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Abstract— Security is an important aspect to achieve Smart 
Grid success in terms of commercial deployment. Particularly, 
availability gets the highest priority in Smart Grids. For end-
point devices, such as smart meters or concentrators, this must 
be true since they must always be working. We present 
LiSTEETM Recovery, an architecture for a fault tolerant 
system for end-point devices to monitor the status of the 
operating system and to recover even if they stop working due 
to unexpected behavior or cyber attack including zero-day 
attack. LiSTEETM Recovery provides further functions to 
prevent illegitimate memory modification and to notify a head-
end system once a security incident occurs. We demonstrate a 
full implementation of LiSTEETM Recovery on a TrustZone 
capable ARM based processor. Our experiment shows that the 
performance degradation is small enough to be ignored. 
Furthermore, we observed that the cost of production and 
maintenance can be minimized. 

Keywords-Smart Grid, Smart Meter, Concentrator, Security, 
High Availability, TrustZone 

I.  INTRODUCTION 

In Smart Grids, requirements about supporting various 
protocols and functions to network connected end-point 
devices, such as smart meters or concentrators, make their 
systems more complicated. Because a large quantity of 
source code is necessary to implement a complicated system 
in general, the risk of including vulnerability in the system 
increases. Moreover, since the devices are connected to 
home networks, the risk of devices of being attacked is high 
compared with legacy devices connected to managed 
network only. In fact, it is reported that smart meters from a 
variety of vendors were found to improperly handle 
malformed requests which could be exploited to cause buffer 
overflow vulnerability; allowing an attacker to cause a 
system  to become unstable or freeze [1]. To keep devices 
secure under this situation, many security protocols and 
algorithms have been proposed to securely distribute a 
shared key between devices and head-end systems or to store 
privacy data in devices in a secure manner [2][3]. However, 
confidentiality and integrity are not enough to solve the 
security problem in Smart Grids. It is strongly desired for the 
devices to keep high availability since they must always be 
working to provide demand response service or to use 
consumption data for payment [4]. As only one vulnerability 
may cause the system to go down, it is very difficult to keep 
high availability in a complicated system. Furthermore, 

unlike interactive devices, such as PC or smart phone, it is 
difficult to expect that end users reset and restart devices 
once they freeze or hang since end users cannot recognize 
the status of the devices and cannot determine the device 
should be rebooted or not. Thus, how to keep the availability 
of the devices is a significant challenge in Smart Grids. 

To address these problems, we propose LiSTEETM 
Recovery, an architecture for fault tolerant systems which 
automatically recovers from error status. To achieve this goal, 
LiSTEETM Recovery isolates a surveillance process 
observing the state of the system and recovery process which 
reboots the system when it detects the system freezes. In the 
LiSTEETM Recovery, surveillance and recovery processes 
run in an isolated secure environment while general purpose 
processes, including operating system, such as network or 
storage access run in a non-secure environment with 
hardware access control performed with respect to memory. 
Hence, a memory area where surveillance and recovery 
processes are arranged cannot be accessed by general 
purpose processes. As a result, even if the operating system 
is attacked and crashes, it becomes possible to prevent from 
interference in the surveillance and recovery processes. 

The remainder of this paper is organized as follows. In 
Section-II, problems are defined. Section-III indicates 
background information. Section-IV and V propose 
framework and implementation of LiSTEETM Recovery. The 
evaluation is shown in the Section-VI; and the conclusion 
and future work are in at the end. 

II. PROBLEM DEFINITION 

In a legacy system, surveillance and recovery processes 
and their execution environment are monolithically 
configured. In other words, the reliability of surveillance and 
recovery processes depends on the reliability of their 
execution environment. In order to keep reliability high, a 
system needs to be implemented without vulnerability. In 
order to detect and eliminate vulnerability in source code, 
various testing methods have been proposed [5][6]. However, 
since end-point devices will be deployed without 
maintenance over a long period of time within Smart Grids, 
there is a large risk such devices continue operating without 
vulnerabilities being fixed even if those devices had no 
vulnerabilities at the time of shipping. Attackers may exploit 
the vulnerability, such as buffer overflow or malformed 
network input, in order to and cause the device to crash. To 
make matters worse, attackers are in a somewhat 
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advantageous position in launching a large attack since the 
number of device vendors is limited and the software 
installed in the devices is uniform. Furthermore, attackers 
can reverse-engineer code without administrators noticing in 
order to find a vulnerability since, unlike a server application, 
devices are located at the user side. Therefore, when 
attackers find one vulnerability in a single device, they can 
exploit it on a lot of devices. Considering the above situation, 
the following problems are to be solved in order to keep high 
availability under a legacy system. 

