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Abstract—At an early stage of information and
communications technology and high-performance
computing, performance and reliability were two
important factors in research and development. It
was highly essential that the hardware was able to
function adequately, performing strategic operations.
Energy consumption was not considered as a serious
topic, since the technical characteristics of hardware
and software were limited and the amount of comput-
ing nodes in a computing cluster, i.e., a data centre
was small. Gradually the situation has evolved a lot:
nowadays there are multiple data centres located
in geographically diverse locations and the software
has become more complex. Modern data centres
are equipped with a large amount of computing
nodes having vast computing power. However, all this
progress has not come without a price, since more
computing power equals more total power consump-
tion. Consequently, energy consumption has become
a major topic nowadays. This work presents two
algorithms for optimizing energy and emissions in
high-performance grid computing, in which multiple
data centres are interconnected to each other. The al-
gorithms are validated in a simulation environment by
comparing them to standard round-robin algorithm.
Our simulation experiments show that the solution
is able to reduce energy consumption and emissions
drastically without increase in job turnaround or wait
time.
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I. Introduction
Energy consumption is an increasingly important

consideration in computing. Data centres consume sub-
stantial amounts of energy, at an increasing financial and
environmental cost. In 2006, U.S. servers and data centres
consumed around 61 billion kilowatt hours (kWh) at a
cost of about 4.5 billion U.S. Dollars [1]. This is equal
to about 1.5% of the total U.S. electricity consumption
or the output of about 15 typical power plants. High
energy consumption naturally causes huge environment
pollution. It has been estimated that ICT, as a whole,
covers 2% of world’s CO2 emissions [2].
In High-performance Computing (HPC), the ever-

growing demand for higher performance seems to in-
crease the total power consumption, even though more

flops per watt are achieved. In order to provide even
greater computing capabilities, HPC data centres can be
interconnected to each other to form larger, federated or
HPC grid data centres. The connection is implemented
by using special grid software (e.g., UNICORE [3]) that
manages the job submissions to all data centres belonging
to the grid.
The energy consumption between the data centres

may vary radically due to the different characteristics of
the centres. For example, the server hardware in each
centre may be different and consume different amount of
energy. The centres may also locate geographically far
from each other and the surrounding climate can cause
large differences in the needed cooling, i.e., the Power
Usage Effectiveness (PUE) [4] values between different
centres may vary due to the surrounding climate. Also,
since the energy sources can differ between the centres,
the CO2 emissions of the data centres may vary radically
depending on the available energy sources. The differences
between the data centres naturally enable optimizations
regarding energy consumption and CO2 emissions. In
this paper we introduce two algorithms for selecting the
data centre inside the grid in energy- and CO2-aware
manner. The performance of the algorithms is studied
by simulations and the results show significant savings
in energy consumption and CO2 emissions.
The rest of the paper is organized as follows: Section

II describes the related work. Section III introduces
the cluster selection algorithms. Sections IV and V
present the simulation model and scenario, respectively.
Simulation results are presented in Section VI. Conclusion
and future work are presented in Section VII.

II. Related work
As described in [5], several methods for saving energy

in single HPC data centres have been studied. The
methods include mainly the use of energy-efficient or
energy proportional hardware, Dynamic Voltage and
Frequency Scaling (DVFS) techniques, shutting down idle
hardware components at low system utilizations, power
capping, and thermal management. In our prior work
[5], we used an energy-aware job scheduler to schedule
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the jobs inside single data centres and shut down idle
computing nodes whenever possible. We also noted that
merely the choice of a different scheduling algorithm can
affect the energy consumption of a data centre. In this
paper we extend our scope from single HPC data centres
to HPC grid data centres, and introduce two algorithms
for selecting the data centre inside the grid in energy-
and CO2-aware manner.

