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_Abstract—The paper presents the vibration analysis problem interest and made the object of many papers and books. El-
with application in predictive maintenance of Rolling Elements  Thalji et al. [1] presents such a monitoring procedure that
Bearings (REB). After an overview of the maintenance approéh,  hclydes detection, diagnosis and prognosis, to extraet th

the condition monitoring in predictive maintenance is pregnted. feat lated to the fault A | i

A general view on change detection problem, with applicatio ea_ures reafa_ 0 e_au_ occurrence. .gener.a ovmo_

in vibration monitoring, precedes some experimental resus Various condition-monitoring and fault diagnosis techueis|

obtained in REB operating, for multiple faults and faults which  for REB in current practice is discussed in [2]. The paper

gradually occur, with the conceptual description of the algrithm  of Randall and Antoni [3] offers a tutorial to guide the

used. The approach proved to offer more robust detection of reaqer in REB diagnostics using vibrating signal analysis,

faults in REB, able to assure proactive actions in predictie . - S .
and presents different case studies. An application ofdblin

maintenance. . . . . . .
Index Terms—Fault detection and diagnosis Rolling element source separation method in diagnosis rolling bearingtgaul

bearings, Optimal segmentation; Vibrating signals. is presented in [4]. The study [5] presents a procedure for
fault detection of roller bearings using signal processing
|. INTRODUCTION optimization techniques.

Vibration analysis is one of the most effective tool used to 1he matter of monitoring of REB plays a crucial role in the
check the health of plant machinery and diagnose the caudsessment of the overall health state of a rotating machine
The health of a machine is checked by routine or continuo@8d is still a challenge. A new approach operating in time
vibration monitoring, giving an early indication of a pdssi domain, using th_e optimal segmentation of wpratlon signal
failure and offering countermeasures to avoid a possititesea [6] occurred during REB operating, is used in the present
trophic event. Every machinery problem generates specigPer- It offers new possibilities for more robust detetid
spectrum patterns, which are identified using frequency afg@nges in REB, and assures proactive actions in predictive
phase analysis. maintenance.

Vibration monitoring problem consists of machines condi- 1he paper is organized as follows. Section Il has as subject
tion and the change rate of its behavior. It can be ascettairf§® maintenance approach, while in Section Iil, we present
by selecting a suitable parameter for deterioration méagurthe gond|t|on monitoring pro_blem in predictive maintenanc
and recording its value for further analysis. This activigy S€ction IV offers a general view on change detection problem
known as condition monitoring. The great part of the defectéth application in vibration monitoring. Finally, Sectiov
encountered in the rotating machinery give rise to a distinc Presents some experimental results obtained in REB opgrati
bration pattern, or "vibration signature”. Vibration meoving for multiple faults_ a_nd faults Wh|ch_ gradually occur, ane th
has the ability to record and identify vibration "signatsiréor ~ conceptual description of the algorithm used.
monitoring rotating machinery. Vibration analysis is apgl
by using transducers to measure acceleration, velocity or

displacement, depending of the frequencies making thecbbje ysually, the maintenance is performedmsventive mainte-
of the analysis. Different mechanical and electrical ®ulhance at fixed time intervals, or agactive maintenancefter
generate vibration "signatures” and careful scrutiny aeépd the fault occurs. In the last case, it is necessary to perfiorm
Study eliminates different pOSSibilitieS and concludesato mediate]y maintenance actionS, while in medictive main-
single fault. tenance after a warning of a fault occurrence, the problem
The problem of fault modeling and predictive health morsolving is carried out when necessary, so to avoid disraptio
itoring of Rolling Elements Bearings (REB) is one of greabf machine operations. A comparison of different mainteean

II. MAINTENANCE APPROACH
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types, with disadvantages and advantages, is given in [7]. I1l. CONDITION MONITORING

We present in the following some aspects concerning theseCondition monitoring consists of machine monitoring for

approaches, to be taken into account, mainly in pmd'c“\é%rly signs of failure so that the maintenance activity can b
maintenance of REB.

better planned, with reduced down time and costs.

The monitoring of vibration, temperature, voltage or power
A. Reactive Maintenance and oil analysis is frequently the most used. Vibration is th
most widely used for its ability to detect and diagnose failu
This approach refers to machine running until a fault occupgoblems, but it offers also a prognosis on the useful life
and involves fixing problems only when the fault occurs. lnd possible failure mode of the machine. The prognosis is
represents the simplest and cheapest approach in termsnath more difficult to be performed and usually relies on
maintenance costs; often it implies additional costs, \suacontinue monitoring of the fault to estimate the time whe th
due to unplanned downtime. It can be seen as an easy solutigichine will become unusable, taking into account the known
to many maintenance strategies. experience in similar cases.