A. Difficult to Keep a High Level of Surveillance 
Continuity 

In order to implement a complicated application program 
or a minor network protocol on the end point device, Linux 
will be used as a software execution environment. In Linux, 
the surveillance and recovery processes can be implemented 
as a user task executed on the operating system or as an 
interrupt handler in the operating system. When a 
surveillance target process is implemented as a user task 
running on the operating system then support functions in the 
operating system, such as the “cron” service in Linux, can be 
used to detect a failure of the user task and to automatically 
restart the target process. When the surveillance process is 
implemented as an interrupt handler in the operating system 
then sophisticated implementation is necessary compared to 
an application program; it is automatically and periodically 
called by a timer interrupt as long as the operating system 
works. Another legacy approach is implementing a 
monitoring and detecting mechanism in the operating system. 
For example, in order to find buffer overflow attacks, a 
protection element monitors system call frequencies, and if 
the frequencies are different from normal behavior, it can 
detect the attack [7]. However, the fundamental problem of a 
legacy approach is that there is no way to restart the process 
if the operating system itself crashes for some reason. 
Furthermore, the protection mechanism itself could be a 
target of the attack, as the result the protection mechanism 
could be invalidated. Thus, there is a large risk where 
devices in a Smart Grid breakdown and the attack may be 
able to cause a blackout to vast areas in the worst case. In 
order to prevent devices breaking down, they are required to 
provide a robust method to recover the system from failure in 
order to keep high level of availability. Still there are some 
existing hardware devices supporting a watchdog timer 
function which detects the status of the operating system and 
automatically reboots the system. Since not all devices 
support the function and it is difficult to implement 
complicated functions as described below inside it, a new 
approach is desired. To clarify the conditions, only a 
software failure including an attack is assumed in this paper. 
A physical fault, such as a hardware failure or loss of power, 
or a hardware attack, such as physically destroying devices 
or cutting cables are out of scope in this paper. 

B. Difficult for an Administrator to Detect when Incident 
Occurs 

End-point devices are connected with a head-end system 
through the network to provide a demand response service. 

When the devices detect an error status, such as a 
surveillance target process being stopped for an unknown 
reason, it is desirable for these devices to send a report to the 
head-end system so that an administrator can realize the 
situation and use the report to investigate the reason for the 
failure. However, for the same reason as described above, 
there is no way for devices to send a message to the head-end 
system if the operating system crashes. Even in such a case, 
it is desirable for devices to provide a method to send a 
message to acknowledge the error situation to the system 
administrator. Besides notification of the error situation to 
the system administrator, software update function is also 
desirable. However, since many existing hardware devices 
have already supported a secure firmware update function 
and its method highly depends on each device, it is out of 
scope in this paper. 
 

In addition to the problem described above, the following 
business problem needs to be considered when introducing a 
new architecture to the market. 

C. Development and Production Cost 

Cost is an important aspect in evaluating the proposed 
security architecture. When implementing an end-point 
device, if the new security architecture requires a complete 
rebuild of software, the architecture will never be introduced 
to the market. Thus, it is desirable to reuse existing software 
asset, such as libraries, middleware and applications as much 
as possible to minimize the development cost including 
verification cost. Specifically in Smart Grids, the verification 
cost is large since reliability is strongly required. Besides the 
development cost, we need to consider the cost per device. 
One approach to solve the problems described above is to 
utilize the dedicated hardware security chip. However, since 
the chip is sometimes very expensive, it causes a rise of 
production cost per device. Therefore, it is also desirable to 
use widely available existing commodity hardware to 
minimize production cost. 

III. BACKGROUND (TRUSTZONE) 

In this section, we provide background information on 
the hardware technologies leveraged by LiSTEETM Recovery.  

TrustZone is a hardware security function supported by a 
part of ARM processor [8][9]. General ARM processor 
defines two modes, user mode and privileged mode. In 
privileged mode, execution of all instructions and access to 
all memory regions are allowed while in user mode 
availability of instructions and accessibility of memory 
regions are restricted. In general system, operating system is 
executed in privileged mode while application programs are 
executed in user mode. In addition to the two modes, a 
TrustZone enabled ARM processor supports two worlds 
which are independent of the modes. One is secure world for 
the security process and the other is non-secure world for 
everything else. Fig. 1 shows the relationship between 
worlds and modes conceptually. The processor is executed 
by selectively switching the worlds if needed. For example, 
it is assumed that key calculation process is executed in 
secure world while all other general processes, such as 
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storage access or network access are executed in non-secure 
world. Moreover, using TrustZone enable hardware, it is 
possible to make a system where a process running in secure 
world can access all system resources while a process 
running in non-secure world can access a part of system 
resources only. For example, when used in combination with 
the TrustZone Address Space Controller (TZASC), access to 
memory can be restricted for a process running in non-secure 
world even if the process runs in privileged mode to install 
an access control policy on TZASC. 

