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Abstract—Todays energy companies mainly use generalized
demand sets to predict the required amount of energy of their
customers on a high aggregation level. This is sufficient in
an energy consumption oriented power grid, having enough
resources to produce and transmit the requested and produced
amount of energy. With the increasing amount of renewable
energy sources, the power grid evolves from a purely consumption
controlled supply network to a production controlled grid. In
that environment the need for detailed short term energy demand
predictions increases. A first step to predict the demand of energy
is to find generalizable patterns within the energy consumption
data that can later on be used for early predictions on real time
data. To study the possibility to predict energy patterns nearly
real-time, we created an environment, where metering data is
collected every second and used for real-time pattern matching.
We developed and implemented pattern recognition algorithms
that use the abilities of in-memory databases with the collected
metering data in order to detect energy consumption patterns.

Keywords-energy pattern recognition; machine learning; in-
memory database;

I. INTRODUCTION

In industries energy expenses can make up to 43% of all

operational expenses. Many companies monitor their energy

usage on a detailed level and reduced their energy consump-

tion, for example by 58% in the aluminum industry since

1975 [1].

A study by the US department for energy has shown

that 71% of private households changed their energy usage

behavior after they got the possibility to monitor their energy

consumption based on in-home displays, even if the expected

savings are only between 5 to 15% [2], [3].

Today’s energy companies use generalized demand sets to

forecast the required amount of energy for a given period

of time. The amount of data recorded within an Advanced

Metering Infrastructure (AMI), that is expected to collect

metering data every 15 minutes, would enable more detailed

energy demand predictions [4]. In contrast, short-term demand

prediction based on real-time smart metering data is not used

to reduce the gap between demand and supply of energy. That

gap comes with high costs and can lead to bankruptcies of

energy companies in extreme cases [5]. One of the reasons

is the amount of data produced within an AMI, where each

smart meter produces more than 35,000 meter readings per

year.

We evaluated how a new trend in the database market helps

to handle the amount of data produced by an AMI: in-memory

databases. In-memory databases offer the possibility to run

analytical workloads on transactional data within seconds, the

used column-oriented data layout is not optimal by default for

write-intensive workloads like the smart grid [6]. To enable a

high transactional throughput, like it occurs within an AMI, in-

memory databases use techniques like write-optimized buffers

and bulk loading [7].

In this paper, we will focus on short-term pattern recognition

of manufacturing machines. Short-term pattern recognition in

that case means, that we are able to detect usage patterns

within real-time enabling the energy provider to adjust their

energy production for the remaining period of the pattern.

A completed consumption pattern describes an energy usage

pattern that occurs when a machine creates a product. There-

fore, we have installed a metering infrastructure that enables

us to collect energy usage data from several devices within

a one second interval. In our scenario we use the energy

consumption data created by a fully automated coffee machine,

as well as several other devices. We detect the consumption

pattern of that machine and forecast its future short-term

energy demand based on historically recorded data within the

in-memory database. This coffee machine is able to produce

different types of coffees creating a more or less unique energy

footprint during its production period. The goal is to detect the

produced coffee as soon as possible and to predict the amount

of energy required within the remaining production time.

The rest of the paper is organized as follows. Section V

presents related work in the area of energy data pattern recog-

nition The used pattern recognition and prediction methods

are presented in Section II, while the experimental setup is

described in detail in Section III. The evaluation of our pattern

recognition algorithms is presented in Section IV followed by

the conclusion and outlook in Section VI.

II. PATTERN RECOGNITION

In general, the field of pattern recognition is associated

with the automatic discovery of similarities in data, which is
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achieved through machine learning. Pattern matching can be

used for regression analysis and classification [8]. Regression

analysis models a function from a set of data points in order to

interpolate and extrapolate between this data set. Classification

decides to which of n classes a given data set belongs.

We use supervised learning methods, a technique that takes

a training set of patterns for learning and undertakes to

generalize from this training set to also identify untrained

patterns [9]. Given an input vector X the algorithm calculates

an output vector Y . The actual class of X is called the

target vector T . In supervised learning the algorithm goes

through a learning phase, where it is given a set of training

vectors X = {X1, X2, ..., Xi} with the corresponding target

vectors T = {T1, T2, ..., Ti}. The algorithm then tries to

find a function yk = Y (Xk) so that the deviation of the

output vector for each x is minimal. During our project, we

implemented multiple pattern matching algorithms from which

we chose three to present within this paper: inter-quartile

range coverage (IQRC), a multi class support vector machine

(MCSVM) and a k-nearest neighbor (knn) algorithm.