To the best of our knowledge, there has not been much
previous research that addresses the energy efficiency
or CO2 emissions of the grids from the whole grid
perspective; mainly only optimizations inside a single
data centre have been studied. Perhaps the most similar
approach to our approach is Heterogeneity Aware Meta-
scheduling Algorithm (HAMA) [6]. HAMA first selects
the most energy-efficient cluster for the job based on
the power consumption of the servers and the efficiency
of the cooling system. Additionally, when running the
job, DVFS is used to reduce the power consumption of
the CPU. The simulation results show that HAMA can
reduce up to 23% energy consumption in the worst case
and up to 50% in the best case as compared to other
algorithms (EDF-FQ, which prioritizes jobs based on a
deadline and submits jobs to resource sites in earliest
start time (FQ) manner with the smallest waiting time).
Without DVFS, HAMA can still result in power savings
of up to 21%.
Lynar et al. [7] have explored the effect on energy

consumption by using different resource allocation mech-
anisms, both in a cluster and in a grid. The results show
that different resource allocation methods can result in
a significantly different energy usage while computing
a stream of tasks. The Pre-processed Batch Auction
(PPBA) and batch auctions almost always result in
significantly lower energy use than a random resource
allocation. By using a simple batch auction allocation
method, energy consumption can be reduced up to 37.5%,
and possibly even more by using the PPBA method.

Patel et al. [8] have presented an energy-aware policy
for distributing computational workload in the Grid
resource management architecture. They introduce a data
centre energy coefficient that is taken into account as
a policy when making allocation decisions for compute
workloads. This coefficient is determined by the thermal
properties of each data centre’s cooling infrastructure
including regional and seasonal variations. The estimated
energy savings in case of three data centres located in two
different time zones were large enough to give sufficient
reason for the economic viability of the approach.
Shah and Krishnan [9] also analyze the climatic

conditions as a means to reducing cooling energy costs.
They show that dynamic optimization of the thermal
workloads based on local weather patterns can reduce
the environmental burden by up to 30% in their case

study. Additionally, the data centre operational costs
can be potentially reduced by nearly 35%. Due to the
variability of fuel mixes encountered in a global grid, they
also found that the use of pure energy consumption as
a metric for environmental sustainability — a common
practice in the ICT literature — can be erroneous.
The GREEN-NET framework [10] consists of an

ON/OFF model, which includes prediction heuristics
and green advice for the users and takes the decision
to switch on or off the nodes, and an adapted energy
efficient Resource Management System (RMS) at the
grid level.

III. Optimization in the HPC Grid
The optimization algorithm in the HPC grid focuses

on optimizing the scheduling process in the UNICORE
middleware [3]. The scheduling process is triggered by
submitting a job from the UNICORE Commandline
Client, or from the UNICORE Rich Client to the
UNICORE Workflow Engine. The UNICORE Workflow
Engine queries a UNICORE Service Orchestrator (USO),
on which cluster the job should be submitted. As a
default, the USO uses round-robin algorithm for choosing
the cluster. After cluster decision, the job is submitted
to the RMS of the chosen cluster. The RMS takes care
of executing the job according to the used scheduling
algorithm, e.g., FIFO or backfilling.

In this work, we focus on reducing the energy consump-
tion and the CO2 emissions. The CO2/energy related
optimizations should not affect the current Service Level
Agreement (SLA) or QoS agreements, or alternatively,
a new green SLA [11] could be used. In HPC, there are
no clear SLAs between users and data centres, but a
reasonable turnaround time can be seen as sort of a QoS
agreement. A possible green SLA for HPC data centres
could mean that the users allow certain delay for the
execution of their job. As a bonus, they will get some
extra computing time for free.

For decreasing CO2 emissions and/or energy consump-
tion in federated HPC data centres, the optimization
algorithm will be used for performing the cluster selection
in CO2/energy-aware manner. In addition to cluster selec-
tion algorithms, also energy-aware single site scheduling
algorithms will be used. As depicted in Figure 1, the
USO in UNICORE receives job requests coming from the
users. The jobs include the requirements for the needed
resources (e.g., number of nodes/cores, RAM, etc.). If
the user wants to use the green SLA, it is also included
in the job requirements. The grid optimization algorithm
is used to select the most suitable cluster for the job
and the job is subsequently submitted to the RMS of
the selected cluster. The RMS uses energy-aware job
scheduling algorithms to schedule the job and power off
idle servers. The energy-aware job scheduling algorithms
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Figure 1. Job submission in a federated HPC data centre

for single site data centres were defined in our previous
work [5].
A. Carbon Usage Effectiveness

