
Keeping High Availability of Connected End-point Devices in Smart Grid

Hiroshi Isozaki1, 2, Jun Kanai1
1 Corporate R&D Center, Toshiba Corporation,

Kawasaki, Kanagawa, Japan
{hiroshi.isozaki, jun.kanai}@toshiba.co.jp

2 Graduate School of Media and Governance,
Keio University,

Fujisawa, Kanagawa, Japan

Shunsuke Sasaki, and Shintarou Sano
Center for Semiconductor Research & Development,

Toshiba Corporation,
Kawasaki, Kanagawa, Japan

{shunsuke.sasaki, shintarou.sano}@toshiba.co.jp

Abstract— Security is an important aspect to achieve Smart
Grid success in terms of commercial deployment. Particularly,
availability gets the highest priority in Smart Grids. For end-
point devices, such as smart meters or concentrators, this must
be true since they must always be working. We present
LiSTEETM Recovery, an architecture for a fault tolerant
system for end-point devices to monitor the status of the
operating system and to recover even if they stop working due
to unexpected behavior or cyber attack including zero-day
attack. LiSTEETM Recovery provides further functions to
prevent illegitimate memory modification and to notify a head-
end system once a security incident occurs. We demonstrate a
full implementation of LiSTEETM Recovery on a TrustZone
capable ARM based processor. Our experiment shows that the
performance degradation is small enough to be ignored.
Furthermore, we observed that the cost of production and
maintenance can be minimized.

Keywords-Smart Grid, Smart Meter, Concentrator, Security,
High Availability, TrustZone

I. INTRODUCTION

In Smart Grids, requirements about supporting various
protocols and functions to network connected end-point
devices, such as smart meters or concentrators, make their
systems more complicated. Because a large quantity of
source code is necessary to implement a complicated system
in general, the risk of including vulnerability in the system
increases. Moreover, since the devices are connected to
home networks, the risk of devices of being attacked is high
compared with legacy devices connected to managed
network only. In fact, it is reported that smart meters from a
variety of vendors were found to improperly handle
malformed requests which could be exploited to cause buffer
overflow vulnerability; allowing an attacker to cause a
system to become unstable or freeze [1]. To keep devices
secure under this situation, many security protocols and
algorithms have been proposed to securely distribute a
shared key between devices and head-end systems or to store
privacy data in devices in a secure manner [2][3]. However,
confidentiality and integrity are not enough to solve the
security problem in Smart Grids. It is strongly desired for the
devices to keep high availability since they must always be
working to provide demand response service or to use
consumption data for payment [4]. As only one vulnerability
may cause the system to go down, it is very difficult to keep
high availability in a complicated system. Furthermore,

unlike interactive devices, such as PC or smart phone, it is
difficult to expect that end users reset and restart devices
once they freeze or hang since end users cannot recognize
the status of the devices and cannot determine the device
should be rebooted or not. Thus, how to keep the availability
of the devices is a significant challenge in Smart Grids.

To address these problems, we propose LiSTEETM
Recovery, an architecture for fault tolerant systems which
automatically recovers from error status. To achieve this goal,
LiSTEETM Recovery isolates a surveillance process
observing the state of the system and recovery process which
reboots the system when it detects the system freezes. In the
LiSTEETM Recovery, surveillance and recovery processes
run in an isolated secure environment while general purpose
processes, including operating system, such as network or
storage access run in a non-secure environment with
hardware access control performed with respect to memory.
Hence, a memory area where surveillance and recovery
processes are arranged cannot be accessed by general
purpose processes. As a result, even if the operating system
is attacked and crashes, it becomes possible to prevent from
interference in the surveillance and recovery processes.

The remainder of this paper is organized as follows. In
Section-II, problems are defined. Section-III indicates
background information. Section-IV and V propose
framework and implementation of LiSTEETM Recovery. The
evaluation is shown in the Section-VI; and the conclusion
and future work are in at the end.

II. PROBLEM DEFINITION

In a legacy system, surveillance and recovery processes
and their execution environment are monolithically
configured. In other words, the reliability of surveillance and
recovery processes depends on the reliability of their
execution environment. In order to keep reliability high, a
system needs to be implemented without vulnerability. In
order to detect and eliminate vulnerability in source code,
various testing methods have been proposed [5][6]. However,
since end-point devices will be deployed without
maintenance over a long period of time within Smart Grids,
there is a large risk such devices continue operating without
vulnerabilities being fixed even if those devices had no
vulnerabilities at the time of shipping. Attackers may exploit
the vulnerability, such as buffer overflow or malformed
network input, in order to and cause the device to crash. To
make matters worse, attackers are in a somewhat

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

advantageous position in launching a large attack since the
number of device vendors is limited and the software
installed in the devices is uniform. Furthermore, attackers
can reverse-engineer code without administrators noticing in
order to find a vulnerability since, unlike a server application,
devices are located at the user side. Therefore, when
attackers find one vulnerability in a single device, they can
exploit it on a lot of devices. Considering the above situation,
the following problems are to be solved in order to keep high
availability under a legacy system.

