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Abstract — This paper describes three software applications 
for distribution network load forecasting in a Smart Grid 
environment: (i) short-term feeder load forecasting, (ii) short-
term substation transformer load forecasting and transformer 
rating, and (iii) next-year load pocket forecasting. The short-
term feeder load forecasting allows a utility to reduce the 
possibility of feeder overloading. The substation transformer 
load forecasting and transformer rating application achieves 
similar goals at the distribution substation level. The load 
pocket forecasting software allows a utility to estimate load 
trends at different locations (called load pockets), to estimate 
next-year peaks, to calculate weather normalized factors, and 
to estimate the probability distribution of the next-year peak 
load. The use of these software applications significantly 
improved the efficiency and reliability of the distribution 
network. 

Keywords: load forecasting, feeder, transformer, load pocket, 
SmartGrid 

I. INTRODUCTION 
One of the important aspects of emerging Smart Grid 

technologies is measuring, transmitting, storing and 
processing electric power system data, such as voltage, 
current, phase angle, etc., and using this information for 
system control and management. In particular, operators of 
traditional distribution networks often do not have complete 
information about certain parts of the network such as three-
phase measurements at substations and feeders, 
measurements along feeders, and so on. In many cases, 
certain SCADA data are monitored, but not stored.  

This paper describes particular applications that 
demonstrate how measuring, storing and processing 
substation and feeder load measurements can help improve 
the distribution network efficiency and reliability. The 
monitored data have been used to develop transformer and 
feeder load models and apply these models to load 
forecasting in the distribution network. In particular, this 
paper describes three applications: (i) short term (from one 
hour up to seven days) feeder load forecasting, (ii) short-term 
substation transformer load forecasting and transformer 
rating, and (iii) next-year load pocket forecasting and 
Weather Normalization Factor (WNF) computations. 

The goal of the first application, the short-term feeder 
load forecasting, is to provide the system operators with 
advanced warnings on potential normal feeder overloading. 
Once such overloading signal is received, the operators can 
take several measures to avoid the undesired event. These 

measures include load switching, feeder reconfiguration, 
load reductions, and voltage control. In future Smart Grid 
applications, load reductions can be implemented by time-
differentiated pricing. 

The second application combines load forecasting with 
transformer rating. Both load and temperature forecasts are 
used as inputs to the transformer rating software. Again, the 
transformer rating results can be used by operators for 
switching and load reduction decisions to protect 
transformers. 

The third application deals with area planning. The goal 
is to compute Weather Normalization Factors for various 
areas served by a utility. The WNF is a ratio of the normal 
annual load to the observed annual peak load for a particular 
area (also called load pocket). Different load pockets may 
have different WNFs. This is typically for two reasons: (i) 
different weather conditions in different areas, and (ii) 
different load mixtures (industrial, commercial, residential; 
small houses, large houses, apartment buildings, and so on) 
in different areas. WNFs play an important role in area 
planning and capital budgeting. 

Electric load forecasting is a useful tool needed and used 
by most electric utility companies to make some important 
decisions including decisions on purchasing and generation 
of electric power, load switching, and area planning. By the 
forecasting horizon load forecasting can be divided into three 
types: short-term (one hour up to a week), medium-term (a 
month up to three years), and long-term (over three years) 
[1]. 

In the literature majority of the works on load forecasting 
can be classified into four categories by the modeling and 
forecasting method used, namely statistical, intelligent 
systems, neural networks and fuzzy logic [2]. A more 
complete literature review was presented in [3, chapter 12]. 

In a Smart Grid environment, the importance of 
forecasting increases because of the growing complexity of 
challenges and the availability of more data inputs from a 
data-rich smart grid environment [4].  Additional data inputs 
include AMI loads, price information, and additional 
information from the grid.  

The sequel of the paper is organized as follows. In 
Section II we provide a brief description of the model. In 
Section III we discuss the software for short-term feeder load 
forecasting. Section IV focuses on short-term substation 
transformer load forecasting and transformer rating. In 
Section V we introduce the next-year load pocket forecasting 
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software. Discussions and conclusions are made in Section 
VI.  

II. MODEL DESCRIPTION 
The model, one version of which is described in [3], uses 

calendar information, weather information, and some 
additional information. We modified the model structure by 
adding an additive term. In mathematical terms the model is 
presented as 

 
yt=Ft(dt, ht, wt, pt) 
                                                                        (1) 
  =L0(dt, ht)+L1(dt, ht)⋅ f(wt, pt) + et,     

 
where yt is the actual load at time t; 
      L0 is the weather-independent component; 
      L1 is the normalized load, also independent of weather; 
       f is weather normalized factor;   

dt is the day of the week, 1, 2, …, 7; 
ht is the hour of the day, 0, 1, …, 23; 
wt are weather parameters including the temperature and 

humidity; 
pt are other factors including electricity prices, sunrise 
and sunset times; 
et is a random error. 
Similar to other statistical method, the model parameters 

are estimated using the historical data. The hourly weather 
information including ambient temperature and humidity 
measurements is provided by the NCDC (National Climatic 
Data Center). The hourly historical load data are extracted 
from the utility database. The applications need historical 
hourly load observations for at least one year. 