Carbon Usage Effectiveness (CUE) is a sustainability
metric developed by the Green Grid organization [12].
The main purpose of the metric is to address carbon
emissions associated with data centres. The CUE can be
calculated as follows:

CUE = SiteEmissions

ICTEnergy
, (1)

where ICTEnergy is the energy consumpted by the ICT
equipment in the data centre. An alternative approach
for calculating the CUE is to multiply the Energy Source
Coefficient (ESC) by the data centre’s PUE:

CUE = ESC ∗ PUE, (2)

where PUE is a metric for defining how efficiently the
power in the data centre is used, i.e., how much power
is actually used by the ICT equipment and how much
power is used for cooling and other equipment. ESC is
defined as follows:

ESC =
∑

ESP ∗ EEC, (3)

where Energy Source Percent (ESP) indicates the percent-
age of the energy generation source, and Energy Emission
Coefficient (EEC) indicates how many kilograms of CO2
are emitted per 1 kWh of energy. Example values of the
EEC can be found in Table I [13]. By using the formulas
described earlier and the values in Table I, we are able to
estimate how much emissions are caused by data centres
with different energy sources:

SiteEmissions = CUE ∗ ICTEnergy (4)
= PUE ∗ ESC ∗ ICTEnergy.(5)

Table I
Energy emission coefficient factors

Generation type Conversion factor
(kgCO2 per kWh)

Closed cycle gas turbine 0.360
Coal 0.910
Electricity, France interconnector 0.083
Electricity, Ireland interconnector 0.699
Non pumped storage hydro 0.0
Nuclear 0.0161
Open cycle gas turbine 0.479
Oil 0.610
Pump storage 0.0
Other 0.610

B. Algorithm/policy description
This subsection describes the functionalities of the

default round-robin cluster selection algorithm, as well as
the two developed algorithms for optimizations: Fastest
possible (FB) that tries to minimize the waiting time,
and CO2-aware (CUE) that tries to minimize the CO2
emissions.
1) Round-robin: Round-robin (RR) algorithm is gen-

erally used in USO for selecting the cluster. Round-robin
algorithm balances the number of jobs between different
clusters by always choosing the next cluster compared to
the previous selection. After the last cluster, the selection
is started again from the first cluster.
2) Fastest possible: Fastest possible (FB) cluster se-

lection algorithm tries to select the cluster that could
possibly execute the job with minimal waiting time. For
this, the algorithm first checks if there are enough idle
nodes/cores in some cluster for executing the job. If
yes and the cluster’s queue is also empty, the job is
submitted to that cluster. If not, an estimated waiting
time for the job in each cluster is calculated by using
the current status of each cluster: number of nodes and
cores, status of running jobs, number of jobs in the queue,
and walltimes of each queued job. The cluster with the
shortest estimated wait time is then selected.

The algorithm relies on the dynamic cluster properties
(status of nodes and queues), which can be obtained by
a single site monitoring system. Otherwise, this dynamic
information is not available for the USO, so the normal
cluster selection algorithms can exploit only static cluster
information for the decision making.
It should be noted that the wait time can only be

estimated. The walltimes of the jobs are given by the users
and, in general, they are inaccurate [14], [15]. Also, the
used scheduling algorithm affects in which order the jobs
are executed (especially backfilling). Thus, it is possible
to calculate only the maximum wait times for the jobs,
not the exact wait times.
3) CO2-aware: This algorithm tries to find the cluster

with the smallest amount of estimated CO2 emissions.
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The CO2 emissions of the job are CUE * ICTEnergy-
OfTheJob. The simplest way is to select the cluster with
the smallest CUE value. This works if the clusters have
significant differences in their CUE values (CUE = ESC
* PUE). If there are only small differences in the CUE
values, then additional estimations should be done, since
the job may consume different amount of ICT energy
in different clusters due to the different computing node
properties (CPU, RAM, etc.), and this difference may
become a greater factor than CUE for the CO2 emissions.
The ICT energy of the job can be estimated by using the
job requirements (number of nodes/cores, walltime) and
cluster’s computing node properties (CPU, RAM, etc.)
as inputs for power consumption models such as those
described in [5] and [16].
However, selecting always the cluster with the least