A. Difficult to Keep a High Level of Surveillance
Continuity

In order to implement a complicated application program
or a minor network protocol on the end point device, Linux
will be used as a software execution environment. In Linux,
the surveillance and recovery processes can be implemented
as a user task executed on the operating system or as an
interrupt handler in the operating system. When a
surveillance target process is implemented as a user task
running on the operating system then support functions in the
operating system, such as the “cron” service in Linux, can be
used to detect a failure of the user task and to automatically
restart the target process. When the surveillance process is
implemented as an interrupt handler in the operating system
then sophisticated implementation is necessary compared to
an application program; it is automatically and periodically
called by a timer interrupt as long as the operating system
works. Another legacy approach is implementing a
monitoring and detecting mechanism in the operating system.
For example, in order to find buffer overflow attacks, a
protection element monitors system call frequencies, and if
the frequencies are different from normal behavior, it can
detect the attack [7]. However, the fundamental problem of a
legacy approach is that there is no way to restart the process
if the operating system itself crashes for some reason.
Furthermore, the protection mechanism itself could be a
target of the attack, as the result the protection mechanism
could be invalidated. Thus, there is a large risk where
devices in a Smart Grid breakdown and the attack may be
able to cause a blackout to vast areas in the worst case. In
order to prevent devices breaking down, they are required to
provide a robust method to recover the system from failure in
order to keep high level of availability. Still there are some
existing hardware devices supporting a watchdog timer
function which detects the status of the operating system and
automatically reboots the system. Since not all devices
support the function and it is difficult to implement
complicated functions as described below inside it, a new
approach is desired. To clarify the conditions, only a
software failure including an attack is assumed in this paper.
A physical fault, such as a hardware failure or loss of power,
or a hardware attack, such as physically destroying devices
or cutting cables are out of scope in this paper.

B. Difficult for an Administrator to Detect when Incident
Occurs

End-point devices are connected with a head-end system
through the network to provide a demand response service.

When the devices detect an error status, such as a
surveillance target process being stopped for an unknown
reason, it is desirable for these devices to send a report to the
head-end system so that an administrator can realize the
situation and use the report to investigate the reason for the
failure. However, for the same reason as described above,
there is no way for devices to send a message to the head-end
system if the operating system crashes. Even in such a case,
it is desirable for devices to provide a method to send a
message to acknowledge the error situation to the system
administrator. Besides notification of the error situation to
the system administrator, software update function is also
desirable. However, since many existing hardware devices
have already supported a secure firmware update function
and its method highly depends on each device, it is out of
scope in this paper.

In addition to the problem described above, the following
business problem needs to be considered when introducing a
new architecture to the market.

C. Development and Production Cost

Cost is an important aspect in evaluating the proposed
security architecture. When implementing an end-point
device, if the new security architecture requires a complete
rebuild of software, the architecture will never be introduced
to the market. Thus, it is desirable to reuse existing software
asset, such as libraries, middleware and applications as much
as possible to minimize the development cost including
verification cost. Specifically in Smart Grids, the verification
cost is large since reliability is strongly required. Besides the
development cost, we need to consider the cost per device.
One approach to solve the problems described above is to
utilize the dedicated hardware security chip. However, since
the chip is sometimes very expensive, it causes a rise of
production cost per device. Therefore, it is also desirable to
use widely available existing commodity hardware to
minimize production cost.

III. BACKGROUND (TRUSTZONE)

In this section, we provide background information on
the hardware technologies leveraged by LiSTEETM Recovery.

TrustZone is a hardware security function supported by a
part of ARM processor [8][9]. General ARM processor
defines two modes, user mode and privileged mode. In
privileged mode, execution of all instructions and access to
all memory regions are allowed while in user mode
availability of instructions and accessibility of memory
regions are restricted. In general system, operating system is
executed in privileged mode while application programs are
executed in user mode. In addition to the two modes, a
TrustZone enabled ARM processor supports two worlds
which are independent of the modes. One is secure world for
the security process and the other is non-secure world for
everything else. Fig. 1 shows the relationship between
worlds and modes conceptually. The processor is executed
by selectively switching the worlds if needed. For example,
it is assumed that key calculation process is executed in
secure world while all other general processes, such as

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

storage access or network access are executed in non-secure
world. Moreover, using TrustZone enable hardware, it is
possible to make a system where a process running in secure
world can access all system resources while a process
running in non-secure world can access a part of system
resources only. For example, when used in combination with
the TrustZone Address Space Controller (TZASC), access to
memory can be restricted for a process running in non-secure
world even if the process runs in privileged mode to install
an access control policy on TZASC.

