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Abstract—Both energy and storage are becoming key issues in
high-performance (HPC) systems, especially when thinking about
upcoming Exascale systems. The amount of energy consumption
and storage capacity needed to solve future problems is growing
in a marked curve that the HPC community must face in
cost-/energy-efficient ways. In this paper we provide a power-
performance evaluation of HPC storage servers that take over
tasks other than simply storing the data to disk. We use the Lustre
parallel distributed file system with its ZFS back-end, which
natively supports compression, to show that data compression can
help to alleviate capacity and energy problems. In the first step
of our analysis we study different compression algorithms with
regards to their CPU and power overhead with a real dataset.
Then, we use a modified version of the IOR benchmark to verify
our claims for the HPC environment. The results demonstrate
that the energy consumption can be reduced by up to 30 % in
the write phase of the application and 7 % for write-intensive
applications. At the same time, the required storage capacity can
be reduced by approximately 50 %. These savings can help in
designing more power-efficient and leaner storage systems.

Keywords-power consumption; high performance computing;
parallel distributed file system; storage servers; compression;

I. INTRODUCTION
As we progress towards Exascale systems, the economic

cost of energy consumption and the pressure exerted by power
dissipation on cooling equipment are rapidly becoming major
hurdles to the deployment of new HPC facilities. As of today,
the most energy-efficient HPC supercomputers deliver close to
4.5 GFLOPS/W (109 floating-point operations per second, per
watt) [1]. Simple arithmetic shows that building an ExaFLOPS
system based on this technology would require about 220 MW,
yielding this approach economically unfeasible. Even if we can
maintain the considerable improvements experienced by the
most energy efficient systems, the goal of building a 20 MW
Exascale system will still be largely exceeded. If we want to
continue enjoying the significant advances enabled by scientific
computing and supercomputers during these past decades, a
holistic investigation is needed to improve energy efficiency
of HPC hardware and software.

High performance I/O is also a major stumbling block
to reach the ExaFLOPS barrier. Considering that large-scale
computations and simulations conducted to solve complex
problems in several scientific domains increasingly produce
large amounts of data, the ExaFLOPS performance goal is
still far away. While CPU speed and HDD capacity have
increased by roughly a factor of 1,000 every 10 years [2],
HDD speed only develops at a slow pace: only a 300-fold
throughput increase over the last 25 years. Minimizing the

amount of data that is being stored in the storage subsystem
can also help to improve application performance. Thus, data
compression can be used for this purpose. Furthermore, due
to the increasing electricity footprints, energy used for storage
represents an important portion of the Total Cost of Ownership
(TCO) [3]. For instance, the German Climate Computing
Center’s (DKRZ) HDD-based storage system is using 10,000
HDDs to provide a 7 PB file system for earth system science.
Assuming a power consumption of 5–10 W for typical HDDs,
this results in energy costs of 50,000–100,000e per year for
the HDDs alone. To make the problem worse, the growth of
HDD capacity has recently also started to slow down, requiring
additional investment to keep up with the increasing processing
power.

In this paper, we analyze the usefulness of HPC storage
servers that compress file data in order to reduce the required
amount of storage hardware and the overall energy consump-
tion, and thus the total cost of storage hardware usually
found in supercomputers. As current-generation CPUs provide
ample performance for data processing such as compression
or encryption, we provide a case for turning on compression
by default to reduce the number of required storage devices.
In particular, the paper includes the following contributions:

1) We review the architecture of parallel distributed file
systems for the special case of Lustre and present a
power-performance profiling and tracing environment
for these platforms.

2) We evaluate the performance of different compression
algorithms using different synthetic and real scientific
sets of input data.

3) We employ the parallel I/O Performance Benchmark
(IOR) [4] and real scientific data to assess different
compression algorithms of the Lustre parallel dis-
tributed file system with its Zettabyte File System
(ZFS) [5] back-end.

4) We evaluate the impact of slowly-spinning, energy-
aware HDDs used in storage servers as a way to
reduce energy consumption in large storage servers.

