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Abstract—The paper presents the vibration analysis problem
with application in predictive maintenance of Rolling Elements
Bearings (REB). After an overview of the maintenance approach,
the condition monitoring in predictive maintenance is presented.
A general view on change detection problem, with application
in vibration monitoring, precedes some experimental results
obtained in REB operating, for multiple faults and faults which
gradually occur, with the conceptual description of the algorithm
used. The approach proved to offer more robust detection of
faults in REB, able to assure proactive actions in predictive
maintenance.

Index Terms—Fault detection and diagnosis; Rolling element
bearings; Optimal segmentation; Vibrating signals.

I. I NTRODUCTION

Vibration analysis is one of the most effective tool used to
check the health of plant machinery and diagnose the causes.
The health of a machine is checked by routine or continuous
vibration monitoring, giving an early indication of a possible
failure and offering countermeasures to avoid a possible catas-
trophic event. Every machinery problem generates specific
spectrum patterns, which are identified using frequency and
phase analysis.

Vibration monitoring problem consists of machines condi-
tion and the change rate of its behavior. It can be ascertained
by selecting a suitable parameter for deterioration measuring
and recording its value for further analysis. This activityis
known as condition monitoring. The great part of the defects
encountered in the rotating machinery give rise to a distinct vi-
bration pattern, or ”vibration signature”. Vibration monitoring
has the ability to record and identify vibration ”signatures” for
monitoring rotating machinery. Vibration analysis is applied
by using transducers to measure acceleration, velocity or
displacement, depending of the frequencies making the object
of the analysis. Different mechanical and electrical faults
generate vibration ”signatures” and careful scrutiny and deep
study eliminates different possibilities and concludes toa
single fault.

The problem of fault modeling and predictive health mon-
itoring of Rolling Elements Bearings (REB) is one of great

interest and made the object of many papers and books. El-
Thalji et al. [1] presents such a monitoring procedure that
includes detection, diagnosis and prognosis, to extract the
features related to the fault occurrence. A general overview of
various condition-monitoring and fault diagnosis techniques
for REB in current practice is discussed in [2]. The paper
of Randall and Antoni [3] offers a tutorial to guide the
reader in REB diagnostics using vibrating signal analysis,
and presents different case studies. An application of blind
source separation method in diagnosis rolling bearing faults
is presented in [4]. The study [5] presents a procedure for
fault detection of roller bearings using signal processingand
optimization techniques.

The matter of monitoring of REB plays a crucial role in the
assessment of the overall health state of a rotating machine
and is still a challenge. A new approach operating in time
domain, using the optimal segmentation of vibration signals
[6] occurred during REB operating, is used in the present
paper. It offers new possibilities for more robust detection of
changes in REB, and assures proactive actions in predictive
maintenance.

The paper is organized as follows. Section II has as subject
the maintenance approach, while in Section III, we present
the condition monitoring problem in predictive maintenance.
Section IV offers a general view on change detection problem
with application in vibration monitoring. Finally, Section V
presents some experimental results obtained in REB operating,
for multiple faults and faults which gradually occur, and the
conceptual description of the algorithm used.

II. M AINTENANCE APPROACH

Usually, the maintenance is performed aspreventive mainte-
nance, at fixed time intervals, or asreactive maintenance, after
the fault occurs. In the last case, it is necessary to performim-
mediately maintenance actions, while in thepredictive main-
tenance, after a warning of a fault occurrence, the problem
solving is carried out when necessary, so to avoid disruption
of machine operations. A comparison of different maintenance
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types, with disadvantages and advantages, is given in [7].
We present in the following some aspects concerning these
approaches, to be taken into account, mainly in predictive
maintenance of REB.

A. Reactive Maintenance

This approach refers to machine running until a fault occurs
and involves fixing problems only when the fault occurs. It
represents the simplest and cheapest approach in terms of
maintenance costs; often it implies additional costs, usually
due to unplanned downtime. It can be seen as an easy solution
to many maintenance strategies.

In rotating machines, REB represent the most critical com-
ponents, both in terms of initial selection, as well as in how
they are maintained. Monitoring the condition of rolling bear-
ings is essential and vibration based monitoring is frequently
used to detect an early fault.

B. Preventive Maintenance

The preventive maintenance implies the scheduling of regu-
lar machine shutdowns, even if they are not required; this will
increase the maintenance costs as some machine components
are replaced, when this is not necessarily required. Some
risks could appear due to replacing a defective machine
part, incorrectly installing or reassembling parts. A frequent
result of preventive maintenance consist of the fact that the
maintenance is performed when there is nothing wrong in
machine operating. Significant costs saving can be obtained
by predictive maintenance.