TrustZone provides a dedicated instruction, the Secure
Monitor Call (SMC) instruction, to transit between the
worlds. As soon as the SMC instruction is called, the
processor switches into monitor mode. A software program
running in monitor mode saves a context of the program
running in the current world on the memory and restores a
context of the program running in the previous world, then
changes the world, and finally executes the program running
in the previous world. Besides the SMC instruction,
hardware exceptions can be configured to cause the
processor to switch into monitor mode.

IV. FRAMEWORK OF LISTEETM
 RECOVERY

LiSTEETM Recovery provides a method for an end-point
device to automatically recover from an error status. It also
provides a high level of memory protection mechanism.
Hence, the recovery process is securely executed without
interference. Fig. 2 shows the entire architecture of
LiSTEETM Recovery. LiSTEETM Recovery consists of three
components, Normal OS, LiSTEETM Tracker Application
(LiSTEETM TA), and LiSTEETM Monitor.

 Normal OS: Operating system which executes

g

eneral purpose processes, such as storage access or
network communication. It is executed in non-secure
world. All applications implementing smart meter
functions or concentrator functions run on this
operating system.

 LiSTEETM Tracker Application (LiSTEETM TA):
Surveillance and recovery processes executed in
secure world. LiSTEETM TA includes three modules:
Watcher module, Recovery module, and Notification
module. The Watcher module is an entry point of
LiSTEETM TA. It is executed periodically by a timer
interrupt through LiSTEETM Monitor. Whenever it is
called, it investigates the status of Normal OS. If it
detects Normal OS is not working, it calls Recovery
module to reboot the system. Otherwise, it calls
SMC instruction to switch to Normal OS. Moreover,
the Notification module is called before Recovery
module reboots the system. It sends a message to
notify that the system is about to reboot to the head-
end system through network.

 LiSTEETM Monitor: LiSTEETM Monitor is a
program running in the monitor mode. It initializes
configurations of TrustZone related hardware when
booting the system. It also provide context switching
function between worlds in hardware interrupt
handler and SMC handler. Regarding the
configuration of the hardware, it sets configuration
register of timer interrupt so that hardware interrupt
handler of LiSTEETM Monitor is called when timer
interrupt is generated. Moreover, LiSTEETM Monitor
manages the access control policy and installs the
policy on TZASC. Regarding context switching, the
SMC handler in LiSTEETM Monitor is executed
when the SMC instruction is called and it transits
from secure world to non-secure world. In contrast
to the SMC handler, timer interrupt triggers transit
from non-secure world to secure world based on the
initializing configuration.

The primary feature of LiSTEETM Recovery is to provide

a method for the end-point device to detect the status of
Normal OS and to recover it even if Normal OS crashes or
stops working. Furthermore, it provides two additional
functions. One is to enhance the security protection for
LiSTEETM Monitor, LiSTEETM TA and Normal OS against
attacks. The other is sending a message to the head-end
system when an incident occurs. The details of these
functions are described below.

A. Periodical Surveillance and Recovery

When booting the system, LiSTEETM Monitor is
executed after executing initial program. Then, LiSTEETM
Monitor loads and executes LiSTEETM TA and Normal OS
respectively. While executing Normal OS, whenever the
timer interrupt occurs, the processor jumps to the hardware
interrupt handler in LiSTEETM Monitor. The hardware
interrupt handler context switches from non-secure world to
secure world and calls LiSTEETM TA. Specifically
LiSTEETM Monitor saves a context of Normal OS to

Figure 1. Mode and world in ARM.

Figure 2. System Architecture of LiSTEETM Recovery.

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

memory and restores a context of LiSTEETM TA, then
changes the world and finally calls the Watcher module of
LiSTEETM TA. The Watcher module checks the status of
Normal OS. If it judges that Normal OS is not working, the
Watcher module calls the Recovery module which reboots
the system. Otherwise it calls SMC instruction. Then, SMC
handler in the LiSTEETM Monitor is executed. It first context
switches from LiSTEETM TA to Normal OS, and restarts
Normal OS at the point just before the timer interrupt
occurred. While executing LiSTEETM Monitor and
LiSTEETM TA, the execution of Normal OS is suspending.
That is, Normal OS continues to be processed as if nothing
was executed during the execution of LiSTEETM TA. Fig. 3
shows the flowchart of periodical surveillance and recovery
process.