The paper is structured as follows: In Section II, we
present the parallel distributed file system Lustre and our
power-performance measurement framework used to analyze
the benefits of our proposed approach. Section III contains
an extensive evaluation of our proposal to compress all data
produced by HPC systems. We present related work in Sec-
tion IV. Finally, we draw conclusions and discuss further work
in Section V.
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II. BACKGROUND
In this section, we explain the power-performance frame-

work that we use to conduct our evaluation. First, we describe
the distributed parallel file system and the power-performance
measurement framework we used. Parallel distributed file
systems are used in HPC to aggregate storage devices existing
in several storage servers. File systems provide an abstraction
layer between the applications and the actual storage hardware
such that application developers do not have to worry about the
organizational layout or technology of the underlying storage
hardware. To meet the high demands of current high per-
formance computing applications, they distribute data across
multiple storage servers. Moreover, they are designed to allow
parallel access to multiple clients and cooperatively work with
the same data concurrently. On the other hand, power measure-
ments are needed to design new energy-aware approaches and
meet consumption constraints. In this case, wattmeters attached
to the server nodes are leveraged in a profiling and tracing
framework that allows developers to correlate performance and
power data.

A. Parallel distributed file systems
To perform our evaluation we use Lustre [6]. Lustre is

an open-source parallel distributed file system and is widely
used on current supercomputers. Lustre powers around half
of the TOP100 supercomputers and almost one third of all
TOP500 supercomputers [7]. In contrast to other proprietary
solutions such as the General Parallel File System (GPFS) [8],
it is possible to adapt, extend and improve Lustre since it is
licensed under the GPL (version 2).

Lustre distinguishes between file system clients and
servers. While all clients are identical, the servers can have
different roles. First, the object storage servers (OSSs) manage
the file system’s data and are connected to possibly multiple
object storage targets (OSTs) that store the actual file data.
Second, the meta-data servers (MDSs) handle the file system’s
meta-data, such as directories, file names and permissions.
Each MDS is connected to possibly multiple meta-data targets
(MDTs) that store the actual meta-data. The general architec-
ture of Lustre is illustrated in Figure 1 on this page. Both MDTs
and OSTs use an underlying back-end file system to store their
data. This file system is responsible for block allocation and
hiding the internal disk layout from Lustre. Past versions of
Lustre supported only a modified version of ext4 [9] called
ldiskfs. Current versions of Lustre also support ZFS [10].

ZFS is a local file system that offers a rich set of advanced
features. Among others, it provides advanced storage device
management, data integrity, as well as transparent compression
and deduplication. It supports several compression algorithms:
zero-length encoding zle, lzjb (a modified version of
LZRW1 [11]), lz4 [12] and gzip (a variation of LZ77 [13]).
Performing the compression on the servers has several ad-
vantages: the compression is completely transparent to other
applications (including Lustre), no modifications of the client
libraries or operating systems are necessary, and computations
of the clients are not influenced by the CPU overhead of the
compression.

B. Power-Performance measurement framework
To analyze power and performance metrics of the Lus-

tre storage servers, we employ a version of the integrated
framework presented in [14] that works in combination with
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Figure 1. Lustre architecture in combination with the power-performance
analysis framework.

VampirTrace and Vampir, which are profiling/tracing and vi-
sualization tools, respectively. The left part of the Figure 1
on the current page offers a graphical representation of the
Lustre architecture; the right depicts the tracing and profiling
framework. To use our approach, the application running on the
clients is compiled using the VampirTrace compiler wrappers,
which automatically instrument the code. Next, the application
is run on the client nodes, thus consuming a certain amount
of energy, both on the client and server nodes, due to the
I/O instructions. The server nodes are connected to power
measurement devices that account for the consumed energy
and send the power data to the tracing server. The attached
VampirTrace pmlib plugin employs the client API that sends
start/stop primitives in order to gather captured data by the
wattmeters onto the tracing server, where an instance of the
pmlib server is running. Once the application’s run has
finished, the VampirTrace pmlib plugin receives the power
data from the tracing server. The instrumentation post-process
generates the performance trace files and the pmlib plugin
inserts the power data into them.

In addition to the power measurements, we also account
for the resource utilization values of the Lustre servers: CPU
load, memory usage and storage device utilization. We run
special pmlib server instances on the server nodes that
retrieve these values from the proc file system (leveraging
the psutil Python library). Thus, pmlib plugin instances
running with the instrumented application connect with the
pmlib servers and also receive resource utilization data of
the Lustre servers. Finally, using the Vampir visualization tool,
the power-performance traces can be easily analyzed through
a series of plots and statistics.