To optimally estimate the parameters, we use the least 
square method and minimize the total squared residues, i.e., 

 
min Σt[yt − Ft(dt, ht, wt, pt)]2.   (2) 
 
Problem (2) is an unconstrained nonlinear optimization 

problem. Due to the excessive number of parameters and the 
mixture of discrete and continuous parameters in the model 
traditional methods such as trust region method, Newton-
Raphson method, quasi-Newton method, double dogleg 
method, conjugate gradient method, and Levenberg-
Marquardt (LM) method are not very efficient. Instead we 
found a convenient form of the function F, as in (1) above, 
and developed a recursive algorithm that estimates the 
parameters.  

We used Mean Absolute Percentage Error (MAPE), 
Mean Absolute Deviation (MAD) and regression R2 to 
measure the goodness-of-fit of the model. The definition of 
MAPE and MAD are 

MAPE= ∑
−

t
t

tt

y
Fy

N
1

,    (3) 

MAD= ∑ −
t tt Fy

N
1

,    (4) 

where N is the number of observations used in the model. 

 
The algorithm converges quickly, mostly in less than 10 

steps. Figures 1-3 show the model Mean Absolute 
Percentage Error (MAPE), Mean Absolute Deviation 
(MAD), and model R-squared at different iteration steps. 
Figure 4 shows the scatter plot between the model result and 
actual load for a load pocket. 
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Figure 1.  Model MAPE at different iteration steps 

The model in (1) is relatively simple, robust and reliable. 
It can be easily used for different levels of forecasting: 
system level for an entire utility, substation/transformer level 
(load pocket), feeder level or even customer level load 
forecasting. It has been rigorously tested and used for years.  

We remark that the installation of Advanced Meter 
Infrastructure (AMI) provides the possibility to use the AMI 
data to advance load models and improve load forecasts. We 
are currently investigating this approach. 
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Figure 2.  Model MAD at different iteration steps 
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Figure 3.  Regression R2 at different iteration steps 
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Figure 4.  Scatter plot between model result and actual load 

III. SHORT-TERM FEEDER LOAD FORECASTING 
The goal of short-term feeder load forecasting is to 

provide the system operators with advanced warnings on 
potential normal feeder overloading. Once such an 
overloading warning is received, the operators can take 
several actions to avoid the overloading. These actions 
include load switching, feeder reconfiguration, load 
reductions, and voltage control. In future Smart Grid 
applications, load reductions can be implemented by time-
differentiated pricing. 

Our model can be easily adapted to provide feeder level 
load forecasting with a few additional procedures specially 
designed for feeder level load modeling and forecasting. 
These procedures include iterative filters during model 
training, periodic model updating, adaptive procedure and 
conservative adjustment.  

The iterative filters are used to detect and exclude 
outliers in the training dataset. At each iteration step the 
Mean Absolute Percentage Error (MAPE) for the model is 
computed. The inclusion/exclusion criterion is to exclude all 
points with absolute percentage error greater than a certain 
threshold. 

Periodic model updating is to use the most recent 
observations to replace the oldest observations in the original 
training dataset and build the model again on a periodic 
basis, say every two weeks.  

Adaptive procedure uses the adaptive filtration technique 
to fit a simple linear regression between the actual load and 
the model result and then fine-tune the model result to reflect 
the most recent load pattern.  

Conservative adjustment is implemented after the 
adaptive procedure by adding the underestimated amount at 
midnight (12AM) to the next day's forecasts. For example, if 
at midnight yesterday the actual load was 235 Amps but the 
forecast was 230 Amps, then 5 Amps will be added to the 
next day's forecasts. If the forecast was actually higher than 
the actual no adjustment is needed.  

Another consideration in the implementation of feeder 
load forecasting is the heavy computation because 
sometimes there may be more than 1,000 feeders. The 
software was tested on actual feeders during summer peak 
times. It took at most 20 minutes to finish all calculations for 

about 140 feeders. The Mean Absolute Percentage Error 
(MAPE) was around 6%.  

Figure 5 shows the actual and forecast loads (in Amps) 
for a feeder during June 1-July 9, 2010 in a Northeastern part 
of the USA. 