There are many ways for the Watcher module to
determine whether Normal OS is working or not. One of the
methods is to check the data area of Normal OS. In general,
when an operating system is working, there must be a certain
data area which is updated regularly. By checking this data
area, it is possible for the Watcher module to judge whether
Normal OS is working or not.

B. Memory Protection

LiSTEETM Recovery provides two memory protection
mechanisms. Fig. 4 shows how these memory protection
mechanisms work. One is protection for the kernel area of
Normal OS. To realize this protection, LiSTEETM Monitor

provides virtual read-only memory. In virtual read-only
memory, Normal OS running in non-secure world cannot
overwrite the content on the memory while LiSTEETM TA
and LiSTEETM Monitor running in secure world can access it
using ordinary SRAM as the memory which is, of course,
physically writable memory. In general, when a program is
loaded into memory, a data region (data segment) and a code
region (code segment) are assigned. In the initial state before
booting the system, all regions are allowed to be accessed
from Non-secure world by default. In order to allow the boot
loader to write the code segment into the memory,
LiSTEETM Monitor leaves the memory region as is until the
code segment is loaded. Just after executing the kernel of
Normal OS, LiSTEETM Monitor sets the memory region as
read-only for kernel code segment of Normal OS. As the
result, even Normal OS is prohibited from overwriting its
own code segment.

Another mechanism is protection for LiSTEETM Monitor
and LiSTEETM TA. To realize this protection, LiSTEETM
Monitor installs an access control policy where Normal OS
cannot access the memory area allocated to LiSTEETM
Monitor and LiSTEETM TA while LiSTEETM TA and
LiSTEETM Monitor can access all areas when booting the
system. For this policy, LiSTEETM Monitor and LiSTEETM
TA can be protected from illegitimate falsification by
Normal OS, even if Normal OS is attacked and under control
of an attacker.

C. Message Notification

LiSTEETM Recovery provides a function to notify the
head-end system that Normal OS has stopped working and is
rebooting the system by sending a message through network.
The Notification module has the role of sending a message.
Although Normal OS has network connectivity function,
such as TCP/IP stack, LiSTEETM TA cannot use the function
since it is not working when sending a message. Thus,
LiSTEETM TA supports network connectivity function
including network application, network protocol stack and
network driver.

V. PROTOTYPE IMPLEMENTATION

We used ARM C/C++ Compliler 5.01 as a compiler to
build LiSTEETM Monitor and LiSTEETM TA. We used gcc
4.4.1 to build Linux 3.6.1 as Normal OS. We chose
Motherboard Express uATX with CoreTile Express A9x4
processor which supports TrustZone as an execution
environment.

Regarding memory map, from 0x48000000 through
0x4A000000 is assigned for SRAM, and from 0x60000000
through 0xE0000000 is assigned for DRAM. Tab. I shows
memory map with access control policy of the memory. In
Tab. I, Normal OS (code) indicates Linux kernel code.
Normal OS (data) includes Linux data, application code and
application data. For clarification, Read/Write access is
applied from Non-secure world for the area not described in
Tab. I.

In order for the LiSTEETM Monitor to install an access
control policy on TZASC, the start address and the size of
each memory region are predefined. After the boot loader Figure 4. Memory protection mechanism.

Figure 3. Flowchart of periodical surveillance and recovery.

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

loads Linux at the predefined value, LiSTEETM Monitor
installs the access control policy on TZASC. As shown in
Tab. 1 the access to the memory regions allocated to
LiSTEETM Monitor, LiSTEETM TA and code segment of
Normal OS is restricted for the Normal OS running in non-
secure world while the access to the region allocated to the
data segment of Normal OS and shared memory is not. For
clarification, LiSTEETM Monitor and LiSTEETM TA run in
secure world can access all regions. Furthermore, since
LiSTEETM Monitor sets the configuration registers of
TZASC to prohibit Normal OS from accessing them, Normal
OS cannot change this configuration.

