the computation time.

The rest of the paper is organized as follows. Section II
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briefly describes the power flow problem, and Section III intro-
duces the proposed method. Sections IV describes the details
of PMU placement. Section V illustrates the implementation of
the algorithm via numerical examples on two power systems.

II. POWER FLOW ANALYSIS

Power flow analysis, commonly known as load flow anal-
ysis, is an important part of power system analysis. The goal
of the power flow analysis is to obtain complete voltage angle
and magnitude information for each bus in a power system
under balanced three-phase steady state conditions. The power
balance equations can be written as:

Pi =

n∑
j=1

|Vi||Vj |(Gijcosθij +Bijsinθij), (1)

Qi =

n∑
j=1

|Vi||Vj |(Gijsinθij −Bijcosθij). (2)

Here, Pi and Qi are the real and reactive power injections
at bus i; |Vi| is the bus voltage magnitude at bus i; θij is
the voltage angle difference between buses i and j; Gij and
Bij are the real and imaginary parts of elements in the bus
admittance matrix corresponding to buses i and j. Equations
(1) and (2) constitute a set of nonlinear equations, and the
number of equations is approximately twice the number of
network buses. Expanding the above equations using Taylor
series and ignoring the higher order terms results in the
following equations:
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(3)

Equation (3) can be written in the form:[
∆P
∆Q

]
= J

[
∆θ

∆|V |

]
, (4)

where J is the Jacobian (or the matrix of partial derivatives)
displayed in (3). The linearized system of equations is solved
to determine the next approximation of voltage magnitude
|V | and angle θ, and the process continues until a stopping
condition is met.

III. PROPOSED REAL-TIME POWER FLOW CALCULATION
METHOD

In this paper, we propose an approach for power flow
calculation based on power system decomposition and PMU
placement. The proper placement of PMUs will decrease the
dimensions of the sub-problems and improve the efficiency
of computational procedures. Our method contains following
steps:

A. Step 1: Partition Power System and PMU Placement
A power system is decomposed into k non-overlapping

subsystems of approximately the same size using a graph
partition algorithm. PMUs will be installed at selected bound-
ary buses to make sure the voltage phasors at all boundary
buses are known. In other words, PMUs are placed to make
all boundary buses observable [12]. Given a particular bus,
installing a PMU obviously makes that bus observable. In
addition, all adjacent buses to that bus become observable since
their voltage phasors can be calculated from the transmission
line current measured by the PMU and transmission line
parameters. The procedure of power system decomposition and
PMU placement will be described in Section IV.

Let S denote the set of buses in a power system. Suppose
this power system is decomposed into k subsystems. We
denote by Si the set of buses in subsystem i = 1, . . . , k, where
Si ∩ Sj = ∅ for i 6= j and ∪ki=1Si = S. Thus, each bus in the
subsystem i belongs to one of the following types:

Subsystem 1

Boundary bus

Inner

Bus

Inner

Bus

Inner

Bus

Boundary bus

Boundary

bus

Inner

Bus

PMU

PMU

Boundary bus

PMU

Boundary bus

Subsystem 2

Subsystem 3

Inner

BusBoundary bus

Figure 1. Power system decomposition and bus classification for k =3

• Inner Bus: All its neighboring buses also belong to
subsystem i.

• Boundary Bus: At least one of its neighboring buses
belongs to a different subsystem.

This is illustrated in Figure 1.

B. Step 2: Select Reference Buses
In order to perform power flow analysis for each subsys-

tem, we need to choose a reference bus for each subsystem.
Since the PMUs are placed in such a way that all boundary
buses are observable, the voltage magnitude and phase angle
for each boundary bus is known. This means that any boundary
bus can serve as a reference bus for the subsystem it belongs
to. We experimented with performing power flow calculation
using different boundary buses as reference buses, and found
that the computation time was not affected by the different
selection of reference buses.

C. Step 3: Update Power at Boundary Buses
Before subsystem i can be solved independently of the

others, the real and reactive power at each boundary bus needs
to be updated to account for power flows from neighboring
subsystems.
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In particular, consider a boundary bus b that belongs to
subsystem i. Let Pb and Qb be the real and reactive power,
respectively, at the boundary bus b. For any bus c connected
to b, let Pb,c and Qb,c be the real and reactive line power flow,
respectively, on the line from bus b to bus c. Also, let A(b)
denote the set of boundary buses connected to bus b and not
belonging to subsystem i. For any boundary bus b1 connected
to b the line power flows Pb,b1

and Qb,b1
can be calculated

from PMU measurements. The power flowing between bus b
and its neighbors in subsystem i can be adjusted as follows:

Pnew
b = Pb −

∑
c∈A(b)

Pb,c,

Qnew
b = Qb −

∑
c∈A(b)

Qb,c.

