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Abstract—Including more renewable energy sources in the
energy mix will increase the necessity for a finer grained,
automatic control of changes in the energy level. Any such
software needs extensive testing before it can be released for
general availability. Simulation environments will be a part in
these testing stacks, but need realistic input data in order to yield
expressive and therefore useful results. However, comprehensive
input data is often not available or fragmented. We therefore
propose a simulation environment that can use open data sources,
switch them dynamically, and attribute the testing results with a
possible data quality impact.
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I. INTRODUCTION

The shift from traditional, fossil energy sources to renewable
ones such as photovoltaic or wind poses challenges on the
existing energy grid. The inclusion of these renewable energy
sources becomes more and more difficult with higher number
of deployments. A multi-agent based approach has been sug-
gested, for example, in [1], in order to counter the increased
complexity in grid management.

Simulation runs have been widely accepted as a means to
test software, especially network-based, distributed software
architectures. While unit testing can assert the correct func-
tional behavior of a particular module, or unit, of the software
being tested, the interaction of several instances of the com-
plete software architecture cannot be asserted by unit testing
alone. Several simulation environments have been proposed,
both generic network simulators, such as OMNeT++ [2], and
smart grid-specific solutions, such as MASGriP [3].

Descriptive and therefore successful testing always depends
on the right choice of test data. In the case of renewable energy
sources, a large portion of these simulation data is formed by
weather measurements. Even source data regarding a single
topic such as the aforementioned weather measurements can
be heterogeneous, for example, when a portion of the data
has a high resolution while another portion of it only offers
a low resolution. But a testing environment usually does not
explicitly care about the actual source of data; the task of
asserting data quality therefore falls to the scientist. He, in
turn, typically handles data quality differences by partitioning
the source data and, therefore, doing different test runs.

Data quality is especially important when using open data.
Using open data can be useful or even necessary for different

reasons, like, e.g., budget limits. In this paper, we propose a
simulation environment for smart grids that utilizes open data
and annotates simulation runs based on these sources and can
continue even if the data source is fragmented or incomplete.

II. MOTIVATION

In [4], we have proposed a lightweight smart grid messaging
protocol for a distributed agent-based environment that, by
design, treats all items within the energy grid equal, but forms
microgrids automatically. Using this protocol, consumers and
producers interact with each other and calculate demand and
supply in a distributed manner. The nodes in the grid, which
are represented by agents, commit themselves to deliver or
consume a certain amount of energy based on the preceding
message exchange. The goal of this system of distributed
agents, which exhibit these messages, is to use renewable
energy sources more effectively. In order to do so, short-term
forecasts are used in a grid-wide, distributed planning phase
that leads to an automated, more dynamic grid management.

Since the location of some types of renewable energy
sources, such as wind farms, are dictated by the source itself—
a wind farm must be built on sites where the wind currents are
strong and steady—, we expect the general behavior of smart
grid agent messaging to show patterns based on locations.

As such, a simulation environment for this kind of smart
grid distributed agent approach must focus on map positions.
Hence, it becomes tightly coupled to spatial information,
which, in turn, allow us to treat simulated items more ef-
fectively. Consider, for example, wind speed measurements.
These are valid for a certain area and thus can be applied
to any number of items within this area. Without this spa-
tial relationship, each simulated item would have to look
up measurements individually, thereby causing more queries
and calculations being made. In fact, each participant in
our simulation environment needs to be locatable and thus
automatically becomes an item on the map when entering the
environment.

Having spatial data, i.e., a map, as the common basis also
allow us to use realistic weather data. Although [5] suggests
that many typical weather conditions can be synthetically
modeled, the use of real measurements allow us to test
agent behavior for location-specific weather conditions and
phenomena.
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The most precise information source for weather data is typ-
ically a national weather service. Often, however, data needs
to be bought. Supplying data to a long-running simulation for
a whole country can therefore imply a financial impact that is
not desirable. The same can hold true for spatial data such as
the position of wind parks or other power plants.