III. EVALUATION
A. Methodology

We leverage Lustre 2.5 with its ZFS back-end file system
for our power-performance analysis of data compression in
HPC storage servers. As the first step, we evaluate the com-
pression algorithms that ZFS supports. For this purpose, we
choose a real data-set that contains input and output data of
the Max Planck Institute Ocean Model (MPI-OM), which is the
ocean/sea-ice component of the MPI Earth System Model [15].
The data-set has a size of 540 GB, consisting of around 73 %
binary data and 27 % NetCDF data [16]. In this evaluation,
we also collect system statistics such as the average CPU load
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and the execution time of the tests. To extract the compression
ratio of the data-set we use the zfs get compressratio
command that reports the actual compression ratio of the file
system. Next, we evaluate the compression algorithms that
are suitable for our needs with repeated and random patterns
in order to understand the behavior in extreme cases. Using
above information, we pick the best suitable algorithms in
terms of compression ratio, CPU load and execution time
to run our Lustre experiments. For now, we do not consider
decompression because the evaluated compression algorithms
are expected to have higher overheads when compressing than
when decompressing.

In order to evaluate data compression in HPC storage
servers we use the IOR, which is a commonly-used, con-
figurable benchmark for parallel distributed file systems. We
employ IOR to simulate realistic write activity of the Lustre
storage servers and collect the execution time and throughput.
To fulfill our needs we have modified IOR in the following
ways: (i) we have inserted a sleep operation to simulate the
computation phase, (ii) we have added a read phase in the
initialization of the program in order to fill the write buffer with
part of our scientific data-set, and (iii) we have instrumented
it using the VampirTrace compiler wrappers to obtain power-
performance-related traces.

To simulate the application’s computation phase, we intro-
duce a sleep instruction into our modified IOR. This simulates
a common scenario in real-world applications, which alternate
between computation and I/O phases. Consequently, the I/O
systems see bursts of activity during the I/O phases and are
otherwise relatively idle. For our cases, we choose to sleep
approximately four times more than the time spent during
write operations, which is reasonable for write-intensive appli-
cations. The data used to initialize the write buffer corresponds
to the first 10 GB of an appropriate file from our scientific data-
set with compression ratios of 1.7 and 2.53 for the lz4 and
gzip algorithms, respectively.

B. Environment Setup
The experimental setup includes a cluster with ten client

and ten server nodes. Each client node is equipped with
two Intel Xeon Westmere X5650 processors (6 cores each)
running at 2.66 GHz, 12 GB of RAM and one 250 GB Seagate
Barracuda HDD. Each storage server node has one Intel Xeon
Sandy Bridge E31275 processor (4 cores) running at 3.40 GHz,
16 GB of RAM, one 160 GB Intel SSD and three 2 TB Western
Digital Caviar Green HDDs. An energy-saving feature of
these HDDs is the IntelliPark technology (also referred to as
idle3) [17], which positions the read/write heads unloaded
in a parking position and turns off certain drive electronics
after a pre-defined inactivity time (8 seconds by default).

The client and servers nodes are interconnected using
Gigabit Ethernet. Furthermore, a Lustre file system is provided
by the ten server nodes. All ten nodes are configured as
OSSs and use a ZFS pool containing one of their HDDs.
Additionally, one node also fulfills the role of the MDS, using
a ZFS pool containing the SSD; we use the SSD to exclude
the influence of meta-data operations. We configure Lustre
to stripe file data among all OSSs to get the best possible
performance. The total amount of data that we write is 600 GB,
that is, almost four times more than the total amount of RAM
that the the OSSs are equipped with. When simulating client-
side computation, we write 150 GB per I/O phase and then

TABLE I. COMPARISON OF DIFFERENT COMPRESSION ALGORITHMS.

Comp. Comp. Avg. CPU Runtime RatioAlgorithm Ratio Util. (%)
off 1.00 23.7 1.00 (2:11 h)
zle 1.13 23.8 1.04
lzjb 1.57 24.8 1.09
lz4 1.52 22.8 1.09

gzip-1 2.04 56.6 1.06
gzip-2 2.05 62.3 1.05
gzip-3 2.02 71.9 1.11
gzip-4 2.08 73.0 1.07
gzip-5 2.06 80.2 1.21
gzip-6 2.04 84.7 1.88
gzip-7 2.05 85.1 2.36
gzip-8 2.06 86.8 4.79
gzip-9 2.08 83.1 13.66

issue a sleep command to the clients for 600 seconds, which
is approximately four times the length of the I/O phase.

We have observed that the best results were delivered with
private files per process and consequently use this configu-
ration. These results are to be expected because there is no
locking overhead implied from the file system’s POSIX se-
mantics. We configure IOR with a block size of 256 KB for the
following reasons: (i) it is aligned to the file system stripe size,
(ii) it is large enough to minimize performance penalties and
(iii) it fits the guidelines found in [18], which describes energy-
efficient best practices for file system operations. Moreover,
to avoid any caching effects on the client side, we allocate
85 % of their main memory. This helps achieving realistic
measurements because real-world applications usually allocate
as much memory as possible for computations.