TrustZone provides a dedicated instruction, the Secure 
Monitor Call (SMC) instruction, to transit between the 
worlds. As soon as the SMC instruction is called, the 
processor switches into monitor mode. A software program 
running in monitor mode saves a context of the program 
running in the current world on the memory and restores a 
context of the program running in the previous world, then 
changes the world, and finally executes the program running 
in the previous world. Besides the SMC instruction, 
hardware exceptions can be configured to cause the 
processor to switch into monitor mode. 

IV. FRAMEWORK OF LISTEETM
 RECOVERY 

LiSTEETM Recovery provides a method for an end-point 
device to automatically recover from an error status. It also 
provides a high level of memory protection mechanism. 
Hence, the recovery process is securely executed without 
interference. Fig. 2 shows the entire architecture of 
LiSTEETM Recovery. LiSTEETM Recovery consists of three 
components, Normal OS, LiSTEETM Tracker Application 
(LiSTEETM TA), and LiSTEETM Monitor. 

 Normal OS: Operating system which executes 

g

eneral purpose processes, such as storage access or 
network communication. It is executed in non-secure 
world. All applications implementing smart meter 
functions or concentrator functions run on this 
operating system. 

 LiSTEETM Tracker Application (LiSTEETM TA): 
Surveillance and recovery processes executed in 
secure world. LiSTEETM TA includes three modules: 
Watcher module, Recovery module, and Notification 
module. The Watcher module is an entry point of 
LiSTEETM TA. It is executed periodically by a timer 
interrupt through LiSTEETM Monitor. Whenever it is 
called, it investigates the status of Normal OS. If it 
detects Normal OS is not working, it calls Recovery 
module to reboot the system. Otherwise, it calls  
SMC instruction to switch to Normal OS. Moreover, 
the Notification module is called before Recovery 
module reboots the system. It sends a message to 
notify that the system is about to reboot to the head-
end system through network. 

 LiSTEETM Monitor: LiSTEETM Monitor is a 
program running in the monitor mode. It initializes 
configurations of TrustZone related hardware when 
booting the system. It also provide context switching 
function between worlds in hardware interrupt 
handler and SMC handler. Regarding the 
configuration of the hardware, it sets configuration 
register of timer interrupt so that hardware interrupt 
handler of LiSTEETM Monitor is called when timer 
interrupt is generated. Moreover, LiSTEETM Monitor 
manages the access control policy and installs the 
policy on TZASC. Regarding context switching, the 
SMC handler in LiSTEETM Monitor is executed 
when the SMC instruction is called and it transits 
from secure world to non-secure world. In contrast 
to the SMC handler, timer interrupt triggers transit 
from non-secure world to secure world based on the 
initializing configuration.  

 
The primary feature of LiSTEETM Recovery is to provide 

a method for the end-point device to detect the status of 
Normal OS and to recover it even if Normal OS crashes or 
stops working. Furthermore, it provides two additional 
functions. One is to enhance the security protection for 
LiSTEETM Monitor, LiSTEETM TA and Normal OS against 
attacks. The other is sending a message to the head-end 
system when an incident occurs. The details of these 
functions are described below. 

A. Periodical Surveillance and Recovery 

When booting the system, LiSTEETM Monitor is 
executed after executing initial program. Then, LiSTEETM 
Monitor loads and executes LiSTEETM TA and Normal OS 
respectively. While executing Normal OS, whenever the 
timer interrupt occurs, the processor jumps to the hardware 
interrupt handler in LiSTEETM Monitor. The hardware 
interrupt handler context switches from non-secure world to 
secure world and calls LiSTEETM TA. Specifically 
LiSTEETM Monitor saves a context of Normal OS to 

Figure 1. Mode and world in ARM. 

 

Figure 2. System Architecture of LiSTEETM Recovery. 
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memory and restores a context of LiSTEETM TA, then 
changes the world and finally calls the Watcher module of 
LiSTEETM TA. The Watcher module checks the status of 
Normal OS. If it judges that Normal OS is not working, the 
Watcher module calls the Recovery module which reboots 
the system. Otherwise it calls SMC instruction. Then, SMC 
handler in the LiSTEETM Monitor is executed. It first context 
switches from LiSTEETM TA to Normal OS, and restarts 
Normal OS at the point just before the timer interrupt 
occurred. While executing LiSTEETM Monitor and 
LiSTEETM TA, the execution of Normal OS is suspending. 
That is, Normal OS continues to be processed as if nothing 
was executed during the execution of LiSTEETM TA. Fig. 3 
shows the flowchart of periodical surveillance and recovery 
process. 