We therefore propose the use of open data within our
simulation environment. But since open data can be less exact,
care must be taken. Although this could simply mean setting
up a separate simulation run, one would loose the internal
state of the simulation environment. A combination of both the
more exact but expensive national weather service’s and the
open data source can therefore be desirable. This combination,
however, must be carefully augmented in order to try to assert
the impact of using different data sources throughout one
single simulation run.

Transparently switching between different data sources al-
lows us to take advantage of the more exact data when-
ever possible and still enables us to have a long-running
simulation, thereby observing our agent software’s behavior
and the message exchange caused by it over a longer time,
which potentially yields more diverse data. The assessment
additionally shows the impact this switching to a less exact
data source had on a particular simulation run.

The remainder of this paper is structured as follows. We
briefly outline the general architecture of the simulator in
the following Section III, where we outline how the spatial
indexing helps us to express the locality of certain events.
Afterwards, in Section IV, we show how our proposed en-
vironment can be used for larger-scale simulations spanning
multiple computing nodes. The extensive use of open data
is described in Section V, followed by a discussion of the
implications of using open data sources in Section VI. Finally,
we conclude and show pointers to future work in the final
Section VII.

III. ARCHITECTURE OF THE SPATIALLY-INDEXED
SIMULATOR

Each simulation is controlled by a Controller class
instance that forms the core of this time-discrete simulation
environment. It is responsible for tracking the current time
within the simulation and issuing events. Event objects are
issued during a tick and reach all relevant participants within
the simulation, which process them and finally return them
to the controller. As soon as all have returned, the controller
advances to the next time in the simulation at which events
are scheduled.

The Controller also contains a list of all items par-
ticipating in the simulation. These items are wrapped in
MapItem classes. Since every simulation participant is ul-
timately a MapItem, this provides an unified interface be-
tween simulation controller and simulated item. By acting as
adapters, these wrapper classes feed the native agent interfaces
with the input data generated within the simulation environ-
ment.

When agents communicate with each other, the same wrap-
per technique is applied. The simulation provides virtual
data connections, which facilitate the transition to the virtual
simulation environment. The original agent software can there-
fore remain unchanged: testing is done as black-box testing.
Consequently, agent code is not part of this paper.

Mainly the targets of events such as a simple time change
or a simulated sensor reading are MapItem objects. This
group is constituted of nodes within the power grid that are
subject to the simulation and thus our agents that are being
tested, namely, power lines, substations, consumers or power
generators. However, all data sources that deliver input like,
for example, weather data, are also a part of this group.

The simulation replaces actual hardware sensors of an agent
by artificial stimuli. These stimuli are modeled as discrete
events within the simulation. They also have coordinates
attached to them: A wind speed measurement, for example,
is valid for a particular region; the same applies to a load
profile. The sources for artificial sensor data provided by
the simulation are thus instances of the MapItem class,
called ValueGeneratingMapItem. Their coordinates are
constituted by the area they provide valid data for.

Consequently, each Event instance created by such a map
item also has an area of effect for which it is valid. Any event
is thus delivered to those map items that reside inside this
area. Thus, events can be seen as tuples (A, V ), containing
the area of effect and a value. Typically, an event’s area of
effect equals the polygon forming the position of the map
item. For example, for wind speed changes, this is the region
for which the measured data are valid.

Finding a particular item on the map is done by using a
R*-Tree structure [6]. For each item, its coordinates are repro-
jected to WGS84 [7], if necessary. WGS84 is the shorthand
symbol for the Spherical Mercator projection, used, e.g., by
the Global Positioning System (GPS). It uses latitude/longitude
values instead of metric units and thus forms a common basis
for all coordinates stored in the database.

After reprojecting, a bounding box for the new coordinates
is computed. The bounding box is the rectangle used by the
R*-Tree structure, into which it is then inserted.