In rotating machines, REB represent the most critical com- Vibration monitoring can be considered the most widely
ponents, both in terms of initial selection, as well as in howsed predictive maintenance technique, and can be applied t
they are maintained. Monitoring the condition of rollingape @ Wide area of rotating machines. Machine vibration comes

ings is essential and vibration based monitoring is fretuenfrom many sources such as bearings, gears, unbalance, etc.,
used to detect an early fault. each sources having its own characteristic frequenciesji-ma

festing as a discrete frequency, or as a sum and/or differenc
frequency. It can generate complex vibration signals, tvhic
B. Preventive Maintenance cause problems in vibration analysis, but some techniques,
with a high sensitivity to faults, can reduce the complexity
The preventive maintenance implies the scheduling of regsf the analysis. Bearing defects can affect higher freqesnc
lar machine shutdowns, even if they are not required; thils wiffering a basis for detecting incipient failure.
increase the maintenance costs as some machine componeqﬁually’ the detection uses the basic form of vibration

are replaced, when this is not necessarily required. So_'?ﬁ%asurement, where the vibration level is measured on a

risks _COUld alpp_ear ﬁ,ue to replacin%l_a defective t;nacr"'g?oadband basis (10-1000 Hz or 10-10000 Hz). The spikiness
part, incorrectly installing or reassembling parts. A Weqt ¢ yhe vipration signal, in machines with little vibrationher

result of preventive maintenance consist of the fact that t'ﬂwan in the case of the bearings, is highlighted by the Crest
mamt_enance IS perfo_rmg(_j when there IS nothing Wrong ghctor, indicating an incipient defect, and the a greatevaii
machine operating. Significant costs saving can be obtaln(ﬂg energy given by RMS level indicates a severe defect.

by predictive maintenance. o _
These measurements offer limited information, but they can
be useful for trend evaluation; increasing vibration levigih-
C. Predictive Maintenance lights the machine condition deterioration. Also, a congaar
of the measurement level with some vibration criteria from
The predictive maintenance refers to the process of mditerature proves to be useful in practice.

itoring the machine condition as it operates in order to Generally, rolling bearings generate very little vibratim
predict which components are likely to fail and when. Sg@aults absence, and present specific frequencies when ta faul
the maintenance can be planned and there is the possibi§dturred. At the beginning of a fault, for a single defece th
to change only those components that show failure signs.jfbration signals present a narrow band frequency spectrum
their operation. The predictive maintenance principleststs  As the malfunction increases, an increase in the charatiteri

of taking additional measurements in order to predict the bgefect frequencies and sidebands can be noticed, with a
havior of machine components that are susceptible of @ilugrop in these amplitudes, broadband noise increasing and
and also to predict when these failures will occur. Usuallgonsiderable vibration at shaft rotational frequency ftjvery
these measurements include machine vibration, and mach&®@ machine speed, low energy signals are generated by the
operating parameters: flow, temperature, pressure, etc.  pearings, difficult to be detected. Also, bearings locatéHin

The continuous monitoring detects, in advance, the onset®farbox are difficult to monitor, because of the high energy
component problems, so the maintenance is performed wifgfhe gear, which can mask the bearing defect frequencies.
needed. By this approach, unplanned downtime is reduced
and also the risk of catastrophic failure is reduced. Thi$ wi
increase the efficiency and reduce the costs. By predictiveThe CD problem is frequently present for continuous moni-
maintenance strategy, applied in rolling bearings, thetscosoring of systems like machinery, structure, process,gent
can be cut, giving in advance, a warning of a possible fajlurer plant, using data provided by the sensors. So, it is plessib
enabling remedial action in advance. to anticipate the abnormal functioning or these systenfsrbe

[V. CHANGE DETECTION IN VIBRATION MONITORING
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it occurs and to reduce the maintenance costs. The norrmgpractice. So, a second generation of solutions were redui
behavior of the system can be described by a parameinsensitive to the uncertainty of the system’s dynamics, to
model, without using artificial excitation, reducing theesd the operating environment, and to large noise, statisfical
of the equipment or temporary stop. If such early detectionsknown. In our opinion, the central problems to be addiesse
are possible, large changes of the system can be preventked,ia the CD area refer to robustness, sensitivity and veityatil
the effects of defects, mechanical fatigue, etc., can bektyui The lack of robustness of the classical algorithms concerns
anticipated, raising the usability of the system. the failure of the detection, if one or more of the hypotheses