There are many ways for the Watcher module to 
determine whether Normal OS is working or not. One of the 
methods is to check the data area of Normal OS. In general, 
when an operating system is working, there must be a certain 
data area which is updated regularly. By checking this data 
area, it is possible for the Watcher module to judge whether 
Normal OS is working or not.  

B. Memory Protection 

LiSTEETM Recovery provides two memory protection 
mechanisms. Fig. 4 shows how these memory protection 
mechanisms work. One is protection for the kernel area of 
Normal OS. To realize this protection, LiSTEETM Monitor 

provides virtual read-only memory. In virtual read-only 
memory, Normal OS running in non-secure world cannot 
overwrite the content on the memory while LiSTEETM TA 
and LiSTEETM Monitor running in secure world can access it 
using ordinary SRAM as the memory which is, of course, 
physically writable memory. In general, when a program is 
loaded into memory, a data region (data segment) and a code 
region (code segment) are assigned. In the initial state before 
booting the system, all regions are allowed to be accessed 
from Non-secure world by default. In order to allow the boot 
loader to write the code segment into the memory, 
LiSTEETM Monitor leaves the memory region as is until the 
code segment is loaded. Just after executing the kernel of 
Normal OS, LiSTEETM Monitor sets the memory region as 
read-only for kernel code segment of Normal OS. As the 
result, even Normal OS is prohibited from overwriting its 
own code segment. 

Another mechanism is protection for LiSTEETM Monitor 
and LiSTEETM TA. To realize this protection, LiSTEETM 
Monitor installs an access control policy where Normal OS 
cannot access the memory area allocated to LiSTEETM 
Monitor and LiSTEETM TA while LiSTEETM TA and 
LiSTEETM Monitor can access all areas when booting the 
system. For this policy, LiSTEETM Monitor and LiSTEETM 
TA can be protected from illegitimate falsification by 
Normal OS, even if Normal OS is attacked and under control 
of an attacker.  

C. Message Notification 

LiSTEETM Recovery provides a function to notify the 
head-end system that Normal OS has stopped working and is 
rebooting the system by sending a message through network. 
The Notification module has the role of sending a message. 
Although Normal OS has network connectivity function, 
such as TCP/IP stack, LiSTEETM TA cannot use the function 
since it is not working when sending a message. Thus, 
LiSTEETM TA supports network connectivity function 
including network application, network protocol stack and 
network driver. 

V. PROTOTYPE IMPLEMENTATION 

We used ARM C/C++ Compliler 5.01 as a compiler to 
build LiSTEETM Monitor and LiSTEETM TA. We used gcc 
4.4.1 to build Linux 3.6.1 as Normal OS. We chose 
Motherboard Express uATX with CoreTile Express A9x4 
processor which supports TrustZone as an execution 
environment. 

Regarding memory map, from 0x48000000 through 
0x4A000000 is assigned for SRAM, and from 0x60000000 
through 0xE0000000 is assigned for DRAM. Tab. I shows 
memory map with access control policy of the memory. In 
Tab. I, Normal OS (code) indicates Linux kernel code. 
Normal OS (data) includes Linux data, application code and 
application data. For clarification, Read/Write access is 
applied from Non-secure world for the area not described in 
Tab. I. 

In order for the LiSTEETM Monitor to install an access 
control policy on TZASC, the start address and the size of 
each memory region are predefined. After the boot loader Figure 4. Memory protection mechanism. 

Figure 3. Flowchart of periodical surveillance and recovery. 
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loads Linux at the predefined value, LiSTEETM Monitor 
installs the access control policy on TZASC. As shown in 
Tab. 1 the access to the memory regions allocated to 
LiSTEETM Monitor, LiSTEETM TA and code segment of 
Normal OS is restricted for the Normal OS running in non-
secure world while the access to the region allocated to the 
data segment of Normal OS and shared memory is not. For 
clarification, LiSTEETM Monitor and LiSTEETM TA run in 
secure world can access all regions. Furthermore, since 
LiSTEETM Monitor sets the configuration registers of 
TZASC to prohibit Normal OS from accessing them, Normal 
OS cannot change this configuration. 

TABLE I.  MEMORY MAP 

Data  
Start 

Address 
Size 

Access Policy
(Non-sec 
world) 