Thus, the proposed simulation environment is able to inte-
grate the artificial stimuli in the same manner as it integrates
the actual agents being tested, which allows for greater flex-
ibility and simplicity in the overall design of the underlying
software architecture.

Prior to running, the simulation environment is configured
via an object of the class Description. This class’ at-
tributes contain the information required in order to set up the
simulation itself, which are the simulation’s start and possibly
stop time—the latter only if the simulation does not run
endlessly—, a polygon designating the area within which the
simulation takes place (the “bounding box”), and the definition
of a factory class responsible for populating the environment.
The latter one is accompanied by an enum set that specifies, for
the three categories consumers, power generators and power
grid, whether items from the respective category should be
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Figure 1. The Simulation namespace

created or not.
The description can be serialized to and from JSON [8],

allowing an user to configure a simulation run by just creating
a description in the text editor and feeding it to the simulator
upon start. Thus, “simulation recipes” can be created which
allow for repeated simulation runs in a defined manner. This
is important for asserting the correct working of a new agent
implementation and measuring possible improvements of such
a new software version.

This basic layout of the relevant classes is depicted in the
UML diagram of Figure 1.

The simulation controller offers another interface based
on Qt’s signal-slot principle [9], which can be used for
other programs to link to the controller and observe
the events within the simulation. All classes within the
Winzent::Simulation namespace form one library; any
frontend can link to it and display the simulation and its results
in the way it chooses. Thus, simulation logic and view are
separated which also enables the simulation to run headless. A
headless simulation service can be used for running a clustered
simulation as we outline in the next Section.

IV. DISTRIBUTED SIMULATION

The simulation environment is multi-threaded; it keeps the
actual event processing in separated worker threads to speed
up the duration of one tick. When running standalone, the
number of worker threads spawned equals the number of CPU
cores. Each worker thread has an incoming event queue filled
by the controller, as well as an outgoing event queue, wherein
processed events are stored.

On local execution, these worker threads also store the map
items themselves, i.e., event processing takes place on the
local machine within these worker threads. For remote execu-
tion, the class TcpSimulationThread serializes and de-
serializes events and transmits them to remote slave workers
instead of feeding a calculation.

Figure 2. The simulator showing a part of Hesse, Germany, with
areas of effect highlighted

These remote slave workers use the same classes as the mas-
ter machine, i.e., the ones described in Section III. Such a slave
machine uses one instance of the TcpSimulationThread
to receive new events, which are enqueued into the slave
Controller’s own event queue. The events then get pro-
cessed on this slave machine via worker threads; processed
events are serialized and transmitted back to the master
controller.

This way, the simulation test bed can easily span multiple
machines although the same classes are used. Since there is
per definition one master controller that issues a new tick only
once all other events for a simulation time has returned, all
machines are in sync at the very beginning of a new tick.

Configuration is done via the Description class which
also supplies all other parameters as per Section III. The
simulation description additionally allows to specify a fixed
mapping of a node or a set of nodes to a particular machine.
This allows to break out specified nodes and run them on
an embedded board, thereby additionally simulating hardware
and memory constraints of a real smart grid node.
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Figure 3. UML class diagram of the data source strategy pattern

V. USE OF OPEN DATA

The Winzent simulator does not rely on a single source
of data for one particular input. Given, for example, weather
data, it can query a national weather service’s database or
an online data provider such as OpenWeatherMap [10] or
WorldWeatherOnline [11]. It is also possible to switch to
completely synthetic input value generation.

However, not all sources have the same accuracy. Continu-
ing with the weather data example, a dataset bought from the
national weather service is likely to have a higher number of
measurements available than an online service, which might
serve data at three-hour intervals. As such, the user is likely to
prefer the national weather service’s dataset to other sources.

The simulation environment allows to express this by simple
ordering through priorities. Only if a data source cannot offer
any more data, the simulation environment will switch to one
with a lower priority. These data sources are an implementa-
tion of the strategy pattern [12] used in object-oriented design.