The applications in this field make use of theories based 8asumed during the design are not verified in practice. The
statistics, providing theoretical instruments to solve #arly Sensitivity relates to the ability of the algorithm to ddtec
detection problem. Many industrial processes are based thg change, even if there are small scale incipient changes.
known physical principles, with available analytical misge Finally, the versatility is linked to the ability of the meitis
and for very complicated or unknown models, semi-physic@nd techniques to solve more CD problems, using the same
or black-box models can be used. Vibration analysis as§t of algorithms.
surveillance of machinery or industrial equipments repnés  To solve the vibration monitoring problem different tech-
important cases of detection and diagnosis problems. nigues have been developed, one can mention: analysis of

The CD problem refers to detection of the change (thverall vibration level, frequency spectrum, envelopecspe
alarm) and evaluation of the change (estimation), progdiirum, cepstrum analysis, etc. [7]. The success of vibration
information, in some cases, for diagnosis (source isaljtio monitoring, in many practical cases, requires speciatfaed-

The performance criterion of a change detection algorithi#@ns and tools. Simple application of CD techniques on
consists in its ability to correctly detect the changeshwitoriginal mono- or multivariate vibration signals can assur

minimum delay and minimum probability of false decisionssuccessful monitoring. Sometimes, it is necessary thatesom
So, it must respond to the small changes (sensitivity &gnal pre- or postprocessing procedures to be applied, to
changes), without being affected by the disturbancesermis €mphasize and highlight the characteristics of the vionati

modeling errors (robustness of the algorithm). The saitsiti Signals making the object of the analysis. So, some sig-
and robustness properties are usually in conflict, a goodgeha Nal processing techniques can be used in conjunction with

detection algorithm must perform a compromise between th& techniques: independent component analysis (ICA),-time
two aspects. frequency analysis (TFA), energy distribution (ED) evéima

Two basic approaches in CD are reported as based on ngnt_ime-frequency domain. These techniques are implerde_nte
titative models (using analytical redundancy) and queliga in a software toolbox, Matlab VIBROTOOL Toolbox [8], built

models, which can be conveniently combined to improve RS a set OT programs that cqmpgte spec!flc.parameters and
robustness of the generation of quantitative residualghén SOIV& specialized tasks for vibration monitoring. A gemera
case of analytical exact models absence, learning modeels, s2PProach, making use of these techniques, and a case study

as fuzzy and neural models, can be used. Moreover, the ned}&ing as object the condition monitoring of a rotating ma-
networks can be used for classification of the residualslewhfn€, @n industrial pump, with a progressed pitting in gear
fuzzy logic is useful for decision making. The methods basé% Presented in [9].
on quantitative models are oriented to identification (peeeer ~ The CD problem can be solved by change point estimation
estimation), observers (state estimation) and parity espafmean change), change detection using one and two model
Some heuristics results, obtained from the previous ezpee, approach, with different distance measures and stopires rul
can be used for diagnosing the origins of the failure or ceand10], multiple change detection [6], detection and diagsno$
based on the dispersion of the characteristics. model parameter and noise variance changes [11], for mono-
Almost all CD solutions assume that the monitored Syg\_nd mgltivariable vibration signals. Some algorithms, 'mgk.
tem can be described with sufficient precision by a finitd€ object of [12] and [13] in CD, represented the starting

dimensional linear model. In practice, if the system is moRPINtS in developing these algorithms. The analysis of the

complex than the structure described by a finite-dimengionydoration signals behavior reveals that most of the changes

model, the parameter estimates will still converge, butrthdn@t occur are either changes in the mean level, variance, or
values can be strongly dependent on the experimental corfdlanges in spectral characteristics.

tions. The algorithms will not be .a.ble to separate the changQ/. FAULT DETECTION IN ROLLING ELEMENTS BEARINGS
determined by the external conditions from those occurged b

the internal defect of the investigated system, so theicllss This section presents some experimental results, obtained
tests will fail. The problems mentioned above point out the case study, having as object fault detection in REB, as well
requirement of the robust CD algorithms, able to separas the conceptual description of the algorithm used.