TABLE I. MEMORY MAP

Data
Start

Address
Size

Access Policy
(Non-sec
world)

Vector table +
Initialization code

+ LiSTEETM Monitor
+ LiSTEETM TA

0x48000000 0x01B00000 Cannot Access

Normal OS (code) 0x60000000 0x002FE000 Read Only

Normal OS (data) 0x602FE000 0x3EF02000 Read/Write

Shared memory 0x9F200000 0x00C00000 Read/Write

Fig. 5 shows the assignment of the timer interrupt. We
allocated a timer interrupt caused by timer (timer 1) to Fast
Interrupt Request (FIQ) and timer interval was set to 1
second. The FIQ interrupt is handled by hardware interrupt
handler in LiSTEETM Monitor, and then it calls LiSTEETM
TA, as the result LiSTEETM TA is periodically called. We
used another timer (timer 2) and allocated to Interrupt
Request (IRQ), and timer interval was set to 4 milliseconds.
The IRQ interrupt is handled by interrupt handler in Linux.
Since Linux assumes timer interrupt is allocated to IRQ, it is
not necessary to modify the Linux source code to adopt
LiSTEETM Monitor. Tab. II shows a configuration of
hardware interrupt. We configured Secure Configuration
Register (SCR) and Current Program Status Register (CPSR)
so that FIQ handler of LiSTEETM Monitor is called when
FIQ handlers occurs while IRQ handler in Linux is called
when IRQ interrupt occurs during executing Linux. In the
same manner as the configuration register of TZASC, we set
FIQ and IRQ configuration registers to prohibit Normal OS
from accessing them. Thus, Normal OS cannot change the
configurations. For example, Normal OS cannot mask FIQ to
stop timer 1, or cannot change the timer interval of timer 1.

In order to determine whether Linux is working or not,
we made a small application program which runs on Linux

and communicates with LiSTEETM TA. Shared memory is
used to exchange data between LiSTEETM TA and Normal
OS. The application program writes a counter value into the
shared memory periodically. Then LiSTEETM TA reads the
counter value from the shared memory. When Normal OS is
crashed, the application program cannot update the counter
value. If the counter value is not updated in certain amount
of time or the counter value is not an expected value,
LiSTEETM TA determines that Normal OS is not working.

TABLE II. RELASHONSHIP BETWEEN WORLD AND INTERRUPT

World when
interrupt occurs Interrupt Jumps to

Non-secure world
FIQ Hardware interrupt handler (FIQ

handler) in LiSTEETM Monitor
IRQ IRQ handler in Normal OS (Linux)

Secure world
FIQ Pending FIQ
IRQ Pending IRQ

When LiSTEETM TA determines that Linux is not

working, it sends the head-end sever a message. In order to
send a message to the head-end system when LiSTEETM TA
detects that Linux is not working, we ported a network driver
and UDP/IP stack to LiSTEETM TA. We defined a
proprietary protocol and data format over UDP to notify the
head-end system that LiSTEETM TA starts reboot the system.

VI. EVALUATION

In this section, we describe the result of the evaluation in
terms of security to verify the problems of the legacy system
defined in Section-II can be solved. Performance and cost
analysis of LiSTEETM Recovery is also described below.

A. Security Analysys

1) Surveillance and Recovery: LiSTEETM Recovery can
recover from a failure to reboot the system even if Normal
OS crashes. The reason for the crash could be a software
bug or a cyber attack including zero-day attack caused by
unknown vulnerabilities. In either case, since hardware
timer interrupt continues working regardless of the state of
Normal OS, LiSTEETM TA is always periodically called and
can detect a failure of Normal OS. At the next level, it is
desirable to detect the failure as soon as possible. Detection
time depends on how frequently LiSTEETM TA checks the
status of Normal OS. Since the execution time of LiSTEETM
TA and context switching by LiSTEETM Monitor is very
short, LiSTEETM Recovery can detect the crash of Normal
OS very quickly. Some attackers may continue to attack just
after rebooting the system. One possible approach to a
countermeasure for the attack is to let LiSTEETM TA have
the minimum function like the “safe mode”, we have not
implemented that though.

2) Attack Prevention: The proposed system provides
two levels of attack prevention mechanism. The first level is
to prevent Normal OS from illegitimate modification. When
an attacker gains full control of Normal OS to misuse the
vulnerability, the attacker may overwrite the code segment

Figure 5. Assignment of timer interrupt.