Every time a ValueGeneratingMapItem receives
a TimeChangedEvent, it queries the attached data
source with the highest priority for data. If it cannot
offer any, the DataSourceStrategy instance throws
a DataSourceDepletedException. This prompts the
ValueGeneratingMapItem instance to query the next
one with a lower priority. This is done until the last data
source has thrown an exception, which is then escalated to
the Controller, which finally stops the simulation: A
simulation which is not completely covered by valid data has
no use in going on. Figure 3 shows the class architecture
accomplishing this behavior.

While this simple mechanism allows the simulation to
proceed even if one data source is depleted, the potential
change in data quality obviously has a huge influence on the

final results of the simulation run. An assessment of the data
quality has to be done; at the least, the user has to be notified
of the change.

Therefore, each data source has a derivation from the
optimal data source attached to it. The optimal data source
is, per definition, the first data source in the queue of possible
data sources. Each other data source therefore is compared
against the optimal source as long as this first source has data
available. We discuss the metrics offered by this simulation
environment in Section VI.

Another public source for data is the OpenStreetMap project
(OSM) [13], which offers geospatial data free according to
their licence [14]. OSM works like a wiki for geospatial data,
i.e., everybody can add GPS traces to the database, tag ways
and nodes on this map and supply additional data for existing
items on the map.

This database can be imported into one’s own Post-
greSQL/PostGIS server [15]. Together with a Mapnik/mod_tile
stack, this database can be used to render map tiles, such as
the one which forms the background in Figure 2.

We also extract the locations of elements participating in
the electricity grid from OSM where they are not covered by
more exact databases.

The OSM database does not only contain spatial data, but
also additional information such as the voltages a specific part
of the power transmission system carries. This information is
made available via hstore-based attributes called tags, which
can be queried and extracted as a standard PostgreSQL feature.
These tags, in OSM terms Map Features, are documented in
the project’s wiki [16].

VI. DISCUSSION

The proposed simulation environment offers two benefits.
First, it treats both tested agents as well as data sources

as items on the map. The attachment of spatial data to map
items and events alike allows us to model realistic scenarios
using real data sets. Together with the discrete event design,
a simulation run can easily scale to run on a cluster.

Second, the simulator can switch data source strategies on
the fly. However, with a change in the data source, there is
also a possible change in the result of the simulation run. The
simulator therefore must record that a switch has occurred,
at which point this happened, and what data source strategy
was subject to the change. This allows the simulation run to
continue even if the preferred data source is unavailable, but
also gives the user an indication that the quality of the result
data may also have changed.

However, simply stating the fact that such a change occurred
does not yet help in assessing the impact of the change.
Therefore, the simulation environment provides two additional
metrics to aid the user. We discuss these using the example of
the German national weather service, Deutscher Wetterdienst
(DWD) and World Weather Online (WWO).

For the simulation, the number of issued events is of
foremost importance. An event triggers actions in the agents
which participate in the simulation, ergo without events, there
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Figure 4. Wind speed at March 3, 2011 in Mannheim; impulses symbolize triggered events

will be no action. Thus, the number of events issued is the
first available measurement for the quality of a data source.
Figure 4 shows how different sources trigger a different
number of effects: The vertical impulses show an event that
would have been fired. One can observe that the open data
source leads to a significant lower number of events in the
system than the bought, high-resolution data from the DWD.

Using the second data source therefore reduces the ex-
pressiveness of the simulation run: The two data sources
differ in their entropy. We obtain the per-source entropy using
H(X) =

∑
i P (xi)I(xi) = −

∑
i P (xi)log10P (xi).

For our example day, the DWD source obtains H(DWD) ≈
1.57 Sh while the open data source has an entropy of
H(WWO) ≈ 1.04 Sh .

In order to arrive at these numbers, records the number of
events that are triggered by the primary data source as long
as it is available, and also measures how many events would
have been issued by all other, lower-priorized data sources
along with the values both sources yield.