D. Step 4: Calculation for Subsystems and Aggregate the
Results

Power flow calculations are performed for each subsystem
with respect to its reference bus. The voltage phasors of each
reference bus are determined by PMU measurement. After
each subsystem is solved in parallel, the solution to the entire
system is then obtained by aggregating the solutions for each
subsystem.

It is possible that some of the subsystems consist of
multiple connected components. In this case the number of
connected component m is greater than k. In our computational
experiments, this increase of components does not significantly
increase the computational time.

IV. PMU PLACEMENT ALGORITHM

The proposed real-time power flow calculation method
decomposes a large power system into several subsystems,
which are then solved in parallel. The implementation cost
associated with such a decomposition depends on the number
of PMUs installed at boundary buses. Having roughly the
same number of buses per subsystem is desirable from the
standpoint of balancing computational load. Thus our objective
is to minimize the number of PMUs installed at boundary buses
subject to the condition that each subsystem has approximately
the same number of buses.

The basic structure of the PMU placement algorithm con-
tains two steps. The first step is to divide the power system into
k parts using a graph partitioning algorithm. This algorithm
attempts to minimize the number of lines whose incident buses
belong to different subsystems, while keeping the number of
buses per subsystem approximately equal. The second step is
to place PMUs based on power system decomposition. Given
the partition k, the PMU locations are obtained by solving an
integer linear programming problem.

A. Step 1: Power System Decomposition
Viewing the system as a graph G = (V,E), where the

vertex set V is the set of buses and the edge set E is the set
of transmission lines, we obtain a k-way partitioning problem.
The k-way partitioning problem divides a graph into k sub-
graphs with roughly the same number of vertices such that the
edge cut, i.e., the number of edges connecting different sub-
graphs, is minimized. This problem is NP-hard, and several

heuristics for its solution have been developed; see [13]. In this
paper, we implement two heuristics for graph partitioning. One
is a spectral partitioning algorithm, another one is a multilevel
k-way partitioning algorithm.

Spectral partitioning: The spectral partitioning algorithm
uses the eigenvectors of the adjacency matrix of a graph
to find partitions. In this paper, we are using a spectral
factorization based algorithm [14]. This spectral partitioning
algorithm consists of four steps.

1) Form the Adjacency Matrix: For a power system with
n buses, let A = {ai,j} be the corresponding n × n
graph adjacency matrix, where aij = 1, when bus i
and bus j are connected by a transmission line, and
aij = 0 otherwise.

2) Adjacency Matrix Normalization: Normalize the non-
negative symmetric matrix A to obtain a doubly
stochastic matrix A′, i.e., A′ = {a′ij} satisfies∑

i a
′
ij =

∑
j a
′
ij = 1 for each j and i.

3) Compute Eigenvectors: Compute the k largest eigen-
vectors ui, i = 1, 2, ..., k, of matrix A′. It is conve-
nient to define the n×k matrix U := [u1, u2, ..., uk].

4) Clustering: Obtain a partition of the network into k
subsystems by clustering the n rows of U into k
clusters using the k-means algorithm [15].

Multilevel k-way partitioning: We used an implemen-
tation of the multilevel k-way partitioning algorithm from
METIS [16]. The algorithm consists of three major steps:

1) Graph coarsening: Given the original graph G0 =
(V0, E0), if weight information is not provided, it
assumed that the vertex weights and edge weights
are all equal to 1. Let |V | be the number of ver-
tices in V . A series of successively smaller graphs
Gi = (Vi, Ei), i = 1...m, is derived from the input
graph such that |Vi−1| > |Vi|. Each successive graph
Gi is constructed from the previous graph Gi−1 by
collapsing together a set of pairs of adjacent vertices;
these sets can be obtained from finding a maximal
matching. If two vertices are merged, the weights
need to be updated in order to preserve the structure
of the previous graph. The weight of the new vertex is
set equal to the sum of the weights of its constituent
vertices. If two merged vertices are adjacent to the
same neighbor, then the two edges will be replaced
by a new edge whose weight is the sum of weights
of the edges it replaced. The graph coarsening step
ends when the coarsest graph Gm is smaller than a
given threshold.

2) Initial partitioning: A k-way partition of the coarsest
graph Gm is computed such that each sub-graph con-
tains roughly same vertex weight. This is done using
a relatively simple approach such as the multilevel
bisection algorithm.