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

of Normal OS to directly overwrite the memory. In fact,
many vulnerabilities (e.g., CVE-2013-4342, CVE-2013-
1969, and CVE-2008-1673) allowing a remote attacker to
execute arbitrary code are reported [10]. In the case of
Linux, for example, once arbitrary code is executed with an
administrator privilege by an attacker, it is possible for the
attacker to overwrite an arbitrary area of code segment
through /dev/mem, resulting in system crash or misbehavior.
Overwriting the code segment in memory is difficult in
general though it is relatively easy in the case of end-point
devices since hardware configuration is fixed. As the result,
system may go down. However, since LiSTEETM Monitor
sets the access control of the memory region for the code
segment of Normal OS as read-only, and its configuration
can be changed only from secure world, it is impossible for
Normal OS to overwrite the code segment of Normal OS.
An advantage is the protection does not cause any side
effects. Since data segment is used to store the state of the
program, Normal OS updates the content of data segment
frequently during its execution. In contrast to the data
segment, since code segment is used to store program code,
it is not expected to update its content after booting the
system. Particularly because devices, such as smart meters
or concentrators are not expected to change their function
after being deployed, the dynamic update function is not
required. Thus, this protection mechanism can protect
Normal OS from illegitimate modification without side
effects. The second level is to protect LiSTEETM Monitor
and LiSTEETM TA from illegitimate modification and
suspension. Since the first level of protection is effective on
code segment of Normal OS only, an attack which
overwrites a data segement cannot be prevented. Thus, there
are still possibilities that control of Normal OS is gained by
an attacker. Even in such cases, thanks to TZASC, since
Normal OS is prohibited from overwriting the content of
memory where LiSTEETM TA and LiSTEETM Monitor are
allocated, illegitimate modification is prevented. Moreover,
since the interrupt configuration register is accessible only
from secure world, there is no way for Normal OS to stop
the timer interrupt.

3) System Reliability: In a legacy system, one single bug
could affect the entire system to cause a critical failiure.
Considering a defensive viewpoint, the entire system
including operating system must be bug free to archieve
high availability ideally. However, it is not practical to build
a system without bugs in a complicated system. In fact,
Linux 3.6.1 consists of over 15 millions of lines of code and
a lot of new bugs causing critical crash are reported
frequently (e.g., CVE-2013-4563, CVE-2013-4387, and
CVE-2012-2127) even though it is carefully reviewed by
many professionals [10]. Thus, the smaller the critical
component that has to be robust within a system, the better.
In the case of LiSTEETM Recovery, the critical components
corresponds to LiSTEETM TA and LiSTEETM Monitor. In

contrast to Linux, the code size of LiSTEETM Monitor and
LiSTEETM TA is relatively small. In fact the volume of
source code for LiSTEETM Monitor is about 700 lines and
its code and data size are 2.1 KB and 1.6 KB respectively.
Similarly the volume of source code of LiSTEETM TA is
about 41200 lines and its code and data size are 1.09 MB.
Compared to the volume of source code of Linux, the risk
where LiSTEETM Monitor and LiSTEETM TA includes bugs
is small.

4) Response to Failure: The Notification module in
LiSTEETM TA sends a message to the head-end server just
before rebooting the system. The message, which tells
which the particular devices are about to reboot, is
sometimes useful information for administartors. For
example, if messages are sent by devices having a particular
software version number, the reboot could be caused by an
attack which aims at the vulnerability specific to the
software. If messages are sent by devices located in one
particular network, the reboot could be caused by a network
worm distributed in the specific network. Although
LiSTEETM Recovery cannot prevent an attack in advance,
the notification feature can help the administrator to
investigate the reason of the failure during or after the
incident. The attackers try to block sending the message to
circumvent the notification. However, Normal OS cannot
interfere with Notification module in sending a message to
the head-end server since Notification module is executed
inside LiSTEETM TA. Moreover, since LiSTEETM TA is
processed in an isolated environment from Normal OS,
security processes, such as encrypting a message, are easy to
implement in LiSTEETM TA. In the next step, it is possible
to include a firmware update feature to implement functions
receiving data from the head-end system and writing the
data into the file system to extend the function of
Notification module. In combination with “safe mode”
described above, this function is effective against a
countinuous attack which occurs just after the system
recovers.

B. Performance Analysis

As well as the implementation environment, we used
Motherboard Express uATX which contains ARM Cortex-
A9x4 processor running at 400MHz as an experimental
environment. The size of level 1 instruction cache, level 1
data cache, and level 2 cache are 32 KB, 32 KB, and 512 KB
respectively. It contains 1 GB DRAM as the main memory
and we assigned the same memory map described in Section-
V.

First, we measured the execution time of LiSTEETM TA
during execution of Normal OS. Precisely, the time period
from the beginning of hardware interrupt handler in
LiSTEETM Monitor through to the execution of the SMC
instruction. Without calling the Notification module, the
average time is 1.7 microseconds over 10,000 trials.
However, if the Notification module is called, the average

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

time is 4.1 milliseconds over 10,000 trials. Note that the
Notification module is called when rebooting the system
which is rarely occurs. Thus, this performance overhead is
no problem.