A. Inter-Quartile Range Coverage

We developed the IQRC pattern matching algorithm for our

scenario to classify recorded patterns. Given a set of training

vectors we calculate the upper and lower quartile for each

dimension of all Xi that have an identical target vector Tk,

which means they lie in the same class. The range between the

upper and lower quartile is called inter-quartile range (IQR).

Given an input vector X , we sum up the dimensions of X

that lie in the IQR of the same dimension in the training

patterns. This is done for each classifier and compared against

a threshold. If the threshold of classifier i is exceeded the

algorithm identifies the input series as product i.

For classes with a high deviation amongst vectors the IQR

will be larger than for classes with a small deviation. To take

that into account, the value of a dimension lying in the IQR of

a class is 1
1+‖IQR‖ , rating the values that lie in smaller IQR

higher than values that lie in a greater IQR.

This step is done for each of the products. Our algorithm

will output the product that exceeds its threshold the most.

The algorithm can be formalized as follows: Let X =
(x1, x2, ..., xn) be the input vector and jki be a vector with

all values from the training patterns of class k in dimension

i. δ(k) denotes the threshold of class k.

y(x) = argmaxk∈Classes

(

(

n
∑

i=0

w(xi, j
k
i ))− δ(k)

)

(1)

where w(xi, j
k
i ) =











1
Q.75(jki )−Q.25(jki )+1

, if xi ∈ IQR(jki ),

0, else.
(2)

and IQR(jki ) = {w|w ∈ jki ∧ Q.25(j
k
i ) < w < Q.75(j

k
i )}
(3)

If more than one beverage has an IQRC above a certain

threshold, we chose maximum overstepping. Due to the rel-

atively high warp amongst patterns, it is difficult to find a

threshold that is exceeded by all positive but by none of the

negative examples.

To optimize the thresholds we use a modified hill climbing

algorithm [10]. The threshold for all products are initially

chosen so high that none of the training patterns are recognized

at all. We then order the beverages descending by the number

of their occurrences in the training set and start to decrement

their threshold until the overall matching performance reaches

a maximum. This threshold is then fixed for the product

and we continue with the next product. After processing all

products, we start again with the first one. Contrary to the the

first pass, the threshold of all other products are now at a fairly

good value. We do this until all thresholds stay constant for

one round that is, the optimum does not change anymore. In

our scenario that happens after four iterations.

B. Multi-Class Supported Vector Machine

We also implemented a Support Vector Machine (SVM)

algorithm inside the database management system [11]. Nor-

mally a SVM only separates between two classes, but there

are approaches that extend the original SVM to solve multi-

class classification problems as well. The most common ap-

proach is called one-versus-all [12]. Given there are n classes

c1, c2, ..., ci, ..., cn we will create a binary SVM that is trained

with all patterns from c1 for its first target and with the rest

of the patterns for the other target. This is repeated with all

of the n classes. In matching an incoming pattern is passed to

each SVM. Ideally only one machine detects a positive result.

If there is more than one SVM classifying the input as ci, the

one with the largest result vector is used. If there is no SVM

classifying the input as ci the one with the smallest negative

result vector is chosen. Assuming n classes this approach

needs n iterations.

C. K-Nearest Neigbor

We have seen that patterns we collected have a considerable

variance for the same target vector. The clusters of each

classifier are therefore rather big and overlapping. Nonetheless,

since irregularities seem to be the rule, we might find the

corresponding class by looking for the pattern that is closest

to the input pattern. This way even in a subspace with many

patterns of class A, a pattern of class B varying from the others

might still be found. This is what the knn algorithm does. In

our case k is set to 1. Given an input vector X , knn returns

the classification y from the trained vector X̄ for which the

squared distances d(X, X̄) is minimal [13].

An advantage of the nearest neighbor algorithm is that it

requires less computational power than the other algorithms,

because the calculation of squared distances is not expensive.