3) Uncoarsening and refinement: The partition of the
smallest graph Gm is projected back to G0 through a
successively larger graphs Gm−1, Gm−2, ..., G1. This
projection step reverses the process in step 1 to obtain
the uncoarsen graph. After each projection step, the
partition is refined using an algorithm based on the
Kernighan-Lin method [17] that iteratively moves
vertices between sub-graphs as long as such moves
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improve the quality of the partition.

B. Step 2: PMU placement based on decomposition
Once a partition of the system is obtained, PMUs need to be

installed to provide measurements for boundary buses. In most
cases, the number of PMUs needed is not necessarily equal
to the number of branches connecting different subsystems.
Based on the approach in [8], the optimal PMU placement
problem can be formulated as an Integer Linear Programming
(ILP) problem.

Given a partition of the system with n boundary buses, we
can define an n by n constraint matrix M for the boundary
buses. The entries of M are defined as follows:

Mi,j =


1, if i = j
1, if boundary buses i and j

are connected
0, otherwise

The PMU placement problem can be formulated as follows:

minimize
n∑

i=1

c(i)xi

subject to MX ≥ 1̂

xi ∈ {0, 1}, i = 1, . . . n,

(5)

where n is the number of boundary buses, c(i) is the cost of
placing a PMU at boundary bus i, 1̂ is a vector of ones, and
X is a binary decision vector whose entries are:

xi =

{
1, if a PMU should be installed at boundary bus i
0, otherwise.

Subsystem 1

Boundary bus 4

Boundary bus 3

Boundary bus 5

Subsystem 2

Subsystem 3

Boundary bus 6

Boundary bus 7

Boundary bus 1

Boundary bus 2

Figure 2. Example for optimal PMU placement

For example, consider the power system shown in Figure
2 that has been decomposed into three subsystems. There are
4 transmission lines between 7 boundary buses. The optimal
PMU placement problem can be solved as follows: First,
initialize the constraint matrix M for the boundary buses.
Building the M matrix for Figure 2 yields:

M =



1 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1



Then the inequalities in (5) takes the following form:



x1 + x2 + x3 ≥ 1
x1 + x2 ≥ 1
x1 + x3 ≥ 1
x4 + x5 ≥ 1
x4 + x5 ≥ 1
x6 + x7 ≥ 1
x6 + x7 ≥ 1

The first constraint means that a PMU should be placed
either on bus 1, bus 2 or bus 3 to make bus 1 observable.
Similarly, the second constraint implies that a PMU should be
installed at either bus 1 or 2 to make bus 2 observable. After
solving the ILP problem for the boundary buses, the placement
of PMUs for the entire system is obtained.

V. NUMERICAL RESULTS

We use the IEEE 118 and 300 bus systems from [18]
to illustrate the performance of our parallel algorithms. The
118 bus system was decomposed into 2, 4, and 8 subsystems,
while the 300 bus system was decomposed into 2, 4, 8, and
16 subsystems. The power system was partitioned by both
the spectral algorithm [14] and the multilevel k-way method
[16] described in Section IV. The PMU measurements at the
boundary buses were emulated using solutions obtained by
traditional serial power flow methods. After decomposition,
each of the resulting sub-networks was solved using Newton’s
method [19]. The convergence criterion was set to 10−5, and
the maximum iteration number for Newton’s method was set to
10. The system information is shown in Table I. The partition
results and computation times for different numbers of sub-
networks are summarized in Tables II and III.

TABLE I. NETWORK INFORMATION FOR TWO POWER SYSTEM

System 118 bus 300 bus
number of nodes 118 300

number of branches 186 411
number of generator buses 53 68

TABLE II. TEST RESULTS ON IEEE 118 BUS SYSTEM

Method Partition
number

Max
subsystem

size

Edge-Cut
size

a
PMU

number
Calculation
time (sec.)

Spectral
Method

1 118 0 0 0.183
2 79 5 3 0.090
4 38 15 10 0.029
8 22 26 13 0.016

Multilevel
k-way

1 118 0 0 0.183
2 78 5 3 0.089
4 33 14 10 0.026
8 19 29 14 0.014

a Edge-cut size: the number of branches connecting different subsystems

The results obtained using our methods were compared
with the corresponding results obtained using serial Newton’s
method. The maximum deviation of node voltage in our
method compared to Newton’s method was less than 10−4 p.u.,
which illustrates that our method is accurate and feasible.
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TABLE III. TEST RESULTS ON IEEE 300 BUS SYSTEM

Method Partition
number

Max
subsystem

size

Edge-Cut
size

a
PMU

number
Calculation
time (sec.)