C. Predictive Maintenance

The predictive maintenance refers to the process of mon-
itoring the machine condition as it operates in order to
predict which components are likely to fail and when. So,
the maintenance can be planned and there is the possibility
to change only those components that show failure signs in
their operation. The predictive maintenance principle consists
of taking additional measurements in order to predict the be-
havior of machine components that are susceptible of failure,
and also to predict when these failures will occur. Usually,
these measurements include machine vibration, and machine
operating parameters: flow, temperature, pressure, etc.

The continuous monitoring detects, in advance, the onset of
component problems, so the maintenance is performed when
needed. By this approach, unplanned downtime is reduced,
and also the risk of catastrophic failure is reduced. This will
increase the efficiency and reduce the costs. By predictive
maintenance strategy, applied in rolling bearings, the costs
can be cut, giving in advance, a warning of a possible failure,
enabling remedial action in advance.

III. C ONDITION MONITORING

Condition monitoring consists of machine monitoring for
early signs of failure so that the maintenance activity can be
better planned, with reduced down time and costs.

The monitoring of vibration, temperature, voltage or power
and oil analysis is frequently the most used. Vibration is the
most widely used for its ability to detect and diagnose failure
problems, but it offers also a prognosis on the useful life
and possible failure mode of the machine. The prognosis is
much more difficult to be performed and usually relies on
continue monitoring of the fault to estimate the time when the
machine will become unusable, taking into account the known
experience in similar cases.

Vibration monitoring can be considered the most widely
used predictive maintenance technique, and can be applied to
a wide area of rotating machines. Machine vibration comes
from many sources such as bearings, gears, unbalance, etc.,
each sources having its own characteristic frequencies, mani-
festing as a discrete frequency, or as a sum and/or difference
frequency. It can generate complex vibration signals, which
cause problems in vibration analysis, but some techniques,
with a high sensitivity to faults, can reduce the complexity
of the analysis. Bearing defects can affect higher frequencies,
offering a basis for detecting incipient failure.

Usually, the detection uses the basic form of vibration
measurement, where the vibration level is measured on a
broadband basis (10-1000 Hz or 10-10000 Hz). The spikiness
of the vibration signal, in machines with little vibration other
than in the case of the bearings, is highlighted by the Crest
Factor, indicating an incipient defect, and the a great value of
the energy given by RMS level indicates a severe defect.

These measurements offer limited information, but they can
be useful for trend evaluation; increasing vibration levelhigh-
lights the machine condition deterioration. Also, a comparison
of the measurement level with some vibration criteria from
literature proves to be useful in practice.

Generally, rolling bearings generate very little vibration in
faults absence, and present specific frequencies when a fault
occurred. At the beginning of a fault, for a single defect, the
vibration signals present a narrow band frequency spectrum.
As the malfunction increases, an increase in the characteristic
defect frequencies and sidebands can be noticed, with a
drop in these amplitudes, broadband noise increasing and
considerable vibration at shaft rotational frequency [7].At very
low machine speed, low energy signals are generated by the
bearings, difficult to be detected. Also, bearings located within
a gearbox are difficult to monitor, because of the high energy
at the gear, which can mask the bearing defect frequencies.

IV. CHANGE DETECTION IN V IBRATION MONITORING

The CD problem is frequently present for continuous moni-
toring of systems like machinery, structure, process, equipment
or plant, using data provided by the sensors. So, it is possible
to anticipate the abnormal functioning or these systems, before
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it occurs and to reduce the maintenance costs. The normal
behavior of the system can be described by a parametric
model, without using artificial excitation, reducing the speed
of the equipment or temporary stop. If such early detections
are possible, large changes of the system can be prevented, and
the effects of defects, mechanical fatigue, etc., can be quickly
anticipated, raising the usability of the system.

The applications in this field make use of theories based on
statistics, providing theoretical instruments to solve the early
detection problem. Many industrial processes are based on
known physical principles, with available analytical models,
and for very complicated or unknown models, semi-physical
or black-box models can be used. Vibration analysis and
surveillance of machinery or industrial equipments represent
important cases of detection and diagnosis problems.