Vector table + 
Initialization code 

+ LiSTEETM Monitor 
+ LiSTEETM TA 

0x48000000 0x01B00000 Cannot Access

Normal OS (code) 0x60000000 0x002FE000 Read Only 

Normal OS (data) 0x602FE000 0x3EF02000 Read/Write 

Shared memory 0x9F200000 0x00C00000 Read/Write 

Fig. 5 shows the assignment of the timer interrupt. We 
allocated a timer interrupt caused by timer (timer 1) to Fast 
Interrupt Request (FIQ) and timer interval was set to 1 
second. The FIQ interrupt is handled by hardware interrupt 
handler in LiSTEETM Monitor, and then it calls LiSTEETM 
TA, as the result LiSTEETM TA is periodically called. We 
used another timer (timer 2) and allocated to Interrupt 
Request (IRQ), and timer interval was set to 4 milliseconds. 
The IRQ interrupt is handled by interrupt handler in Linux. 
Since Linux assumes timer interrupt is allocated to IRQ, it is 
not necessary to modify the Linux source code to adopt 
LiSTEETM Monitor. Tab. II shows a configuration of 
hardware interrupt. We configured Secure Configuration 
Register (SCR) and Current Program Status Register (CPSR) 
so that FIQ handler of LiSTEETM Monitor is called when 
FIQ handlers occurs while IRQ handler in Linux is called 
when IRQ interrupt occurs during executing Linux. In the 
same manner as the configuration register of TZASC, we set 
FIQ and IRQ configuration registers to prohibit Normal OS 
from accessing them. Thus, Normal OS cannot change the 
configurations. For example, Normal OS cannot mask FIQ to 
stop timer 1, or cannot change the timer interval of timer 1. 

In order to determine whether Linux is working or not, 
we made a small application program which runs on Linux 

and communicates with LiSTEETM TA. Shared memory is 
used to exchange data between LiSTEETM TA and Normal 
OS. The application program writes a counter value into the 
shared memory periodically. Then LiSTEETM TA reads the 
counter value from the shared memory. When Normal OS is 
crashed, the application program cannot update the counter 
value. If the counter value is not updated in certain amount 
of time or the counter value is not an expected value, 
LiSTEETM TA determines that Normal OS is not working. 

TABLE II.  RELASHONSHIP BETWEEN WORLD AND INTERRUPT 

World when 
interrupt occurs Interrupt Jumps to 

Non-secure world
FIQ Hardware interrupt handler (FIQ 

handler) in LiSTEETM Monitor
IRQ IRQ handler in Normal OS (Linux)

Secure world 
FIQ Pending FIQ 
IRQ Pending IRQ 

 
When LiSTEETM TA determines that Linux is not 

working, it sends the head-end sever a message. In order to 
send a message to the head-end system when LiSTEETM TA 
detects that Linux is not working, we ported a network driver 
and UDP/IP stack to LiSTEETM TA. We defined a 
proprietary protocol and data format over UDP to notify the 
head-end system that LiSTEETM TA starts reboot the system. 

VI. EVALUATION 

In this section, we describe the result of the evaluation in 
terms of security to verify the problems of the legacy system 
defined in Section-II can be solved. Performance and cost 
analysis of LiSTEETM Recovery is also described below.  

A. Security Analysys 

1) Surveillance and Recovery: LiSTEETM Recovery can 
recover from a failure to reboot the system even if Normal 
OS crashes. The reason for the crash could be a software 
bug or a cyber attack including zero-day attack caused by 
unknown vulnerabilities. In either case, since hardware 
timer interrupt continues working regardless of the state of 
Normal OS, LiSTEETM TA is always periodically called and 
can detect a failure of Normal OS. At the next level, it is 
desirable to detect the failure as soon as possible. Detection 
time depends on how frequently LiSTEETM TA checks the 
status of Normal OS. Since the execution time of LiSTEETM 
TA and context switching by LiSTEETM Monitor is very 
short, LiSTEETM Recovery can detect the crash of Normal 
OS very quickly. Some attackers may continue to attack just 
after rebooting the system. One possible approach to a 
countermeasure for the attack is to let LiSTEETM TA have 
the minimum function like the “safe mode”, we have not 
implemented that though. 

2) Attack Prevention: The proposed system provides 
two levels of attack prevention mechanism. The first level is 
to prevent Normal OS from illegitimate modification. When 
an attacker gains full control of Normal OS to misuse the 
vulnerability, the attacker may overwrite the code segment 