Finally, to account for the power consumption we employ
four external, calibrated ZES ZIMMER LMG450 devices
connected between the power supply unit of the I/O servers and
the electrical outlets. For the experiments we set the sampling
frequency to 20 Hz.

C. Experimental Results
To evaluate the different compression algorithms supported

by ZFS we copied the data-set into an uncompressed ZFS pool
and set up another separate ZFS pool with the compression
algorithm that we want to test. After copying the data-set
into the compressed ZFS pool, we measured the compression
ratio as well as the CPU utilization and runtime. Table I
on this page shows a comparison of different compression
algorithms supported by ZFS. As can be seen, disabling the
compression yields the best runtime and lowest CPU utiliza-
tion. The zero-length encoding (zle) adds negligible runtime
and CPU overhead and already achieves a compression ratio
of 1.13, which reduces our data-set to 470 GB. Both lzjb
and lz4 increase runtime and CPU utilization slightly but
offer a significant boost for the compression ratio; even though
the average CPU utilization is actually reduced with lz4,
more CPU time is consumed due to the increased runtime.
lzjb and lz4 compress our data-set to 343 GB and 354 GB,
respectively. The gzip compression algorithm additionally
allows the compression level (1–9) to be specified. Even the
lowest gzip compression level (gzip-1) further increases
the compression ratio to 2.04 and compresses our data-set to
267 GB. While the runtime overhead is negligible, the CPU
utilization more than doubles. The higher gzip compression
levels do not significantly improve the compression ratio but
increase the runtime and CPU utilization. Consequently, we
choose lz4 and gzip-1 as the compression algorithms for
our further analysis.
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TABLE II. COMPARISON OF DIFFERENT DATA PATTERNS WITH
SELECTED COMPRESSION ALGORITHMS.

Pattern Comp. Comp. Avg. CPU Runtime RatioAlgorithm Ratio Util. (%)

repeated
off 1.00 23.7 1.00 (11:13 min)
lz4 126.96 15.8 1.28

gzip-1 126.96 23.3 1.24

random
off 1.00 23.5 1.00 (11:21 min)
lz4 1.00 24.1 0.97

gzip-1 1.00 66.1 1.03

To have a better understanding of the algorithms that we
use in our evaluation of the parallel distributed file system, we
examine them with different data patterns. First, we use easily-
compressible (repeated data obtained using the yes utility) and
non-compressible (random data from the frandom RNG) data
patterns. In this case, we have used a pre-generated 50 GB file
and proceeded as in the previous evaluation. Table II on the
current page shows a comparison of different data patterns
using the previously selected compression algorithms lz4
and gzip-1. As can be seen, compressing the repeated data
incurs computational overhead. Both algorithms achieve the
same compression ratio and almost the same runtime ratio.
However, the lz4 algorithm uses significantly less CPU time
than the gzip-1 algorithm (around 68 %). Both algorithms
have a lower CPU utilization than the default configuration
without compression; we believe that this is due to the fact that
the dramatically reduced amount of data almost completely
eliminates the overhead incurred by ZFS’s checksumming
and copy-on-write. When using the random data, again, both
algorithms need approximately the same runtime and achieve
the same compression ratio. In this case, the difference in CPU
utilization is even more pronounced with the lz4 algorithm
using it only around 36 % as much as the gzip-1 algorithm.

While the previous tests only used a single machine to get
a basic understanding of the different compression algorithms
and their associated overheads, the following parallel tests use
the underlying Lustre file system. Table III on the following
page shows the results for our write-only IOR benchmark,
which does not include any computation. As can be seen,
the measurement without compression (off) was used to set
the baseline. The CPUs were moderately utilized with 116 %,
while the HDDs were heavily utilized with around 87 %.
The benchmark achieved a maximum throughput of 723 MB/s,
which led to a runtime of 852 s. All ten I/O servers combined
consumed 530 W during the benchmark run, which resulted in
an energy consumption of 125 Wh. When using the lz4 and
gzip-1 compression algorithms, the written data could be re-
duced significantly; lz4 achieved a compression ratio of 1.92,
while gzip-1 even managed a ratio of 2.49. While lz4 did
not increase CPU utilization significantly (153 %), gzip-1
produced a much higher computational overhead (402 %). In
both cases, this reduced the HDD utilization and, at the same
time, tremendously increased the throughput to 1,114 MB/s,
which is the maximum our cluster can theoretically achieve.
As a result, both benchmarks using compression finished much
faster (553 s). However, in gzip-1’s case, the high power
consumption of 848 W increased the energy consumption to
130 Wh. In lz4’s case, the moderate CPU and HDD utilization
led to a slight increase in the power consumption (592 W).
Combined with the shortened runtime, this resulted in sig-
nificant savings regarding the energy consumption (91 Wh).
Overall, lz4 manages to reduce the total energy consumption
to roughly 70 %.