The CD problem refers to detection of the change (the
alarm) and evaluation of the change (estimation), providing
information, in some cases, for diagnosis (source isolation).
The performance criterion of a change detection algorithm
consists in its ability to correctly detect the changes, with
minimum delay and minimum probability of false decisions.
So, it must respond to the small changes (sensitivity to
changes), without being affected by the disturbances, noise or
modeling errors (robustness of the algorithm). The sensitivity
and robustness properties are usually in conflict, a good change
detection algorithm must perform a compromise between the
two aspects.

Two basic approaches in CD are reported as based on quan-
titative models (using analytical redundancy) and qualitative
models, which can be conveniently combined to improve the
robustness of the generation of quantitative residuals. Inthe
case of analytical exact models absence, learning models, such
as fuzzy and neural models, can be used. Moreover, the neural
networks can be used for classification of the residuals, while
fuzzy logic is useful for decision making. The methods based
on quantitative models are oriented to identification (parameter
estimation), observers (state estimation) and parity space.
Some heuristics results, obtained from the previous experience,
can be used for diagnosing the origins of the failure or change,
based on the dispersion of the characteristics.

Almost all CD solutions assume that the monitored sys-
tem can be described with sufficient precision by a finite-
dimensional linear model. In practice, if the system is more
complex than the structure described by a finite-dimensional
model, the parameter estimates will still converge, but their
values can be strongly dependent on the experimental condi-
tions. The algorithms will not be able to separate the changes
determined by the external conditions from those occurred by
the internal defect of the investigated system, so the classical
tests will fail. The problems mentioned above point out the
requirement of the robust CD algorithms, able to separate
the changes determined by the external conditions from the
changes of the internal dynamics of the system.

The first generation of CD algorithms is based on strong
hypotheses, or strong assumptions, which are difficult to verify

in practice. So, a second generation of solutions were required,
insensitive to the uncertainty of the system’s dynamics, to
the operating environment, and to large noise, statistically
unknown. In our opinion, the central problems to be addressed
in the CD area refer to robustness, sensitivity and versatility.
The lack of robustness of the classical algorithms concerns
the failure of the detection, if one or more of the hypotheses
assumed during the design are not verified in practice. The
sensitivity relates to the ability of the algorithm to detect
the change, even if there are small scale incipient changes.
Finally, the versatility is linked to the ability of the methods
and techniques to solve more CD problems, using the same
set of algorithms.

To solve the vibration monitoring problem different tech-
niques have been developed, one can mention: analysis of
overall vibration level, frequency spectrum, envelope spec-
trum, cepstrum analysis, etc. [7]. The success of vibration
monitoring, in many practical cases, requires specializedfunc-
tions and tools. Simple application of CD techniques on
original mono- or multivariate vibration signals can assure
successful monitoring. Sometimes, it is necessary that some
signal pre- or postprocessing procedures to be applied, to
emphasize and highlight the characteristics of the vibration
signals making the object of the analysis. So, some sig-
nal processing techniques can be used in conjunction with
CD techniques: independent component analysis (ICA), time-
frequency analysis (TFA), energy distribution (ED) evaluation
in time-frequency domain. These techniques are implemented
in a software toolbox, Matlab VIBROTOOL Toolbox [8], built
as a set of programs that compute specific parameters and
solve specialized tasks for vibration monitoring. A general
approach, making use of these techniques, and a case study
having as object the condition monitoring of a rotating ma-
chine, an industrial pump, with a progressed pitting in gears,
is presented in [9].

The CD problem can be solved by change point estimation
(mean change), change detection using one and two model
approach, with different distance measures and stoping rules
[10], multiple change detection [6], detection and diagnosis of
model parameter and noise variance changes [11], for mono-
and multivariable vibration signals. Some algorithms, making
the object of [12] and [13] in CD, represented the starting
points in developing these algorithms. The analysis of the
vibration signals behavior reveals that most of the changes
that occur are either changes in the mean level, variance, or
changes in spectral characteristics.

V. FAULT DETECTION IN ROLLING ELEMENTS BEARINGS

This section presents some experimental results, obtainedin
a case study, having as object fault detection in REB, as well
as the conceptual description of the algorithm used.

A. Test Data

The experiments performed use a data set from [14], with
three faults having different locations:F1 (Inner race),F2
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(Ball) and F3 (Outer race), and four sizes of the faults;F0
denotes no faults; only the data for the first case (06HH) have
been used (see Table I).

TABLE I. 1ST DATA TEST SET (6203BEARING TYPE).