The training phase only creates value series and does not

involve learning.
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Figure 1. Experimental setup as FMC block diagram

III. EXPERIMENTAL SETUP

To be able to perform short-time energy demand prediction

detailed data like voltage, current and power consumption is

necessary. These information need to be collected and stored in

a database where further processing takes place. This section

gives a detailed overview about the experimental setup, the

data collection and energy demand prediction.

A. Data Collection

In smart grids, the (AMI) is expected to be applied for

collecting necessary data. It is a multi-level architecture, where

smart meter readings are transmitted from smart meters over

concentrators to a central system, meaning a database. In order

to detect the short energy usage patterns of our coffee machine,

we increased the measuring granularity. In our experiment, we

assume that every installed device can be measured indepen-

dently from each other. This might not yet be the case in

private households, but companies typically install multiple

smart meters in order to monitor different consumers like

air conditioning, lightning, office and manufacturing devices

independently.

Because it is nearly impossible to get self-measuring de-

vices, we used an Emerson Network Power Rack Power

Distribution Unit (PDU) with a Liebert MPX control module

which is capable of measuring the voltage, current and rating

of every single power plug [14]. Depicted in Figure 1, to

the PDU, we connected several devices, the PDU in turn is

connected to a local area network and can be queried via the

Simple Network Management Protocol (SNMP). There are in

total 18 devices connected to the PDU. This setup results in

an approximately 16,000 times higher data volume than the

AMI proposes.

The data collector queries the PDU as often as possible

to collect the current data for each device. This data is

then transferred into the in-memory database. Table I depicts

the used table schema for device_readings. Detected

patterns in the stream of readings are written into the table

pattern_recognition. The resulting transmission inter-

val from PDU to database is between 0.5 and 2 seconds

depending on the current network load.

Table I
SCHEMA OF THE TABLES USED FOR PREDICTION

DEVICE_READINGS

DEVICE_ID : INTEGER
DATETIME : INTEGER
VALUE : DOUBLE

PATTERN_RECOGNITION

DATETIME : INTEGER
VALUE : DOUBLE
PRODUCT : VARCHAR

B. Data Processing

1) Hardware Setup: We use an instance of SAP’s in-

memory database with a column-oriented data layout that is

best suited for analytical workloads [6]. Our implementation

uses the GNU R interface of the databases development

version [15]. The database is installed on a HP ProLiant

DL580 G7 series server that is equipped with four Intel

Nehalem X7560 CPUs and 256 GB main memory at 1066

MHz. The server runs a 64-bit version of openSUSE 11.2

(kernel 2.6.31.14).

2) Data for Training and Testing: In order to match patterns

amongst the monitored energy consumption we use a set of

features of that data to perform our matching algorithms on.

Beside the raw data for electronic power consumption in watt

hours [Wh], we also use the following more abstract features

of the gathered data:

• Number of peaks

• Greatest delta

• Total amount of energy used

• Pattern duration

• Gradients values

• Moving average, and

• Histogram

3) Precision Benchmarking: We divide the pattern set into

two parts, a training set with input and target vectors and a set

with input and target vectors used for testing the performance.

We use a cross validation technique to achieve reliable results.

The pattern set of each product is split into five parts. In each

iteration of the algorithm, we use four chunks for training and

one for testing purposes. The overall performance is calculated

by taking the average of all iterations. This technique is called

leave-some-out cross validation [16].

4) Performance Benchmarking: For the daemon, we cal-

culated the average time for one cycle in the algorithm over

multiple hours of operation. When we repeated the measure-

ment for the different algorithms, we measured the same time

slots on different days. We define one cycle as querying the

database for new data plus the time used for matching given

there is a pattern detected.
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Algorithm Shortest duration Longest duration Average Duration

knn 3ms 806ms 9ms
SVM 3ms 1116ms 10ms
IQRC 3ms 1547ms 13ms

Table II
ITERATION TIMES AND THEIR DEVIATION DURING REAL-TIME DETECTION

IV. EVALUATION

A. Real-Time Performance

For interactive applications the critical limit for interaction

response is two seconds [17]. Therefore, queries that are

triggered by the real-time matcher have to be answered within

this time interval. Real-time matching is implemented as a

daemon. Although there is no critical time limit for this

daemon, having as many matching cycles as possible allows

discovering the patterns really close to their occurrences.