Figure 5. Assignment of timer interrupt. 
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of Normal OS to directly overwrite the memory. In fact, 
many vulnerabilities (e.g., CVE-2013-4342, CVE-2013-
1969, and  CVE-2008-1673) allowing a remote attacker to 
execute arbitrary code are reported [10]. In the case of 
Linux, for example, once arbitrary code is executed with an 
administrator privilege by an attacker, it is possible for the 
attacker to overwrite an arbitrary area of code segment 
through /dev/mem, resulting in system crash or misbehavior. 
Overwriting the code segment in memory is difficult in 
general though it is relatively easy in the case of end-point 
devices  since hardware configuration is fixed. As the result, 
system may go down. However, since LiSTEETM Monitor 
sets the access control of the memory region for the code 
segment of Normal OS as read-only, and its configuration 
can be changed only from secure world, it is impossible for 
Normal OS to overwrite the code segment of Normal OS. 
An advantage is the protection does not cause any side 
effects. Since data segment is used to store the state of the 
program, Normal OS updates the content of data segment 
frequently during its execution. In contrast to the data 
segment, since code segment is used to store program code, 
it is not expected to update its content after booting the 
system. Particularly because devices, such as smart meters 
or concentrators are not expected to change their function 
after being deployed, the dynamic update function is not 
required. Thus, this protection mechanism can protect 
Normal OS from illegitimate modification without side 
effects. The second level is to protect LiSTEETM Monitor 
and LiSTEETM TA from illegitimate modification and 
suspension. Since the first level of protection is effective on 
code segment of Normal OS only, an attack which 
overwrites a data segement cannot be prevented. Thus, there 
are still possibilities that control of Normal OS is gained by 
an attacker. Even in such cases, thanks to TZASC, since 
Normal OS is prohibited from overwriting the content of 
memory where LiSTEETM TA and LiSTEETM Monitor are 
allocated, illegitimate modification is prevented. Moreover, 
since the interrupt configuration register is accessible only 
from secure world, there is no way for Normal OS to stop 
the timer interrupt. 

3) System Reliability: In a legacy system, one single bug 
could affect the entire system to cause a critical failiure. 
Considering a defensive viewpoint, the entire system 
including operating system must be bug free to archieve 
high availability ideally. However, it is not practical to build 
a system without bugs in a complicated system. In fact, 
Linux 3.6.1 consists of over 15 millions of lines of code and 
a lot of new bugs causing critical crash are reported 
frequently (e.g., CVE-2013-4563, CVE-2013-4387, and 
CVE-2012-2127) even though it is carefully reviewed by 
many professionals [10]. Thus, the smaller the critical 
component that has to be robust within a system, the better. 
In the case of LiSTEETM Recovery, the critical components 
corresponds to LiSTEETM TA and LiSTEETM Monitor. In 

contrast to Linux, the code size of LiSTEETM Monitor and 
LiSTEETM TA is relatively small. In fact the volume of 
source code for LiSTEETM Monitor is about 700 lines and 
its code and data size are 2.1 KB and 1.6 KB respectively. 
Similarly the volume of source code of LiSTEETM TA is 
about 41200 lines and its code and data size are 1.09 MB. 
Compared to the volume of source code of Linux, the risk 
where LiSTEETM Monitor and LiSTEETM TA includes bugs 
is small.  

4) Response to Failure: The Notification module in 
LiSTEETM TA sends a message to the head-end server just 
before rebooting the system. The message, which tells 
which the particular devices are about to reboot, is 
sometimes useful information for administartors. For 
example, if messages are sent by devices having a particular 
software version number, the reboot could be caused by an 
attack which aims at the vulnerability specific to the 
software. If messages are sent by devices located in one 
particular network, the reboot could be caused by a network 
worm  distributed in the specific network. Although 
LiSTEETM Recovery cannot prevent an attack in advance, 
the notification feature can  help the administrator to 
investigate the reason of the failure during or after the 
incident. The attackers try to block sending the message to 
circumvent the notification. However, Normal OS cannot 
interfere with Notification module in sending a message to 
the head-end server since Notification module is executed 
inside LiSTEETM TA. Moreover, since LiSTEETM TA is 
processed in an isolated environment from Normal OS, 
security processes, such as encrypting a message, are easy to 
implement in LiSTEETM TA. In the next step, it is possible 
to include a firmware update feature to implement  functions 
receiving data from the head-end system and writing the 
data into the file system to extend the function of 
Notification module. In combination with “safe mode” 
described above, this function is effective against a 
countinuous attack which occurs just after the system 
recovers. 

B. Performance Analysis 

As well as the implementation environment, we used 
Motherboard Express uATX which contains ARM Cortex-
A9x4 processor running at 400MHz as an experimental 
environment. The size of level 1 instruction cache, level 1 
data cache, and level 2 cache are 32 KB, 32 KB, and 512 KB 
respectively. It contains 1 GB DRAM as the main memory 
and we assigned the same memory map described in Section-
V. 

First, we measured the execution time of LiSTEETM TA 
during execution of Normal OS. Precisely, the time period 
from the beginning of hardware interrupt handler in 
LiSTEETM Monitor through to the execution of the SMC 
instruction. Without calling the Notification module, the 
average time is 1.7 microseconds over 10,000 trials. 
However, if the Notification module is called, the average 
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time is 4.1 milliseconds over 10,000 trials. Note that the 
Notification module is called when rebooting the system 
which is rarely occurs. Thus, this performance overhead is 
no problem. 