TABLE IV. PARALLEL I/O BENCHMARK WITH SELECTED
COMPRESSION ALGORITHMS (WRITE AND COMPUTATION).

Comp. Time Avg. Power Energy idle3
Algorithm (s) (W) (Wh) Timer

off 3,212.15 456.03 406.90
Disabledlz4 2,951.01 461.72 378.48

gzip-1 2,950.54 503.63 412.77
off 3,181.35 436.18 385.46

Enabled (8 s)lz4 2,951.11 437.33 358.50
gzip-1 2,950.60 484.55 397.14
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Figure 2. Vampir trace with the modified version of IOR benchmark using
the ondemand governor and the gzip-1 algorithm.

Next, we present our final experiments that are closer
to real applications. Figure 2 on the current page shows a
Vampir trace as recorded on one of the I/O storage servers
while running our modified version of IOR benchmark. In this
scenario the server alternates between idle and I/O state that
correspond to the I/O activity and computation phase on the
clients side.

The top of the figure shows the trace’s timeline. As can
be seen, the trace excerpt starts at around 670 s into the
benchmark run and ends at approximately 1,620 s. The spikes
on the left and right of the figure show I/O activity. To be
able to focus on these important parts, we do not show most
of the idle period in the middle. Our pmlib server collected
data for the power consumption, CPU utilization, as well as
HDD utilization and throughput. As can be seen, while the
I/O server is being heavily utilized during the I/O phases, it
is mostly idle during the computation phases. Since Vampir is
not able to show all recorded values due to the lower screen
resolution, it draws three lines representing the minimum, the
average and the maximum for each of the values.

Table IV shows the results for our modified IOR bench-
mark, which simulates client-side computation; the rest of the
configuration was not changed in any way. Due to the resulting
idle phases on the I/O servers, we omit the HDD utilization and
throughput. Additionally, we evaluated the IntelliPark (idle3)
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TABLE III. PARALLEL I/O BENCHMARK WITH SELECTED COMPRESSION ALGORITHMS (WRITE-ONLY).

Comp. Comp. Avg. CPU Avg. Dev. Throughput Time Avg. Power Energy
Algorithm Ratio Util. (%) Util. (%) (MB/s) (s) (W) (Wh)

off 1.00 115.5 87.0 723.40 851.95 529.88 125.39
lz4 1.92 152.6 74.8 1114.03 553.29 592.07 90.99

gzip-1 2.49 402.3 55.8 1113.71 553.50 847.63 130.32

power saving feature supported by our Western Digital HDDs.
As in the previous case, we repeated the benchmark using
different compression algorithms; a run without compression
(off) was used as the baseline.

The first set of results was conducted with the IntelliPark
feature disabled. As can be seen, with 3,212 s, the benchmark
now takes significantly longer to complete. While the average
power consumption decreases to 456 W, the increase in run
time leads to a total energy consumption of 407 Wh. For
the lz4 and gzip-1 compression algorithms, the results
look similar to the write-only test: Both algorithms help to
significantly reduce the overall runtime by increasing the I/O
throughput while, at the same time, increasing the average
power consumption. In gzip-1’s case, the power consump-
tion of 504 W leads to a higher energy consumption of 413 Wh.
lz4, however, only slightly increases the power consumption
to 462 W, which results in an energy consumption of 378 Wh.
While these energy savings are not as significant as the ones
on the write-only test, lz4 still manages to reduce the total
energy consumption to 93 %.

For the second set of tests, we enabled the IntelliPark
mechanism and set the timeout to the default of 8 s. While
IntelliPark helps minimizing power consumption of unuti-
lized hard disk drives by intelligently parking the head of
the disk, it also has its drawbacks: The disks may break
sooner due to the high frequency of parking and unparking
the disk head. Additionally, the warm up period required to
resume operating from the park state adds extra latency to
disk accesses. However, in HPC the hard drives are either
fully utilized or idle for longer periods, which means that
the IntelliPark technology fits perfectly for this use case. We
measured the power consumption of a single server by enabling
and disabling the IntelliPark technology on a single hard drive
and observed a difference of approximately 1 W. The results
of our experiment with IOR confirm that we can decrease the
power and energy consumption by about 5 % across the board.
Apart from that, we do not observe any other meaningful
change.