Next, we measured the performance degradation of
Normal OS. Since the execution of Normal OS is suspended
during execution of LiSTEETM TA, the performance of
Normal OS degrades in any case. The total time of Normal
OS suspension time depends on the frequency where
LiSTEETM TA is called. There is a tradeoff between the
performance degradation of Normal OS and the delay for
detecting the crash of Normal OS. When the frequency is
increased, the performance degradation of Normal OS is also
increased. On the other hand, when the frequency is
decreased, the delay for detecting the crash of Normal OS
becomes larger. To measure the performance degradation,
we used dhrystone as a benchmark program [11].

Fig. 6 shows the result of the experiment. The bar graph
shows dhrystone score and the line graph shows the
performance degradation. The performance is better as the
score value is high. Each bar shows timer interval which
LiSTEETM TA is called and its value is default (never called),
5 seconds, 1 second, 0.2 seconds and 0.04 seconds
respectively. When timer interval was set to 5 seconds, the
performance degradation was suppressed within 0.001 %.
Even if the interval was set to 0.04 seconds, the performance
degradation was less than 0.2 %. The result shows that
although there is a trade-off between performance
degradation of Normal OS and detection rate logically, the
performance degradation can be ignored in practical even if
the frequency where LiSTEETM TA is called is increased.

C. Cost Analysis

1) Development Cost: LiSTEETM Recovery does not
require any modification to Linux to run it as Normal OS on
LiSTEE Monitor. Thus, in terms of application developer’s
cost, since developpers can reuse all existing programs
including libraries, middlewares, and applications running
on Linux, no additional develping cost is necessary.

2) Production Cost: LiSTEETM Recovery is software
based technology and no additional hardware except
TrustZone capable ARM processor and address space

controller is required. Today TrustZone capable processors
are widely available. In fact, all ARM Cortex A series
processors support TrustZone. Therefore, the additional cost
is mitigated. As the result, developing cost per device can be
minimized.

3) Maintainance Cost: It is assumed that tremendous
number of devices are deployed in the field in Smart Grid.
Specifically in the case of cyber attack, since many devices
could be a target of the attack and the attack could be done
in a very short period of time through network, it is not
practical for field service engineers to physically visit each
site and reboot them in terms of both cost and time. The
auto recovery feature of LiSTEETM Recovery mitigates this
problem. Moreover, the report is sent to the head-end server
once the device reboots. This function contributes in
reducing the cost of trouble shooting. Thus, LiSTEETM
Recovery provides opportunity to reduce maintainance cost
compared with legacy systems.

VII. RELATED WORK

To recover from an operating system failure, various
approaches have been proposed.

The simplest approach is including the recovery
mechanism inside operating system. One method is to use
NMI as a watchdog timer [12]. Non-maskable Interrupt
(NMI) is a processor interrupt that cannot be ignored. When
NMI is generated, NMI handler implemented inside
operating system is called regardless of the status of the
operating system. Thus, NMI can be used as surveillance and
recovery process to implement NMI handler so that it detects
whether operating system hangs or not. Although NMI is
easy to use for watchdog timer as it has already been
implemented in Linux, it is vulnerable because NMI handler
could be invalidated to overwrite the code segment of the
operating system. Furthermore, it is not anticipated to
implement a rich application in an interrupt handler, such as
network communication function or data encryption function,
it is difficult to realize the notification function.

Another approach to recover from the failure is to check
the status of the operating system from outside using
virtualization technology. It is easy to realize resource
isolation environment by utilizing virtualization technology.
Karfinkel developed trusted virtual machine monitor
(TVMM), on which general-purpose platform and special-
purpose platform executing security sensitive process run
separately and concurrently [13]. The libvirt project develops
a virtualization abstraction layer including a virtual hardware
watchdog device [14]. To cooperate with the watchdog
daemon installed in guest OS, a virtual machine monitor can
notice that the daemon is no longer working when
periodically trying to communicate with it. Although
virtualization technology is widely deployed in PC-based
systems, it is difficult to implement it in embedded devices
as less hardware devices support it. Moreover, since the
volume of source code for virtual machine monitor (VMM)
tends to become large, the risk where VMM includes bugs
also becomes large. To overcome the restriction, Kanda

Figure 6. Result of performance degradation.

79Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

developed SPUMONE, which a light weight virtual machine
monitor designed for working on embedded processors [15].
It provides a function to reboot the guest OS. However,
SPUMONE does not provide memory protection mechanism
between virtual machine monitor and the guest OS (Normal
OS). Thus, it is vulnerable to an attack on the virtual
machine monitor from guest OS.