Fault F0 F1 F2 F3
size Free Inn. Race Ball Outer Race

0.000” y0(t) - - -
0.007” - y1(t) y2(t) y3(t)
0.014” - y4(t) y5(t) y6(t)
0.021” - y7(t) y8(t) y9(t)
0.028” - y10(t) y11(t) -

y0(t) contains 4,096 samples recorded during normal condi-
tions operating, whileyi(t), i = 1, . . . 11 indicate files/vectors,
containing each 4,096 samples, for the cases with faults; the
sampling rate was of 12,000 samples/s.

B. Preliminary Analysis

For the signals mentioned above, some statistical featuresin
time domain [2], have been computed, and are given in Table
II, offering a general view of the signal characteristics.

TABLE II. STATISTICAL FEATURES OF THE SIGNALSy0(t), y1(t), . . . ,
y11(t) IN TIME DOMAIN .

Signal RMS Mean Var. Cres. fact. Skew. Kurt.
y0(t) 0.999 -0.002 0.998 3.796 -0.094 2.890
y1(t) 0.992 0.007 0.985 5.145 0.124 5.456
y2(t) 1.007 0.021 1.014 3.720 0.003 2.997
y3(t) 0.997 0.016 0.995 5.189 0.088 7.698
y4(t) 0.997 -0.001 0.995 4.016 0.067 4.281
y5(t) 1.013 0.013 1.027 5.299 0.012 7.032
y6(t) 0.987 0.078 0.974 9.747 -0.144 22.505
y7(t) 0.724 0.001 0.525 6.937 -0.066 5.775
y8(t) 0.978 0.046 0.958 3.779 0.023 2.982
y9(t) 1.018 0.011 1.037 6.495 0.315 6.868

y10(t) 0.981 0.019 0.963 4.378 0.043 3.457
y11(t) 0.955 0.002 0.913 9.992 -0.086 21.255

The signals, making the object of the analysis, are simul-
taneously characterized in time and frequency domain using
their mean localizations and dispersions. So, the averagedtime
and the time spreading, as well as the averaged frequency and
the frequency spreading [15], are given in Table III for signals
analyzed.

TABLE III. T IME-FREQUENCY STATISTICAL FEATURES OF THE SIGNALS
y0(t), y1(t), . . . , y11(t).

Signal Aver. time Time spread Aver. freq. Freq. spread
y0(t) 2.104e+003 4.251e+003 -8.197e-009 0.287
y1(t) 2.032e+003 4.155e+003 -2.359e-008 0.850
y2(t) 2.026e+003 4.103e+003 -1.035e-006 0.906
y3(t) 2.090e+003 4.167e+003 -2.206e-008 0.969
y4(t) 1.944e+003 4.157e+003 -5.457e-009 0.804
y5(t) 2.082e+003 4.247e+003 -3.880e-008 0.983
y6(t) 1.954e+003 4.099e+003 -1.229e-008 0.920
y7(t) 1.993e+003 4.843e+003 -1.134e-008 0.820
y8(t) 2.057e+003 4.187e+003 -1.800e-007 0.968
y9(t) 2.054e+003 4.273e+003 -1.604e-007 0.857
y10(t) 2.006e+003 4.184e+003 -1.435e-007 0.909
y11(t) 2.085e+003 4.081e+003 -9.584e-010 0.911

C. Algorithm Description

The model used in the case study is a linear regression
model with piecewise constant parameters [6],

yt = φT
t θ(i) + et, E(e2

t ) = Rt, (1)

whereyt is the observed signal,θ(i) is thed-dimensional pa-
rameter vector in data stationary segmenti, φt is the regressor.
The noiseet is assumed to be Gaussian with varianceRt. Its
important feature is that the jumps divide the vibration signals
into a number of independent segments, since the parameter
vectors in different segments are independent.

To solve the segmentation problem, all possible segmenta-
tion kn are considered, estimate one linear regression model
in each segment, and then choose the particularkn that
minimizes an optimality criteria of the form:

k̂n = arg min
n≥1,0<k1<...<kn=N

V (kn) (2)

For the measurements in ai-th segment,yki−1+1, . . . yki
=

yki

ki−1+1, results the least square estimate and its covariance
matrix:

θ̂(i) = P (i)

ki∑

t=ki−1+1

φtR
−1
t yt, (3)

P (i) =




ki∑

t=ki−1+1

φtR
−1
t φT

t




−1

. (4)

The following quantities are used in optimal segmentation
algorithm:

V (i) =

ki∑

t=ki−1+1

(yt − φT
t θ̂(i))T R−1

t (yt − φT
t θ̂(i))

(5)

D(i) = − log detP (i) (6)

N(i) = ki − ki−1 (7)

whereV (i) - the sum of squared residuals,D(i) - − log det
of the covariance matrixP (i) andN(i) - the number of data
in eachi segment, and represent sufficient statistics for each
segment. The data and quantities used in segmentationkn,
havingn − 1 degrees of freedom are given in Table IV.