Sample Feeder Forecast (June 1 - July 9, 2010)
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Figure 5.  Actual and forecast loads for a sample feeder 

IV. SHORT-TERM SUBSTATION TRANSFORMER LOAD 
FORECASTING AND TRANSFORMER RATING 

Transformers are expensive assets to a utility. 
Overloading or overheating will generally reduce the useful 
life of a transformer. For this reason, it is important for a 
utility to make sure that their transformers are not overloaded 
or overheated. EPRI’s PTLoad software can be used to 
determine a transformer’s condition based on loading and 
temperature. 

A developed application of short-term load forecasting to 
a transformer is shown in Figure 6. In the diagram load 
forecasts produced by load forecasting software are used as 
inputs to PTLOAD. PTLOAD calculates the transformer 
ratings and then the load forecasts as well as the transformer 
ratings are delivered to some internet based applications. For 
transformer level load forecasting, the accuracy of the one-
day-ahead forecasts is around 4.5%. 

 

 
Figure 6.  Application of short-term load forecasting 

V. LOAD POCKET FORECASTING SOFTWARE 
Load pockets refer to the aggregate of several close 

geographic areas [5]. It usually consists of a few substations 
or transformers. The concept provides flexibility in modeling 
regional loads. Our load pocket forecasting software makes 
the next year peak load forecasting. 

For each load pocket, the software computes the model 
described in (1). In addition to the model performance graphs 
shown in Figures 1-4, it also estimates the weather 
normalized loads. Based on the historical weather data and 
the current model, the software simulates the current load 
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model on the historical weather data. A screenshot is shown 
in Figure 7. The user can select which of the past years to use 
to calculate the design-day parameters. The software 
analyzes and forecasts two types of peaks. The first type is 
the pocket peak, which is the maximal hourly load during the 
year. The second type is the system peak, which is the pocket 
load during the hour when the system experienced its peak. 

One of the software inputs is the historical system peak 
dates and hours. Other inputs include historical hourly loads 
of distribution transformers and weather measurements, 
including temperature and humidity. 

The software estimates historical peak days for load 
pockets (Figure 7). These are called pocket peak days and 
hours. The software then calculates the design-day 
parameters. For each load pocket, the design-day parameters 
are calculated for pocket peak days and for system peak 
days. Different load pockets may have different design days. 
An example of design-day parameters is presented in Tables 
II and III. 

 Once design-day parameters are calculated, the system 
calculates the ratio of the estimated load on the design day to 
the actual peak load. This ratio is known as the Weather 
Normalization Factor (WNF). The WNFs are useful in 
explaining what part of the annual load pocket peak is 
attributed to the specific weather conditions for that 
particular year. In addition, the software calculates weather-
normalized trends as shown in Figures 8 and 9. 

The software also contains a probability distribution 
calculator of the peak load for the next year (Figure 10). The 
user has two input parameters: the peak load value and the 
probability. The user can get the probability that the load will 
not exceed a particular value or get the value that the peak 
load will not exceed with a given probability. This peak 
distribution analysis is available for both pocket and system 
peak data. The software is used by area planners to compute 
WNFs and next year capital expenditure allocation. 

Figure 7.  Pocket Peak Dates (2010 Design Day) 

Figure 7 shows pocket peak dates, the dates on which the 
pocket attained the maximal load during that year. Also 

shown are peak hours and weather parameters during those 
hours. 

 
Figure 8.  Normal Weather and Pocket WNFs 

Figure 8 shows the WNFs calculated using the pocket 
peak dates and the year-to-year trends. A user may modify 
the last trend based on personal judgment. 
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Figure 9.  Normal Weather and System WNFs 

Figure 9 is similar to Figure 8, but the WNFs are 
calculated using the system peak dates. Again, a user may 
modify the last trend. 

 

 
Figure 10.  Peak Distribution Screenshot 

 
Figure 10 shows the calculator for peak load distribution. 

A user can find the load value by entering the percentile (%), 
or find the percentile (%) by entering a load value. The 50th 
percentile corresponds to the expected peak. 

VI. DISCUSSIONS AND CONCLUSIONS 
This paper discusses three applications of distribution 

network load forecasting in the Smart Grid environment, 
where the SCADA data are stored, processed and the results 
of analysis are used to improve the system reliability and 
efficiency. The short-term feeder load forecasting enables 
operators to take appropriate measures in case of the 
potential overloading. These measures include load 
switching, feeder reconfiguration, load reduction and voltage 
control. The use of the application improves the reliability of 
the distribution network. 

The substation transformer load forecasting and 
transformer rating application computes the transformer 
rating by combining load forecasts and temperatures and 
provides operators with warning of potential transformer 
overloading/overheating. The use of the application protects 
transformers from being overloaded or overheated. 

The load pocket forecasting software allows a utility to 
estimate load trends at different load pockets, to estimate 
next-year peaks, to calculate weather normalized factors, and 
to estimate the probability distribution of next-year peak 
load. The use of this software improves the decision-making 
capabilities of area planning and capital budgeting and the 
reliability of service to the customers. 
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