When the machine is idle, one cycle takes about three

milliseconds. If the coffee machine is currently producing, it

still takes less than a second. Table II shows the cycle times

for the different algorithms. We can see that nearest neighbor

matching performs best. Matching with Support Vector Ma-

chine takes about 30% percent longer. IQRC matching needs

about twice the time compared to nearest neighbor. The reason

is that we have to optimize the thresholds for all products

individually in each cycle as they depend on the pattern length.

Still, all algorithms have satisfying performance, as they are

below the critical limit of two seconds.

B. Bulk Pattern Recognition

In addition, we analyzed the performance for bulk

pattern recognition. Figure 2 shows the execution times

of the MCSVM algorithm, implemented as a GNU R

function, depending on the number of readings in the

device_readings table for different numbers of used

cores using nearest neighbor matching. The values represent

the averages of ten measurements with a standard deviation

of 11%. The execution times for support vector lie within the

standard deviation of the execution times for knn. Therefore,

we conclude that both algorithms perform equally well.

The comparison shows that the bulk matching scales linearly

for more than 1000 values. This is not surprising, since we

are iterating over device readings, which gives the algorithm

a complexity of O(n).
The rminer package, which is used in the GNU R imple-

mentation does not parallelize its computation, therefore we

parallelized the execution by distributing the available input

values among the number of processors. Each of the n cores

could then independently work on 1
n

th of the total values.

We also laid focus on parallel execution, utilizing all cores

of our target system. As we can see, the usage of multiple

CPUs decreases the execution time. However, this speedup

is not linear as we might expect, because of the massive

parallelization. According to Ahmdal’s law the speedup is

determined by the serial fraction of the algorithm [18]. In

our case, this fraction is determined by the initialization
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Figure 2. Comparison of execution times for bulk pattern recognition
depending on the number of reading for different number of CPU cores

of the matcher and the merging of different parts of the

device_readings table. We found out that the merging

of one part of the list for a total of one million datasets took

10 to 20 ms. Although we tried to parallelize the merge, the

jump from eight to 32 processes, increases the execution time

for less than 200,000 value. The overhead in the merge is not

outrun by the smaller number of device readings, each process

has to analyze. However, 32 cores outperform eight cores for

200,000 readings. With an increasing number of readings, the

gain from executing the computing expensive operations in

parallel increases.

C. Precision Results

Fig 3 shows the hit rates for all features using the presented

inter-quartile range coverage, k-nearest neighbor and Support

Vector Machine algorithms. For the IQRC we were not able to

perform the benchmark with the histogram feature, because all

patterns of one product result in one histogram. They do not

have any deviations or quartiles. The lower boundary for the

matching performance with eight different products is 12.5%

which would be the accuracy of chance. The PDU, which was

used for measuring the consumption data, has an accuracy of

±10% for its measurements [14].

As we can see in Figure 3, the multidimensional features

consumption, gradient and moving average perform equally.

They are also the best performing features in total. The more

dimensions are available, the more information can be used

for classification, which lead to higher hit ratios.

One dimensional features perform significantly worse than

multidimensional features.

The histogram feature could only be implemented for knn

and SVM. Though it performs slightly better than the pre-

sented one dimensional feature, it is still noticeably worse than

the multidimensional features. Reason is that the measured

values hardly differ in size the histogram has a lot of different

values with low frequencies.
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If we compare the algorithms with each other, we can

see that the knn performs slightly better than the other two.

It performs about 5 - 10 % better than the other in all

features except for the greatest delta and sum feature. For

multidimensional features the IQRC algorithm has the same hit

rate as SVM. Nonetheless, IQRC outperforms SVM slightly

considering the number of peaks and duration features. SVM

on the other hand has the strongest results for the greatest

delta and sum criteria. The implementation of multi-class SVM

using one-versus-all is susceptible to misclassification if all

machines calculate a negative result [19]. Due to the high

deviation amongst patterns in our scenario, this case occurs

more often. Therefore the overall accuracy of SVM is not as

high as expected.

D. Short-Term Energy Consumption Prediction

If a pattern is detected, its subsequent values can be used

for predicting the future consumption of a device. The earlier

we recognize the product that is currently produced, the result

gets more useful because the predicted remaining interval gets

longer. Early matching has to be performed on incomplete

consumption data and is therefore not as accurate as matching

after the complete consumption. Fig 4 shows the accuracy of

the knn and SVM algorithm depending on the length of the

patterns. If we pass a pattern with length n we cut all training

patterns down to that length and apply the algorithms.