amount of estimated CO2 emissions would cause huge
load and queue on the cluster with the least CO2
emissions. This would mean large delay for the users.
Thus, some form of load balancing is needed for this
algorithm. In the conducted simulations (described in
the next sections), we used a queue size limit: If the
queue exceeded its size limit, the job was submitted to
the cluster with the second least CO2 emissions, and
so on. In the case of green SLA, the users set a certain
deadline for the completion of their job. This limit can be
used for load balancing: The estimated completion time
for the job can be calculated as a sum of the estimated
wait time and walltime of the job. If this is in the limits,
the cluster can be chosen. If not, the same calculations
should be made to the cluster with the second least CO2
emissions, and so on. If the user sets too strict a time
limit for the job that none of the clusters can fulfill,
the job should be either denied or the cluster should be
chosen by the Fastest possible algorithm.

If CO2 emission related information is not available for
the cluster, a similar kind of algorithm can be used for
selecting the cluster with minimal energy consumption
by replacing CUE by PUE.

IV. HPC Grid Simulation model
The simulation model has been developed with the

OMNeT++ discrete event network simulator [17] and
the INET Framework [18]. The design of the model is
similar as in [5], except that the model is extended from
a single site scenario to a federated site scenario.
Figure 2 illustrates the network topology used in the

simulations. It consists of three backbone routers, three
gateway routers, three data centre modules, five clients
and a USO module. In this scenario, the clients send
HPC job requests to the USO, which is responsible for
choosing an appropriate data centre, i.e., an HPC cluster,
for executing the job. The USO has been adapted for the
simulation so that it is capable of using the developed

USO

Data Centre 2

Data Centre 1

Data Centre 3

Figure 2. Network topology

optimization algorithms and making decisions based on
the dynamic properties of the cluster. Normally, only
static information of the cluster is available for the USO.

For the decision making, the USO can query the status
and properties of each cluster from the corresponding
RMS. Once the cluster is chosen, the USO forwards
the job request to the RMS of the chosen cluster. The
RMS uses the policies and scheduling algorithms of the
cluster to choose suitable servers for job execution. When
the job execution finishes, the RMS informs the USO,
which again forwards the information to the client that
submitted the job for execution.

The data centre module can be seen in Figure 3, which
is similar as in the single site scenario. It contains a
RMS, a fixed number of servers and a router between
them. The RMS handles all incoming job requests
arriving to the data centre and allocates the jobs to the
servers for execution according to the selected policies
and algorithms. Thus, the RMS also functions as a
scheduler in the simulation. The RMS supports 6 different
scheduling algorithms: standard FIFO, Backfill First
Fit and Backfill Best Fit algorithms and their energy-
aware counterparts developed previously (see [5] for more
information on these).
The RMS module includes parameters for the PUE

and the CUE. By using these two values, the USO is
able to select a cluster that is the most energy-efficient
or produces the least amount of CO2 emissions.

V. Simulation scenario
In this section, we describe the simulation scenario and

parameters. For evaluation we consider a scenario that
includes three data centres and 75 clients that are sending
job requests to the USO. The simulation is stopped once
1500 jobs have been completed. During the simulation
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Figure 3. Data centre module