the changes determined by the external conditions from the

changes of the internal dynamics of the system. A. Test Data

The first generation of CD algorithms is based on strong The experiments performed use a data set from [14], with
hypotheses, or strong assumptions, which are difficult tdye three faults having different locationg?1 (Inner race),F2
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(Ball) and F'3 (Outer race), and four sizes of the faulfs) C. Algorithm Description
denotes no faults; only the data for the first case (06HH) hav

been used (see Table ). ®The model used in the case study is a linear regression

model with piecewise constant parameters [6],
TABLE |. 1STDATA TESTSET (6203BEARING TYPE).
_ Tp(s 2y _
Faut 0 F1 2 3 ye = ¢y 0() +er, Elef) = Ry, (1)

size Free Inn. Race Ball Outer Race
0.000"  yo(?)
0.007” -

wherey, is the observed signadi) is thed-dimensional pa-

y1-(t) ya(t) y3(t) rameter vector in data stationary segmemi; is the regressor.
0.014” - ya(?) y5(t) y6(1) The noisee; is assumed to be Gaussian with variadte Its
8'8%,, ) ;’170((% ;’181(3) vo(t) important feature is that the jumps divide the vibratiomsig

into a number of independent segments, since the parameter

. . ectors in different segments are independent.
yo(t) contains 4,096 samples recorded during normal coné{l— 9 P

tions operating, while;(¢), i = 1, ...11 indicate files/vectors, . To solve the segmentation problem, all possible segmenta-

containing each 4,096 samples, for the cases with faules; {ipn k" are considered, estimate one linear regression model
sampling rate was of 12,000 samples/s. in each segment, and then choose the particélarthat

minimizes an optimality criteria of the form:

B. Preliminary Analysis En — ar min V (k™) )
n>1,0<k1<...<knp=N

_ For the s_lgnals mentioned above, some stat|st|c_al fegiures For the measurements inih segmenty;,
time domain [2], have been computed, and are given in Tablg,

I, offering a general view of the signal characteristics. %éﬁi;'l’

i1+l oYk =
results the least square estimate and its covariance

TABLE Il. STATISTICAL FEATURES OF THE SIGNALSyo(t), y1(t), .. .,

y11(t) IN TIME DOMAIN . Ky
.~ _ .
Signal RMS Mean Var. Cres. fact.  Skew. Kurt. 9(1) = P(Z) Z ¢th Yt, (3)
yo(f) 0.999 -0.002 0.998 3.796 -0.094  2.890 t=k; 141
y1(t) 0.992  0.007 0.985 5.145 0.124  5.456 4
y2(t) 1.007 0.021 1.014 3.720 0.003  2.997 ki
. 1,7
y3(t) 0.997 0.016 0.995 5.189 0.088  7.698 PG) = Z ¢ R L] ) (4)
ya(t) 0.997 -0.001 0.995 4.016 0.067  4.281
ys(t) 1.013  0.013 1.027 5.299 0.012  7.032 t=k;_1+1
ye(t) 0.987 0.078 0.974 9.747 -0.144  22.505 . - . . .
yr(f) 0724 0001 0.525 6.937 0066 5775 Thg following quantities are used in optimal segmentation
ys(t) 0.978 0.046 0.958 3.779 0.023 2982 algorithm:
yo(t) 1.018 0.011 1.037 6.495 0.315  6.868
yio(t) 0.981  0.019 0.963 4.378 0.043  3.457
yi1(t) 0.955 0.002 0.913 9.992 -0.086  21.255 ki
. Ta\\T p—1 TA(:
V() = Z (y+ — ¢y 0(1))" By (ye — ¢ 0(3))
The signals, making the object of the analysis, are simul- t=ki_1+1
taneously characterized in time and frequency domain using (5)
their mean localizations and dispersions. So, the averaged D(i) = —logdet P(i) (6)

and the time spreading, as well as the averaged frequency andN(Z.) k= ki )
the frequency spreading [15], are given in Table Il for sign v
analyzed. whereV (i) - the sum of squared residualB,i) - —log det
of the covariance matri®’(i) and N (i) - the number of data
TABLE Ill. T IME-FREQUENCY STATISTICAL FEATURES OF THE SIGNALS jn each: Segment, and represent sufficient statistics for each
o), y1(®), - yn(®). segment. The data and quantities used in segmentation