IV. RELATED WORK
The energy efficiency of parallel I/O has been examined

in several papers. Rong Ge et al. [18] provide an evaluation
of parallel I/O energy efficiency using PVFS and NFS. They
evaluated different I/O access patterns and block sizes, con-
cluding that accessing larger data sets is more energy efficient.
Moreover, they examined the potential benefits of leveraging
DVFS in the compute nodes for I/O-intensive applications
where lowering the clock frequency to half reduced energy
consumption by around 25 % without compromising applica-
tion performance. Our benchmarks are configured according to
this paper. The authors in [19] propose Sera I/O, a portable and
transparent middleware to improve the energy efficiency of I/O
systems. Sera I/O creates a table from profiling information
of micro-benchmarks. At run time, Sera I/O analyzes the
I/O pattern of the application using the pre-created table and
applies DVFS techniques accordingly. Takafumi et al. [20]

propose an energy-aware I/O optimizer for check-pointing and
restart on a NAND flash memory system. Based on profiles,
the optimizer applies DVFS and controls the I/O processes,
resulting in energy savings.

Mais Nijim et al. [21] integrate flash memory in the
storage architecture to improve the energy efficiency of the
disk subsystem. Using flash memory as a cache to keep the
frequently used data sets, they are able to serve most of the
I/O from the cache and put the majority of the disk drives into
standby mode to save energy. The authors of DARAW [22]
added write buffer disks to the system architecture to minimize
energy consumption. Using a set of disks to temporarily store
I/O accesses allows them to spin down storage disks for
longer periods and reduce the power consumption. The impact
of the disk speed on energy consumption is also presented
in [23], [24]. In contrast to these papers, in our evaluation we
investigate the impact of techniques that can be implemented
in the disk controller to reduce energy consumption and do
not require any modification in any other part of the system.
However, above techniques can be combined with our proposal
to improve even more the energy savings.

The authors of [25] explore the impact of compression in
the storage servers by examining several file formats. However,
our work is complementary to this and we are specially
targeting HPC storage servers. Previous studies [26] have
shown that scientific data can achieve high compression ratios
depending on the used algorithm. Moreover, in comparison to
our approach, which is server side compression, the authors
in [27] propose compression on the client side, minimizing
the amount of transmitted data between compute and storage
nodes by sacrificing CPU cycles on the compute nodes.

Our previously conducted deduplication study for HPC data
already showed great potential for data savings, allowing 20–
30 % of redundant data to be eliminated on average [28].
However, deduplication can be very expensive in terms of
memory overhead. The advantage of compression in compar-
ison of deduplication is that is does not require any kind of
lookup tables and is thus much cheaper to deploy because no
additional hardware is required.

V. CONCLUSIONS AND FUTURE WORK
Our evaluation shows that data compression in HPC storage

servers can be used to save energy and improve I/O perfor-
mance. On the one hand, less HDDs are required to store the
same amount of data due to the compression. On the other
hand, it is also possible to achieve a higher throughput by
storing more data in the same amount of time; this is especially
relevant in I/O-intensive cases. These two advantages lead to
lower procurement and operational costs.

However, it is important to carefully choose compression
algorithms due to their inherent CPU overhead. Using ex-
pensive algorithms will increase power consumption and can
theoretically even decrease performance. We have identified
lz4 as a suitable compression algorithm for scientific data and
will use it for further analysis in the future. Lustre’s ZFS back-
end provides a convenient possibility to leverage these com-
pression algorithms without modifying or influencing client

33Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies



applications. In more detail, using a real world data-set we
demonstrated that we can achieve compression ratios of more
than 1.5 without any significant increase of CPU utilization.
Additionally, we observed a reduction in energy consumption
of 30 % during the write phases and 7 % in write-intensive
applications.

In the future, we plan to extend our evaluations by includ-
ing additional factors such as energy-efficient SSDs, different
CPU and network configurations as well as the overhead
caused by decompression. Additionally, we want to take a
closer look at other technologies, such as encryption, which
are suitable to be handled by the storage servers. With current
parallel distributed file systems, it is not possible to shut
down individual storage nodes during operation; we will also
investigate this possibility to enable additional energy savings.
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