Table II
Simulation parameters

Parameter Value

Simulation runs 10
Number of jobs 1500
Number of data centres 3
Number of clients 75
Number of gateway routers 3
Number of backbone routers 3
USO cluster selection algorithm RR, FB, CO2-aware
RMS scheduling algorithm FIFO, BFF, BBF
Server memory 4 * 2 GB = 8 GB
Server cores per CPU 2
Server CPUs 2
Server CPU idle power 15 W
Server core voltage 1.2 V
Client job cores 1, 2, 4
Client job load Uniform(30,99)
Client job nodes Uniform(1,20)
Client job memory Uniform(100MB, 2GB)
Client job run time Uniform(600s, 86400s)

we measure the energy consumed by each data centre
and present the obtained results in the next section.
General simulation parameters are presented in Table II.
Uniform(a,b) means randomly selected value according
to a uniform distribution between a and b.
In Table III, we can see the parameters for the three

clusters in the considered federated HPC data centre.
The clusters have different characteristics, such as, the
number of servers, PUE, and ESC. The energy sources
(O = Oil, C = Coal, H = Hydro, N = Nuclear) for the
clusters were selected so that both extreme ends in terms
of ESC were represented in the simulations, while the
third one represents something in the middle of them.
Also, servers have different operating systems (OS) and
processor architectures.

VI. Results

In all of the following figures, the algorithms are
shortened as follows:

Table III
Data centre parameters

Parameter Cluster 1 Cluster 2 Cluster 3

Servers 30 40 50
Energy source C 50% H 20% C 80% O 20% H 40%

N 30% O 20% N 40%
PUE 1.5 1.8 1.3
ESC 0.45983 0.85 0.12844
CUE 0.689745 1.53 0.166792
OS Linux Windows Linux
CPU arch. AMD Intel Intel
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Figure 4. Total ICT energy consumption. Black lines represent
the average value and the floating bars show the range of values
from minimum to maximum

• FB = Fastest possible USO cluster selection algo-
rithm

• CUE = CO2-aware USO cluster selection algorithm
• RR = Round-robin USO cluster selection algorithm
• FIFO = First In, First Out job scheduling algorithm
• BFF = Backfilling first fit job scheduling algorithm
• BBF = Backfilling best fit job scheduling algorithm
• E-FIFO, E-BFF, E-BBF = energy-aware counter-

parts for the job scheduling algorithms (idle nodes
are powered off whenever possible)

Figure 4 presents the total ICT energy consumption
of the three clusters for different USO cluster selection
and job scheduling algorithms. As can be seen, RR
with normal job scheduling algorithms consumes the
most amount of energy. RR with normal job scheduling
algorithms represents a generally used, un-optimized
algorithm combination in federated HPC data centres.
Thus, it serves as a comparison point when calculating
the energy savings and CO2 emission reductions.

Figure 5 presents the energy savings achieved by using
Fastest possible and CO2-aware USO cluster selection
algorithms instead of the default RR algorithm, and
by using energy-aware job schedulers on each cluster.
The energy-aware job schedulers are compared to their
normal counterparts; for example, the first bar (E-FIFO
FB) means the savings compared to FIFO RR. The last
three bars present the savings when using RR but with
energy-aware job scheduling. It can be seen that by using
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energy-aware job scheduling, 22% to 35% energy savings
can be achieved. Together with FB and CUE cluster
selection, the savings are about 25% to 38%. However,
if we only change the cluster selection algorithm, and
keep the normal job scheduling algorithms, we can see
from the Figure 6 that with FB we can save 17% to
30 %. Since the cluster selection is performed before job
scheduling, we can say that about 8 % of the total savings
are due to the energy-aware job scheduling, while the
rest is due to the FB cluster selection. When comparing
to RR with energy-aware job scheduling (as depicted in
Figure 7), we can see that FB and CUE cluster selection
algorithms can save additionally about 3% to 5%. For the
explanation, we have to take a look at the jobs’ average
wait and turnaround times and the simulation duration.

Figure 8 presents the average wait times of the jobs in
case of different USO cluster selection and job scheduling
algorithms. As can be seen, the average wait time is
clearly shorter with the FB USO algorithm. The CUE
USO algorithm with backfilling has about the same
average queuing time as RR, even though RR with FIFO
clearly has the longest waiting time. Also, there are
basically no differences between RR with energy-aware
and normal job scheduling. This is true also in general,
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as reported in [5]: energy-aware job scheduling does not
cause significant increase in wait time.