TABLE IV. D ATA AND QUANTITIES USED IN OPTIMAL SEGMENTATION

PROCEDURE.

Data y1, y2, . . . , yk1
. . . ykn−1+1, . . . , ykn

Segment Segment 1 . . . Segment n
LS est. θ̂(1), P (1) . . . θ̂(n), P (n)
Statistics V (1), D(1), N(1) . . . V (n), D(n), N(n)

To solve the optimal segmentation procedure, different types
of optimality criteria have been proposed [13]. In the follow-
ing we will use Maximum A posteriori Probability estimate
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(MAP) criterion [6]. The number of segmentationskn is 2N

(can be a change or no change at each time instant), and this
raises problems concerning the dimensionality.

The conceptual description of the MAP estimator [6], [13]
for the data and quantities given in Table IV it is presented
below, for three different assumptions on noise scaling: (i)
knownλ(i) = λ0, (ii) unknown but constantλ(i) = λ and (iii)
unknown and changingλ(i), whereq is the change probability
at each time instants (0 < q < 1).

Data: Vibration signalyt, t = 1 . . .N

Step 1: Examine every possible segmentation, parameterized
in the number of jumpsn and jump timeskn,separately.

Step 2: For each segmentation, compute the best models in
each segment parameterized in the least square estimatesθ̂(i)
and their covariance matricesP (i).

Step 3: Compute in each segment:

V (i) =
∑ki

t=ki−1+1(yt − φT
t θ̂(i))T R−1

t (yt − φT
t θ̂(i))

D(i) = − log detP (i)
N(i) = ki − ki−1

Step 4:MAP estimate,̂kn, for the three different assumptions
on noise scaling

(i) known λ(i) = λ0,
k̂n = arg minkn,n

∑n

i=1(D(i) + V (i)) + 2n log 1−q

q

(ii) unknown but constantλ(i) = λ,
k̂n = arg minkn,n

∑n

i=1 D(i) + (Np − nd − 2)×

× log
∑n

i=1
V (i)

Np−nd−4 + 2n log 1−q

q

(iii) unknown and changingλ(i),
k̂n = arg minkn,n

∑n

i=1(D(i) + (N(i)p − d − 2)×

× log V (i)
N(i)p−d−4 ) + 2n log 1−q

q

Results : Numbern and locationski , kn = k1, k2, . . . , kn

In a practical problem, only one of the equations fromStep
4 is evaluated, according with the assumption on noise scaling
of the procedure.

For the exact likelihood evaluation, there are implemented
recursive local search techniques and numerical searches based
on dynamic programming or Markov Chain Monte Carlo
(MCMC) techniques [6], [13].

Starting from the optimal segmentation results, it is possible
to analyze the data resulted for each stationary data segment to
locate and diagnose the occurred fault or change in the REB:
outer race, inner race, bearing cage, ball (roller), according
with the frequency area where it has occurred.

D. Multiple Fault Detection

Started from the data given in TABLE I data sequences with
multiple faults have been generated, for 3 types of events: inner
race faults, ball faults and outer race faults, with different fault
size: 0.007”, 0.014”, 0.021”, 0.028”, for the first two cases,
and 0.007”, 0.014”, 0.021” for the third case. The following
data sets have been used in the analysis, for fault detection:

s1(t) = [y0(t), y1(t), y4(t), y7(t), y10(t)]

s2(t) = [y0(t), y2(t), y5(t), y8(t), y11(t)]

s3(t) = [y0(t), y3(t), y6(t), y9(t)]

resulting data sequences of 20480 values for signals
s1(t), s2(t) and 16384 for signals3(t). The real faults instants
were 4097, 8193, 12288 and 16384. These data sets offer the
possibility to fault detection of a graduate size of fault, for the
cases mentioned above.