We consider a hit rate of 0.5 to be sufficient in order to speak

of successful pattern recognition. There are eight possible

beverages, a hit rate bigger than 50% would be four times

better than chance. As we can see, we break the 0.5 accuracy

line at approximately 20 seconds. This means approximately

one third of the pattern are sufficient for pattern recognition. If

we transfer that finding to industrial manufacturing processes

that take multiple hours, this forecasting range is valuable for

utility companies, as it is sufficiently long for trading e.g. at

the EEX spot market [20].

After twenty seconds of production we are able to identify

the product. This means we can predict the succeeding ten
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Figure 4. Hit rate depending on the length of the input vector

to seventy seconds using the information from our trained

patterns. The easiest way to predict values for the short term is

to take the nearest neighbor and predict its course for the next

values. We decided to use the knn approach for short term

prediction also because its accuracy outruns the SVM’s in the

long run. An SVM approach could be implemented using the

values of the closest support vector of the corresponding class

as a prediction.

When we predict the subsequent consumption of a pattern

after 20 seconds, we have an average deviation of 25%. After

40 seconds the deviation falls below 20%. This accuracy

might not be convincing at first sight. Considering that the

consumption values of the coffee machine even under load

lie between 0.1 and 0.8 watt seconds, a predicted value that

only differs by .01 watt seconds may lead to a deviation

of 10%. Therefore we would have to predict three decimal

places correctly to fall below that number. If we subtract

measuring errors of the PDU [14], we end up with a deviation

around 10%. For high performance industrial machines, the

consumption is higher than for the coffee machine. Therefore

the precision in industrial use cases is expected to be higher.

V. RELATED WORK

Smart grids are considered as the continuation of the

classical power grid in the information age [21]. In order to

avoid different conflicting standards amongst its participant

countries, the European Union has instantiated the Smart

Meter Coordination Group (SMCG) [22]. OPENmeter is a

project that is financed by the European Union and has

proposed the AMI to be used for the smart grid [23]. On top

of that manufacturers found a platform called Open Metering

Systems that collaborates with SMCG and also assumes the

AMI [22], [24]. Regardless of its changes, our experimental

setup is comparable to this AMI.

Collected smart meter data can be used to to optimize

consumer contracts [25]. More detailed monitoring of power

data implies, that the energy consumption of current machines

used in a data center highly depend on the computed task [26].
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Predicting the energy consumption for medium and shorter

terms has been done using artificial neural-networks [27], [28].

Related work has been focussing on comparing different algo-

rithms for efficient pattern matching over event streams [29].

The Support Vector Machine is one of the most popular

algorithms used in machine learning. It was introduced by

Vapnik in 1992 and has proved to provide significantly better

classification performance than other algorithms in most use

cases [11], [8]. SVM can solve binary classification problems

by finding an n-dimensional function that is able to distinct

all data points of one class from another. A discussion on the

various multi-class implementations of SVMs is done by Duan

and Keerthi [12].

VI. CONCLUSION AND FUTURE WORK

In our experiment we have shown, that it is possible to

determine the type of coffee, that is produced by a coffee

machine only based on a series of smart meter readings. We

used those readings from a small dataset to train our different

pattern recognition algorithms. The used in-memory database

has shown that it is indeed able to process the collected amount

of data, which was approximately 471 million tuples within

the device_readings table and match it with the pre-

calculated patterns in real time, meaning running a complete

detection cycle below two seconds.

We have shown, that bulk pattern recognition can be scaled

to multiple CPUs to enable an energy providing company with

the possibility to cluster and aggregate the consumption data

of multiple customers at a time. In the future unsupervised

learning algorithms need to be applied to automatically create

patterns from the energy consumption data. Thus, clustering

customers in multiple groups helps companies to optimize

their energy rate offers.

If a manufactured good can be determined by its energy

footprint, those pattern recognition techniques might also be

used to detect an early machine break down in the area of

predictive maintenance. This can reduce the costs caused by

unscheduled machine downtime within a productive environ-

ment.

Future work will include revalidating the results with dif-

ferent types of manufacturing machines, consuming a higher

amount of energy and producing different energy usage foot-

prints.
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