Figure 9 depicts the simulation duration, i.e., how long
a time it took to execute all the 1500 submitted jobs.
The graph shows the same as Figure 8: because the wait
times are longer with RR USO cluster selection, also the
simulation duration is longer.
Figure 10 presents the average job turnaround times

in case of different scheduling algorithms. The story is
the same as in previous figures: RR is slower due to the
longer queuing time.
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Based on the results above, we can conclude that RR
cluster selection with normal job scheduling algorithms
can be very inefficient in terms of energy. This is because
RR only balances the number of jobs among the clusters.
It does not take into account the differences in the
clusters (e.g., number of nodes/cores) or the differences
in the submitted job characteristics (e.g., number of
nodes/cores, walltime estimate). This can lead to a
situation where one cluster is over utilized with many jobs
waiting in the queue, while the other clusters can be under
utilized at the same time, with nodes running idle. The
energy-aware job schedulers (E-FIFO, E-BFF, E-BBF)
power off the idle nodes whenever possible, and this is why
a substantial amount of energy can be saved. On the other
hand, the FB cluster selection algorithm inherently takes
into account the differences in the clusters and submitted
jobs: it always selects the cluster with the estimated
minimal wait time, and thus balances the utilization
between the clusters. Then fewer nodes are running idle
and energy is saved.
Figure 11 presents the total CO2 emissions of the

federated HPC data centre. As can be seen, RR with
normal job scheduling causes the largest CO2 emissions.
Using energy-aware job scheduling reduces the emissions
due to the reduced energy consumption. Using FB cluster
selection reduces the energy consumption still a bit more
due to the better load balancing among clusters, and thus
the CO2 emissions are also smaller. CUE cluster selection
algorithm favours the cluster with the best CUE value,
i.e., least amount of CO2 emissions, and hence achieves
the greatest savings in CO2 emissions, about 37% to 45%
compared to RR with normal job scheduling. The CO2
savings are depicted in Figure 12 as percentages.

VII. Conclusion and Future Work

The results show that the generally used round-robin
cluster selection algorithm can lead to unbalanced uti-
lizations among clusters. This can be very inefficient in
terms of energy consumption and CO2 emissions. Using
energy-aware job scheduling to power off idle computing
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nodes whenever possible greatly enhances the energy-
efficiency. Load can also be balanced by replacing round-
robin cluster selection by the Fastest possible selection
algorithm. This leads to energy savings due to the better
utilization of clusters and shorter wait times. Using both
energy-aware job scheduling and FB cluster selection
simultaneously leads to greater energy savings than using
only one of them. The greatest CO2 emission savings can
be achieved by using CUE cluster selection algorithm
to favour the cluster with least CO2 emissions. The
actual savings in each case depends on the cluster and
job characteristics. In these simulations, for example,
the energy sources were chosen so that one cluster had
rather small CUE, another one rather big CUE, while
the third one was something between them. With smaller
differences in CUE, also the possible savings in CO2
emissions would be smaller.
Based on the simulation results presented above, we

propose to use FB cluster selection algorithm for the
jobs without green SLA, since it leads to energy and
CO2 emission savings due to the better utilization of
the clusters, and to better QoS due to the shorter wait
time. For the jobs with green SLA, we propose to use
the CUE cluster selection algorithm, since it can lead
to even greater CO2 emission savings than FB, while
keeping the QoS (in terms of time) at the user specified
level. It can be used also without green SLA, if some
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other parameter (e.g., queue size limit) is used for load
balancing to prevent excessive load on the "greenest"
cluster.

Previous research in the energy-efficiency of HPC grid
computing has mainly focused on performing optimiza-
tions inside a single data centre. This work presented a
global view by taking into account the whole grid: the
characteristics of the data centres, compute nodes and
the computing hardware. The most comparable approach
to our work is HAMA, described in [6]. The results of
HAMA are similar to our approach: energy savings are
between 23% and 50%.

Our future topics include building a high-performance
computing test bed and testing our proposed solution
in a laboratory environment. In the simulation studies
presented in this paper, the PUE was assumed to be
constant. However, PUE is not static in the long term.
Instead, it changes over time as a function of outside
temperature, for example. Future work would be to
investigate the impact of dynamic PUE on the energy
consumption and explore how the proposed solution is
able to cope with it.
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