The experimental results refer to the signals
s1(t), s2(t), s3(t) and the segmenting algorithm presented
above with unknown and constant noise scaling, and MCMC
algorithm, [6], with a value of jump probability,q = 0.3 and
appropriate design parameters in search scheme, for different
model orders,na. The fault instants detected for different
model ordersna are presented in Table V, Table VI and Table
VII for s1(t), s2(t) ands3(t), respectively.

The signals1(t), making the object of the analysis, and the
estimated multiple fault times for the inner race,na = 20 and
q = 0.3, are presented in Figure 1, while the signals2(t) and
the estimated multiple fault times for ball,na = 20 and q =
0.3 are given in Figure 2. The signals3(t) and the estimated
multiple fault times for the outer race,na = 60 and q = 0.3
are presented in Figure 3.

TABLE V. FAULT DETECTION IN SIGNAL s1(t) USING DIFFERENT MODEL

ORDER.

Model order Fault detection instants
na = 10 4096, 8687, 9501, 10684, 11322, 11500, 12570,

12627, 12967, 13068, 13961, 14527, 14627, 14777,
15964, 16384.

na = 15 4096, 8687, 9502, 10684, 11501, 12570, 14777, 16384.
na = 20 4096, 8195, 8687, 11502, 13026, 16384.
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Estimated multiple fault times: Inner race (6203 bearing type)
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Fig. 1. The signals1(t) and estimated multiple fault times for inner race,
na = 20, q = 0.3.

The changes in signalss1(t), s2(t) ands3(t), resulted after
data concatenation, are gradual, and the effect may increase,
producing new changes in the signal dynamics that can be
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TABLE VI. FAULT DETECTION IN SIGNAL s2(t) USING DIFFERENT
MODEL ORDER.

Model order Fault detection instants
na = 10 4096, 8191, 8497, 8614, 9305, 9929, 11946, 16385,

16711, 16901, 18065, 18129.
na = 15 4096, 8190, 11946, 16385, 16719, 18108, 18128.
na = 20 4096, 8190, 11945, 16385, 16751, 18233.
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Estimated multiple fault times: Ball (6203 bearing type)
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Fig. 2. The signals2(t) and estimated multiple fault times for the ball,
na = 20, q = 0.3.

detected by the algorithm. The further deterioration of the
rolling element bearing during operating occurs new fault
instants, different from 4096, 8192, 12288 and 16384 instants.
According with data from Table V, Table VI and Table VII,
one can notice that in all the cases the main faults are detected.
Also, it can be noted that for the models of high order
(na = 20, na = 20 andna = 60, respectively), only the main
faults are detected at instants 4096, 8192, 12288 and 16384
or near instants. The models of high order, can increase the
robustness of the optimal segmentation algorithm to gradual,
or small changes in signal dynamics. Different values ofq offer
similar results, but a higher order of the model leads to a better
fault detection, the model being able to better approximatethe
signal dynamics.

VI. CONCLUSIONS

The paper presents a vibration analysis approach, with ap-
plication in predictive maintenance of REB. The experimental
results, presented in the case study, have as object detection
of the multiple faults, as well as of the faults, which gradually
occur, in REB operating. The optimal segmentation method
is based on maximum a posteriori probability estimator and
need a minimum of design parameters, depending to a great
extend of the linear regression model order. The used approach
offers new possibilities for more robust detection of changes

TABLE VII. F AULT DETECTION IN SIGNAL s3(t) USING DIFFERENT

MODEL ORDER.

Model order Fault detection instants
na = 10 4096, 4383, 7081, 7170, 7897, 7950, 8192, 12298,

12367, 12480, 12982, 13151, 13260, 13407, 13596,
14042, 14179, 14378, 14489, 14668, 14823, 15169,
15271, 15575, 15605, 16050, 16229.

na = 15 4096, 8192, 12296, 12368, 12479, 12669, 12813,
13261, 13455, 13596, 14042, 14173, 14378, 15015,
15164, 15271, 15469, 15605, 16051, 16346.

na = 20 4096, 8192, 12293, 12367, 12479, 12669, 12813,
13261, 13460, 13594, 14042, 14189, 14378, 15271,
15473, 15604, 16051.

na = 60 4096, 8198, 12287, 12352, 14057.
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Estimated multiple fault times: Outer race (6203 bearing type)

Sample number

Am
plitu

de 
m/s

2

Fig. 3. The signals3(t) and estimated multiple fault times for outer race,
na = 60, q = 0.3.

in vibration signals, and assures proactive actions in predictive
maintenance.
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