Signal _ Aver. time  Time spread _ Aver. freq.  Freq. spread havingn — 1 degrees of freedom are given in Table IV.
yo(t)  2.104e+003  4.251e+003 -8.197e-009 0.287

y1(t)  2.032e+003  4.155e+003  -2.359e-008 0.850 TABLE V. D ATA AND QUANTITIES USED IN OPTIMAL SEGMENTATION
y2(t) 2.026e+003  4.103e+003  -1.035e-006 0.906 PROCEDURE

y3(t)  2.090e+003  4.167e+003  -2.206e-008 0.969

ya(t)  1.944e+003  4.157e+003  -5.457e-009 0.804 Data YLY2 Yk oo Ykl Yk

ys(t)  2.082e+003  4.247e+003  -3.880e-008 0.983 Segment Segment 1 . Segment n

ve(t)  1.954e+003  4.099e+003  -1.229e-008 0.920 LS est. 6(1), P(1) G(n), P(n)

y7(t)  1.993e+003  4.843e+003  -1.134e-008 0.820 Statistics  V/(1), D(1), N(1) ... V(n), D(n), N(n)

ys(t)  2.057e+003  4.187e+003  -1.800e-007 0.968

yo(t)  2.054e+003  4.273e+003  -1.604e-007 0.857 . ; .

ylo(( t)) 200664003 418464003  -1.4356-007 0.909 To golvg the 9pt|_mal segmentation procedure, differergsyp
y11(t) 2.085e+003  4.081e+003  -9.584e-010 0.911 of optimality criteria have been proposed [13]. In the fallo

ing we will use Maximum A posteriori Probability estimate
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(MAP) criterion [6]. The number of segmentatiohs is 2 D. Multiple Fault Detection
(can be a change or no change at each time instant), and thi

. . ) . ; Started from the data given in TABLE | data sequences with
raises problems concerning the dimensionality.

multiple faults have been generated, for 3 types of evemtgri

for the data and quantities given in Table 1V it is presentetd?€- 0.00Z”, 0-01f’1"’ 0-02}"’ 0.028”, for the first two cases
below, for three different assumptions on noise scaling: @d 0.007”, 0.014", 0.021" for the third case. The following
Known (i) = Xo, (ii) unknown but constank(i) = A and (i) data sets have been used in the analysis, for fault detection
unknown and changing(i), whereq is the change probability
at each time instant9) (< ¢ < 1).

si(t) = [yo(t),y1(t), ya(t),y7(t), y10(t)]
s2(t) = [yo(t),y2(t), ys(t), ys(t), y11(t)]
Data: Vibration signaly;, t=1...N
gnaly: s3(t) = [yo(t),ys(t),ys(t), yo ()]
Step 1: Examine every possible segmentation, parameteriz&sulting data sequences of 20480 values for signals
in the number of jumps and jump times:™,separately. s1(t), s2(t) and 16384 for signads(t). The real faults instants

were 4097, 8193, 12288 and 16384. These data sets offer the

Step 2: For each segmentation, compute the best modelsgBssibility to fault detection of a graduate size of fault; the
each segment parameterized in the least square estifl{@tes cases mentioned above.

and their covariance matricds{i). The experimental results refer to the signals

Step 3: Compute in each segment: s1(t), s2(t), s3(t) and the segmenting algorithm presented
above with unknown and constant noise scaling, and MCMC

V() = Zf;ki,lﬂ(yt — ¢;fé(¢))TR;1(yt — ¢;fé(¢)) algorithm, [6], with a value of jump probability; = 0.3 and
D(i) = —logdet P(i) appropriate design parameters in search scheme, foreatitfer
N(@G) = ki—kiy model orders,na. The fault instants detected for different

model ordersia are presented in Table V, Table VI and Table
Step 4:MAP estimate k™, for the three different assumptionsVIl for si(t), s2(t) andss(t), respectively.
on noise scaling The signals; (), making the object of the analysis, and the
. N estimated multiple fault times for the inner race, = 20 and
g)\ known A(i) = Ao, g = 0.3, are presented in Figure 1, while the sigag(t) and

k= argmingn , >0 (D(i) + V(i) + 2nlog <71 the estimated multiple fault times for baltz = 20 andq =

0.3 are given in Figure 2. The signa}(¢) and the estimated
(i) unknown but constand(i) = A, multiple fault times for the outer racea = 60 andq = 0.3
kr = argmingn , > . D(i) + (Np — nd — 2)x are presented in Figure 3.

n V(3) 1—q
x lo 1 v + 2nlog —1
82 i1 Np—nd—4 &7 TABLE V. FAULT DETECTION IN SIGNAL s1(t) USING DIFFERENT MODEL

ORDER

Model order  Fault detection instants

~

(iii)  unknown and changing\(7),
"= (

km = argmingn ,, > . (D(i) + (N(i)p — d — 2) x na =10 4096, 8687, 9501, 10684, 11322, 11500, 12570,
V() 1—g 12627, 12967, 13068, 13961, 14527, 14627, 14777,
x log wp-a=g) + 2nlog =5 15964, 16384,
, na=15 4096, 8687, 9502, 10684, 11501, 12570, 14777, 16384.
Results : Numbern and locationsk; , k" = ki, ks, ..., ky na=20 4096, 8195, 8687, 11502, 13026, 16384.