VIII. CONCLUSION AND FUTURE WORK

In this paper, LiSTEETM Recovery works effectively to
resist critical bugs or attacks including zero-day causing
system crash in order to keep availability of end-point
devices. The performance evaluation is presented to show
that the degradation of the existing system is small enough.
Considering the deployment in the market, we show that the
development cost and production cost can be minimized.
Moreover, it can save maintenance cost.

Future work includes the resistance to sophisticated
attacks. One possible attack is that an attacker illegitimately
modifies the shared memory area to fake as if Normal OS
works correctly while almost all Normal OS functions
actually stop. As the result, LiSTEETM TA misunderstands
that Normal OS works correctly. One approach to solve this
attack is to implement LiSTEETM TA so that it itself checks
the status of Normal OS without the support of an
application program running on Normal OS. For example,
whenever Normal OS is running, it must update a certain
data area, such as page tables or process tables. Therefore,
LiSTEETM TA can determine Normal OS is working or
crashed to monitor the data area. An advantage of LiSTEETM
is that it is impossible for Normal OS to reverse-engineer and
to tamper an algorithm of LiSTEETM TA because of memory
protection mechanism. Thus, an attacker cannot know how
to compromise Normal OS producing misleading
information. We have not implemented this though. Another
possible attack is damaging file system locating Normal OS.
Network boot can be a solution where LiSTEETM TA
downloads a small rescue program from the head-end system
when it fails booting.

REFERENCES
[1] C4 Security. “The Dark Side of the Smart Grid”. [Online].

Available: http://www.c4-
security.com/The%20Dark%20Side%20of%20the%20Smart
%20Grid%20-
%20Smart%20Meters%20%28in%29Security.pdf [Accessed
19 Feb 2014]

[2] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, and A. Yegin,
“Protocol for carrying authentication for network access”,
IETF RFC 5191 [Online]. Available:
http://tools.ietf.org/html/rfc5191 [Accessed 19 Feb 2014]

[3] F. Zhao, Y. Hanatani, Y. Komano, B. Smyth, S. Ito, and T.
Kamibayashi, “Secure authenticated key exchange with
revocation for smart grid”, The third IEEE PES Conference
on Innovative Smart Grid Technologies (ISGT 2012), IEEE
Power & Energy Society (PES), Jan 2012, pp.1-8.

[4] H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, "Smart-
grid security issues", IEEE Security & Privacy, vol.8, Issue.1,
Jan-Feb 2010, pp.81-85.

[5] K. Li, "Towards Security Vulnerability Detection by Source
Code Model Checking", Software Testing, Verification, and
Validation Workshops (ICSTW), 2010 Third International
Conference on, Apr 2010, pp.381-387.

[6] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, and T. Leu, "A
Dynamic Technique for Eliminating Buffer Overflow
Vulnerabilities (and Other Memory Errors)", Computer
Security Applications Conference, 2004. 20th Annual, Dec
2004, pp.82-90.

[7] S. M. Varghese and K. P. Jacob, "Anomaly Detection Using
System Call Sequence Sets", Journal of Software, Vol.2 No.6,
Dec 2007, pp.14-21.

[8] ARM. “ARM Security Technology” [Online]. Available
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf [Accessed 19
Feb 2014]

[9] T. Alves and D. Felton, “TrustZone: Integrated Hardware and
Software Security”, Information Quarterly, Vol.3, No.4, 2004,
pp.18-24.

[10] MITRE. “Common vulnerabilities and exposures” [Online].
Available http://cve.mitre.org [Accessed 19 Feb 2014]

[11] ARM. “Dhrystone Benchmarking for ARM Cortex
Processors” [Online]. Available
http://infocenter.arm.com/help/topic/com.arm.doc.dai0273a/D
AI0273A_dhrystone_benchmarking.pdf [Accessed 19 Feb
2014]

[12] A. Kleen, “Machine check handling on linux”, Technical
report, SUSE Labs, Aug 2004 [Online]. Available
http://halobates.de/mce.pdf [Accessed 19 Feb 2014]

[13] T. Garnkel, B. Pfa, J. Chow, M. Rosenblum, and D. Boneh,
“Terra: A virtual machine-based platform for trusted
computing”, In Proceedings of the Symposium on Operating
System Principles, Oct 2003, pp.193-206.

[14] "libvirt - the virtualization API." [Online]. Available:
http://libvirt.org [Accessed 19 Feb 2014]

[15] W. Kanda, Y. Yumura, Y. Kinebuchi, K. Makijima, and T.
Nakajima, "SPUMONE: Lightweight CPU Virtualization
Layer for Embedded Systems", In Proc. of Embedded and
Ubiquitous Computing, Dec 2008, pp.144-151.

80Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