Spectral
Method

1 300 0 0 1.440
2 184 6 5 0.570
4 98 11 7 0.163
8 56 19 13 0.075

16 30 39 26 0.029

Multilevel
k-way

1 300 0 0 1.440
2 173 6 6 0.530
4 97 11 10 0.162
8 51 24 20 0.058

16 25 49 32 0.025
a Edge-cut size: the number of branches connecting different subsubsystems

A. Speedups compared to serial method

The computation times for the power flow calculation are
presented in Tables II and III. In particular, the computation
time Ts corresponding to partition number 1, the case where
no partitioning is done, was obtained by the serial Newton’s
method. The rate of speedup can be obtained by the formula
S = Ts/Tp, where Tp is the computation time of parallel
method. Figures 3 and 4 show these speedups. Comparing the
the details of these timing studies, we present the following
conclusions:

1. High speedups and parallel efficiency are achieved in
both the 118 and 300 bus systems by spectral and multilevel
k-way method. Using spectral method as example, when the
system is divided into two subsystems, a speedup by about a
factor of 2 was obtained for both systems. Installing more
PMUs usually leads to faster power flow calculations. In
the 300-bus system, the traditional serial method takes 1.440
seconds, while with 5 PMUs the calculation time is reduced to
0.570 seconds; here the speedup rate is 2.53. The speedup rate
increases to 49.66 by using 26 PMUs. These speedups suggest
that the parallel algorithm proposed in this paper is efficient.

2. The speedup associated with the parallel method in-
creased as the size of the power system increased. For the
case of splitting system into two subsystems, by using spectral
method, the calculation time for the 118 bus system was sped
up by a factor of 2.03, while for the 300 bus system it was sped
up by a factor of 2.53. For the case of splitting system into
four subsystems, the calculation time for the 118 bus system
was 6.31 times faster, and for the 300 bus system it was 8.83
times faster. This suggests that the algorithms presented in this
paper may perform well on larger power systems.

B. Performance of Spectral Partitioning vs. Multilevel k-way
Partitioning

Different partition methods may result in different PMU
placements. In particular, the practicality of the partitioning
algorithm becomes especially important when real systems
are considered. For large power systems, the optimal PMU
placement problem is hard to solve exactly. A common practice
is to compare the performance of different methods. Here we
compared the spectral partitioning algorithm with the k-way
partitioning method. As Figures 3 and 4 show, the multilevel
k-way method outperforms the spectral partitioning algorithm
in terms of calculation time. However, the multilevel k-way
method usually requires more PMUs.

S
pe

ed
−

up

Speedup for 118−bus System

1

2.03

6.31

11.44

1 2 4 8

1

2.06

7.04

13.07

0
5

10
15

20

Partitions

Spectral
Multilevel k−way

Figure 3. Speedup for 118 bus system
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1
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49.66

1 2 4 8 16

1
2.72

8.89

24.83

57.6

0
10

20
30

40
50

60

Partitions

Spectral
Multilevel k−way

Figure 4. Speedup for 300 bus system

TABLE IV. COMPARISON OF THE SPECTRAL METHOD AND MULTILEVEL
k-WAY METHOD FOR IEEE 300 BUS SYSTEM

Partition
Number

Spectral method Multilevel k-way method
Max

Subsystem
Size

PMU
Number

Max
Subsystem

Size

PMU
Number

2 184 5 173 6
4 98 7 97 10
8 56 13 51 20

16 30 26 25 32
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The partition results obtained via the spectral method and
the multilevel k-way method for the 300 bus system are listed
in Table IV. As shown in Table IV, with the same partition
number, the max subsystem size obtained using the multilevel
k-way method is smaller than the one obtained using the spec-
tral algorithm. It indicates that the multilevel k-way method
allocates the buses to subsystems in a more balanced way than
the spectral method. More balanced subsystems may result
in faster calculation time; see Figures 3 and 4. On the other
hand, these allocations require more PMUs. There is a tradeoff
between having balanced subsystems and using a small number
of PMUs, considering the high cost of PMU implementation
and maintenance in the long run, the spectral method may be
more appropriate for our decomposition scheme.

VI. CONCLUSION

In this paper, we have described a new approach to power
flow analysis. Our problem formulation explicitly takes into
account the placement of PMUs. A graph partition approach
was proposed to partition the power system and determine
the placement of PMUs, after which the power flow problem
can be solved in parallel. The effectiveness of the approach
was illustrated on a 118 and 300 bus system using two
different graph partitioning methods. In each of these cases,
significant speedups compared to the serial Newton’s method
were obtained. The spectral algorithm requires fewer PMUs
while keeping the approximately the same number of buses for
each subsystem, thus it is more suitable for our decomposition
approach.
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