In a practical problem, only one of the equations fr8tep B
4 is evaluated, according with the assumption on noise sgalin -
of the procedure.

Ampiuge mis?
0

For the exact likelihood evaluation, there are implemente
recursive local search techniques and numerical searciseslb

on dynamic programming or Markov Chain Monte Carlo .|
(MCMC) techniques [6], [13]. I e

. . . L. . Fig. 1. The signak; (t) and estimated multiple fault times for inner race,
Starting from the optimal segmentation results, it is fussi na = 20, ¢ = 0.3.

to analyze the data resulted for each stationary data ségmen

locate and diagnose the occurred fault or change in the REBThe changes in signals (¢), s2(¢) andss(t), resulted after
outer race, inner race, bearing cage, ball (roller), adogrd data concatenation, are gradual, and the effect may irereas
with the frequency area where it has occurred. producing new changes in the signal dynamics that can be
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TABLE VI. FAULT DETECTION IN SIGNAL s2(t) USING DIFFERENT
MODEL ORDER.

Estimated multiple fault times: Outer race (6203 bearing type)

Model order  Fault detection instants “r 1

na = 10 4096, 8191, 8497, 8614, 9305, 9929, 11946, 16385, 2 1
16711, 16901, 18065, 18129. g

na = 15 4096, 8190, 11946, 16385, 16719, 18108, 18128. - 1

na = 20 4096, 8190, 11945, 16385, 16751, 18233. ,

2660 000 6660 5660

Sampie numbe:

16660 1606 14000 6000
Estimated multiple fault tmes: Ball (6203 bearing type)

Fig. 3. The signaks(t) and estimated multiple fault times for outer race,

Anpltde mis2

o= A X Xy Y Eee T3 e e

Fig. 2. The signak2(t) and estimated multiple fault times for the ball,

na = 20, ¢ = 0.3.

Qc

na = 60, g = 0.3.

in vibration signals, and assures proactive actions iniptigd
maintenance.
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detected by the algorithm. The further deterioration of th
rolling element bearing during operating occurs new fault
instants, different from 4096, 8192, 12288 and 16384 irtstan
According with data from Table V, Table VI and Table VII,
one can notice that in all the cases the main faults are @etect
Also, it can be noted that for the models of high ordei2]
(na = 20, na = 20 andna = 60, respectively), only the main

(1]

faults are detected at instants 4096, 8192, 12288 and 16384 5p17.

or near instants. The models of high order, can increase tli#
robustness of the optimal segmentation algorithm to griadua
or small changes in signal dynamics. Different valueg offer 4
similar results, but a higher order of the model leads to tebet
fault detection, the model being able to better approxirtiage
signal dynamics. 5]
VI. CONCLUSIONS ]
The paper presents a vibration analysis approach, with ap-
plication in predictive maintenance of REB. The experinaént (7]
results, presented in the case study, have as object detecti
of the multiple faults, as well as of the faults, which graitjua (8]
occur, in REB operating. The optimal segmentation method
is based on maximum a posteriori probability estimator and
need a minimum of design parameters, depending to a gre[glt
extend of the linear regression model order. The used approa
offers new possibilities for more robust detection of clesg

TABLE VII. FAULT DETECTION IN SIGNAL s3(t) USING DIFFERENT [10]

MODEL ORDER.

Fault detection instants

4096, 4383, 7081, 7170, 7897, 7950, 8192, 12298,
12367, 12480, 12982, 13151, 13260, 13407, 13596,
14042, 14179, 14378, 14489, 14668, 14823, 15169,
15271, 15575, 15605, 16050, 16229.

4096, 8192, 12296, 12368, 12479, 12669, 12813,
13261, 13455, 13596, 14042, 14173, 14378, 15015,
15164, 15271, 15469, 15605, 16051, 16346.

4096, 8192, 12293, 12367, 12479, 12669, 12813,
13261, 13460, 13594, 14042, 14189, 14378, 15271,
15473, 15604, 16051.

4096, 8198, 12287, 12352, 14057.

Model order
na = 10

(11]

[12]
na = 15
[13]
[14]
na = 20
[15]

na = 60
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