Obviously, not only the number of events, but also the
values conveyed by particular events are important. Whenever
a ValueChangedEvent is triggered, it simulates a sensor
reading coming from a data source within the simulation test
bed. When a change in the data source strategy has occurred,
this possibly also changes the values for those types events.
The simulator therefore also records all possible event values
in the same manner as it records the number of events triggered
and calculates a derivation to the primary data source strategy.

This derivation is the source for an error calculation that
allows us to express how much the current data source differs
from the ideal one. The possible derivations introduced by the
error of a data source that is not the reference source allow us
to judge where a simulation run may have failed even though
the data itself suggests it succeeded.

Figure 5 compares two data sources for errors.
These values are finally summed up to produce an overall

result of the data source strategy change. Such a comparison
has been done in Table I. The values hold true for one

particular day, which was also the basis for the previous
Figures 4 and 5.

However, the data source strategies are not the only place
where open data are being used by the simulation environment.
The map itself and the position data of most items are read
from a local copy of the OSM database. There is, however,
no fallback as it is employed with the data source strategies.

The trustworthiness of this database is important regard-
ing two requirements: First, because it provides positioning
data for the power grid, power substations, producers and
consumers, and even map tile images. Second, because the
additional attributes attached to these nodes, like voltages
carried by a part of the power transmission network or installed
types of windmills within a wind farm, form another data set
that is used throughout the simulation.

The issue of trusting a community-driven data set has been
thoroughly discussed for Wikipedia, for example, in [17], and
OSM has also been used to increase efficiency of emergency
medical services (EMS) [18]. For our own usage, we’ve
compared the OSM data regarding wind farms to those from
TheWindPower.net, an on-line wind turbines and wind farms
database [17].

It shows that the overall number of wind farms registered
is lower in OSM than in The Windpower’s data. However,
OpenStreetMap always offers a position since this particular
attribute must not be null, whereas The Windpower actully can
contain data without a location attached. For the simulation,
both cases are not useful: If the wind farm data set has
a location, but no other useful information, the simulation

TABLE I. COMPARISON OF DATA SOURCES DWD AND
WORLDWEATHERONLINE.COM

DWD WorldWeatherOnline.com

Events triggered 166 23
Events derivation 0% 13.9%
Derivation (Avg) 0m

s
0.81m

s
Date 2011-03-01
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Figure 5. A reference data source (DWD) and an open data source
(WWO) with error shown

environment cannot determine the electricity output of the
installation; if this data is available, but the position is not,
the simulation environment is unable to connect it to the
transmission system at the right point.

Table II offers an overview over the most important figures
as discussed.

As such, OSM is useful to render map tiles which allow
the user to orient himself, but regarding data for simulation
purposes, a specialized database should be preferred.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a discrete-event based
simulation environment for smart grid messaging with a design
adhering to the Don’t Repeat Yourself (DRY) principle as
much as possible. It is fully spatially indexed, which turns
each participant into an item on a map and allows for quickly
finding those items which are affected by a change of the
environment.

The discrete events and the also discrete, locatable
MapItems enable the user to run any simulation distributed,
while the simulation description provides him with a tool to
create reliably repeatable simulation runs.

The simulation environment makes heavy use of open data.
It reads location data from OSM and attaches additional
information to map items from the same data base. It is able to
transparently switch between data sources, mitigating “holes”
in one data set. While this allows the simulation to go on, it is
also recorded; the simulation environment also provides hints
on the possible impact of this change in data sources.

In the future, we will refactor the network code to be based
on a Message Passing Interface (MPI), which will allow users

TABLE II. COMPARISON OF DATA VOLUME OF OSM AND
THE WINDPOWER

Feature OpenStreetMap The Windpower

Wind farms registered 508 13649
Wind turbines 1537 20215
Usable datasets 344 10101

to deploy the simulation testbed on any cluster.
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