Next, we measured the performance degradation of 
Normal OS. Since the execution of Normal OS is suspended 
during execution of LiSTEETM TA, the performance of 
Normal OS degrades in any case. The total time of Normal 
OS suspension time depends on the frequency where 
LiSTEETM TA is called. There is a tradeoff between the 
performance degradation of Normal OS and the delay for 
detecting the crash of Normal OS. When the frequency is 
increased, the performance degradation of Normal OS is also 
increased. On the other hand, when the frequency is 
decreased, the delay for detecting the crash of Normal OS 
becomes larger. To measure the performance degradation, 
we used dhrystone as a benchmark program [11].  

Fig. 6 shows the result of the experiment. The bar graph 
shows dhrystone score and the line graph shows the 
performance degradation. The performance is better as the 
score value is high. Each bar shows timer interval which 
LiSTEETM TA is called and its value is default (never called), 
5 seconds, 1 second, 0.2 seconds and 0.04 seconds 
respectively. When timer interval was set to 5 seconds, the 
performance degradation was suppressed within 0.001 %. 
Even if the interval was set to 0.04 seconds, the performance 
degradation was less than 0.2 %.  The result shows that 
although there is a trade-off between performance 
degradation of Normal OS and detection rate logically, the 
performance degradation can be ignored in practical even if 
the frequency where LiSTEETM TA is called is increased. 

C. Cost Analysis 

1) Development Cost: LiSTEETM Recovery does not 
require any modification to Linux to run it as Normal OS on 
LiSTEE Monitor. Thus, in terms of application developer’s 
cost, since developpers can reuse all existing programs 
including libraries, middlewares, and applications running 
on Linux, no additional develping cost is necessary. 

2) Production Cost: LiSTEETM Recovery is software 
based technology and no additional hardware except  
TrustZone capable ARM processor and address space 

controller is required. Today TrustZone capable processors 
are widely available. In fact, all ARM Cortex A series 
processors support TrustZone. Therefore, the additional cost 
is mitigated. As the result, developing cost per device can be 
minimized.  

3) Maintainance Cost: It is assumed that tremendous 
number of devices are deployed in the field in Smart Grid. 
Specifically in the case of cyber attack, since many devices 
could be a target of the attack and the attack could be done 
in a very short period of time through network, it is not 
practical for field service engineers to physically visit each 
site and reboot them in terms of both cost and time. The 
auto recovery feature of LiSTEETM Recovery mitigates this 
problem. Moreover, the report is sent to the head-end server 
once the device reboots. This function contributes in 
reducing the cost of trouble shooting. Thus, LiSTEETM 
Recovery provides opportunity to reduce maintainance cost 
compared with legacy systems. 
 

VII. RELATED WORK 

To recover from an operating system failure, various 
approaches have been proposed. 

The simplest approach is including the recovery 
mechanism inside operating system. One method is to use 
NMI as a watchdog timer [12]. Non-maskable Interrupt 
(NMI) is a processor interrupt that cannot be ignored. When 
NMI is generated, NMI handler implemented inside 
operating system is called regardless of the status of the 
operating system. Thus, NMI can be used as surveillance and 
recovery process to implement NMI handler so that it detects 
whether operating system hangs or not. Although NMI is 
easy to use for watchdog timer as it has already been 
implemented in Linux, it is vulnerable because NMI handler 
could be invalidated to overwrite the code segment of the 
operating system. Furthermore, it is not anticipated to 
implement a rich application in an interrupt handler, such as 
network communication function or data encryption function, 
it is difficult to realize the notification function.  

Another approach to recover from the failure is to check 
the status of the operating system from outside using 
virtualization technology. It is easy to realize resource 
isolation environment by utilizing virtualization technology. 
Karfinkel developed trusted virtual machine monitor 
(TVMM), on which general-purpose platform and special-
purpose platform executing security sensitive process run 
separately and concurrently [13]. The libvirt project develops 
a virtualization abstraction layer including a virtual hardware 
watchdog device [14]. To cooperate with the watchdog 
daemon installed in guest OS, a virtual machine monitor can 
notice that the daemon is no longer working when 
periodically trying to communicate with it. Although 
virtualization technology is widely deployed in PC-based 
systems, it is difficult to implement it in embedded devices 
as less hardware devices support it. Moreover, since the 
volume of source code for virtual machine monitor (VMM) 
tends to become large, the risk where VMM includes bugs 
also becomes large. To overcome the restriction, Kanda 

Figure 6. Result of performance degradation. 
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developed SPUMONE, which a light weight virtual machine 
monitor designed for working on embedded processors [15]. 
It provides a function to reboot the guest OS. However, 
SPUMONE does not provide memory protection mechanism 
between virtual machine monitor and the guest OS (Normal 
OS). Thus, it is vulnerable to an attack on the virtual 
machine monitor from guest OS. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, LiSTEETM Recovery works effectively to 
resist critical bugs or attacks including zero-day causing 
system crash in order to keep availability of end-point 
devices. The performance evaluation is presented to show 
that the degradation of the existing system is small enough. 
Considering the deployment in the market, we show that the 
development cost and production cost can be minimized. 
Moreover, it can save maintenance cost. 

Future work includes the resistance to sophisticated 
attacks. One possible attack is that an attacker illegitimately 
modifies the shared memory area to fake as if Normal OS 
works correctly while almost all Normal OS functions 
actually stop. As the result, LiSTEETM TA misunderstands 
that Normal OS works correctly. One approach to solve this 
attack is to implement LiSTEETM TA so that it itself checks 
the status of Normal OS without the support of an 
application program running on Normal OS. For example, 
whenever Normal OS is running, it must update a certain 
data area, such as page tables or process tables. Therefore, 
LiSTEETM TA can determine Normal OS is working or 
crashed to monitor the data area. An advantage of LiSTEETM 
is that it is impossible for Normal OS to reverse-engineer and 
to tamper an algorithm of LiSTEETM TA because of memory 
protection mechanism. Thus, an attacker cannot know how 
to compromise Normal OS producing misleading 
information. We have not implemented this though. Another 
possible attack is damaging file system locating Normal OS. 
Network boot can be a solution where LiSTEETM TA 
downloads a small rescue program from the head-end system 
when it fails booting. 

 

REFERENCES 
[1] C4 Security. “The Dark Side of the Smart Grid”. [Online]. 

Available: http://www.c4-
security.com/The%20Dark%20Side%20of%20the%20Smart
%20Grid%20-
%20Smart%20Meters%20%28in%29Security.pdf [Accessed 
19 Feb 2014] 

[2] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin, 
“Protocol for carrying authentication for network access”, 
IETF RFC 5191 [Online]. Available: 
http://tools.ietf.org/html/rfc5191 [Accessed 19 Feb 2014] 

[3] F. Zhao, Y. Hanatani, Y. Komano, B. Smyth, S. Ito, and T. 
Kamibayashi, “Secure authenticated key exchange with 
revocation for smart grid”, The third IEEE PES Conference 
on Innovative Smart Grid Technologies (ISGT 2012), IEEE 
Power & Energy Society (PES), Jan 2012, pp.1-8. 

[4] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, "Smart-
grid security issues", IEEE Security & Privacy, vol.8, Issue.1, 
Jan-Feb 2010, pp.81-85. 

[5] K. Li, "Towards Security Vulnerability Detection by Source 
Code Model Checking", Software Testing, Verification, and 
Validation Workshops (ICSTW), 2010 Third International 
Conference on, Apr 2010, pp.381-387. 

[6] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, and T. Leu, "A 
Dynamic Technique for Eliminating Buffer Overflow 
Vulnerabilities (and Other Memory Errors)", Computer 
Security Applications Conference, 2004. 20th Annual, Dec 
2004, pp.82-90. 

[7] S. M. Varghese and K. P. Jacob, "Anomaly Detection Using 
System Call Sequence Sets", Journal of Software, Vol.2 No.6, 
Dec 2007, pp.14-21. 

[8] ARM. “ARM Security Technology” [Online]. Available 
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf [Accessed 19 
Feb 2014] 

[9] T. Alves and D. Felton, “TrustZone: Integrated Hardware and 
Software Security”, Information Quarterly, Vol.3, No.4, 2004, 
pp.18-24. 

[10] MITRE. “Common vulnerabilities and exposures” [Online]. 
Available http://cve.mitre.org [Accessed 19 Feb 2014] 

[11] ARM. “Dhrystone Benchmarking for ARM Cortex 
Processors” [Online]. Available 
http://infocenter.arm.com/help/topic/com.arm.doc.dai0273a/D
AI0273A_dhrystone_benchmarking.pdf [Accessed 19 Feb 
2014] 

[12] A. Kleen, “Machine check handling on linux”, Technical 
report, SUSE Labs, Aug 2004 [Online]. Available 
http://halobates.de/mce.pdf [Accessed 19 Feb 2014] 

[13] T. Garnkel, B. Pfa, J. Chow, M. Rosenblum, and D. Boneh, 
“Terra: A virtual machine-based platform for trusted 
computing”, In Proceedings of the Symposium on Operating 
System Principles, Oct 2003, pp.193-206. 

[14] "libvirt - the virtualization API." [Online]. Available: 
http://libvirt.org [Accessed 19 Feb 2014] 

[15] W. Kanda, Y. Yumura, Y. Kinebuchi, K. Makijima, and T. 
Nakajima, "SPUMONE: Lightweight CPU Virtualization 
Layer for Embedded Systems", In Proc. of Embedded and 
Ubiquitous Computing, Dec 2008, pp.144-151.

 

80Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies


