
Dynamic Path Discovery for In-band Control Plane
Communication in a Tactical SDN Network

Anders Fongen
Norwegian Cyber Defence Academy (FHS/CIS)

Lillehammer, Norway
email:anders@fongen.no

Abstract—Software Defined Networking (SDN) offers promis-
ing improvements in operational control of tactical networks,
in terms of traffic prioritization, topology management, in-
frastructure protection, resource monitoring, configuration and
deployment. Military networks are characterized by relatively
slow radio links which are vulnerable to detection and intrusion,
so novel technologies like SDN are highly relevant and actively
researched for these purposes. However, the SDN architectural
blueprint needs several modifications to meet the typical re-
quirements of a tactical mobile network. This paper addresses
the need for reliable in-band control plane traffic across the
southbound interface, and suggests two different algorithms to
obtain adaptive forwarding decisions for southbound protocol
traffic across the data plane links. Among the challenges related
to the implementation of adaptive forwarding mechanisms in
SDN equipment is the limited expressiveness in the OpenFlow
language. Based on expiry mechanisms in flow rules, the SDN
switches were able to choose alternative forwarding ports in case
of link or switch failure in the grid. The conclusion of the study
is that it is possible to make adaptive mechanisms with recovery
times comparable to the Spanning Tree Protocol (STP), but with
better utilization of link resources since link loops are allowed to
exist for load distribution (contrary to the STP protocol).

Keywords—software defined networks; tactical networks; adap-
tive forwarding; resilience

I. INTRODUCTION

In a tactical military network, the links are the resource
of greatest scarcity and need to be utilized as efficiently as
possible. Also, the links are exposed to a range of threats
to security, integrity and availability. The SDN blueprint,
developed with centralized data centers in mind, assumes a
separate set of links for the control plane, which is not an
affordable luxury in a tactical network [1]. The use of so-
called in-band control plane communication has been pursued
in this paper for this particular reason.

The term In-band control plane describes an SDN con-
figuration were the links between the Network Elements or
switches (NEs) carry both user data and southbound protocol
traffic between the NEs and the SDN controller (SDNC).
In-band control plane have been widely discussed and is
implemented in a basic manner in OpenVswitch [2]. However,
the OpenVswitch implementation does not offer adaptive paths
for the southbound traffic in case of link or NE failure.

The need for reliable control plane connectivity must be
combined with the desire to control the links with regard to
traffic and security policies. The Spanning Tree protocol (STP,
IEEE 802.1D) offers a form for adaptive paths since it may
reconstruct the forwarding path in case of link or node failure,
but the STP protocol does not employ redundant links for

load-balancing purposes and does not offer the flexible traffic
policing for which the SDN is popular.

Redundancy management, both for the data plane and
control plane traffic, should employ all available link resources
both for resilience and load balancing purposes. The presence
of link loops requires that received frames cannot be broadcast
in order to avoid traffic loops. This restriction affects both
discovery protocols like Address Resolution Protocol (ARP),
etc., and the bridge link-address learning process.

The construction of the distributed logic necessary for the
implementation must take into account the primitive nature of
the NE; They are not programmable in the ordinary sense,
only through rule-oriented protocols like OpenFlow. The lack
of a transaction context in OpenFlow processing generates race
conditions and inconsistent intermediate states [3], and failure
detection must be handled through the flow expiry mechanism
[4].

A. Related Research

The application of SDN in tactical military networks has
been discussed from perspectives of robust flow separation [1],
security [5] and in-band control plane [1]. Still there are few
proposals on how to implement a robust and resilient control
plane tunneled through the data plane links. Schiff et al. [3] and
later Canini et al. [6] provides good analysis of the problem
space and a solution outline, but no detailed and tested proof
of concept. Both papers propose the same “hard-timeout”-
based mechanism for failure detection, but do not provide a
convincing fail-over mechanism.

Sharma et al. [7] offers a comprehensive solution to the
connectivity problem as well as congestion in the control
plane. They base their solution on modification of the OVS
switch code, which is avoided by the work presented in this
paper, since the solution should be able to run on commercial
and unmodified OF-switches. A fully implemented and tested
algorithm for dynamic path discovery in an in-band control
plane has, to the author’s best knowledge, not been presented
before.

B. Contribution of the paper

The research question being pursued in the presented paper
can be expressed as is it possible to implement adaptive routing
in the control plane using OpenFlow protocol mechanisms?
The challenges related to this question is that link failure in
the control plane will isolate NEs from the SDN controller
and NEs will have to detect and recover from link failure
autonomously.

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

The contribution of this paper is the investigation of
discovery and fail-over mechanisms in the control plane. It
will report on algorithms, design patterns and the experimental
evaluation. This paper does not address the obvious security
problems related to SDN in a tactical environment, since those
problems have been addressed in other recent publications [5].

The remainder of the paper is organized as follows: Section
II discusses the benefits of in-band control plane and two
alternative design methods. Section III presents the chosen
technology components and Section IV shows the configu-
ration of the experimental network used in the experiment.
Section V discusses how the underlying SDN protocols
can support the operations necessary for the purpose of the
experiment. Sections VI and VII provide details of the two
proposed algorithm for redundancy management and contains
the main contributions of the paper. Furthermore, Section VIII
describes the mechanisms necessary for operation of a network
without using broadcast frames. Section X summarizes the
paper with a few conclusive remarks.

II. IN-BAND CONTROL PLANE

The initial SDN architecture presumes the existence of
a separate link infrastructure where every NE is directly
connected to the SDNC. Through this infrastructure (the con-
trol plane) the SDNC will manage the topology control and
traffic policing in the data plane. The control plane is silently
expected to be reliable, and any fail-over mechanisms are kept
outside the SDN scope.

“An SDN controller may use an SDN data plane
for some or all of its internal or external interfaces,
as long as the SDN controller does not rely for its
connectivity on the operability of the data plane that
it controls; otherwise, the SDN controller may find
itself stranded or irrecoverably fragmented.” - Sect
6.4 of [8]

In a military network, the resource of greatest scarcity is
the set of communication links, and a separate control plane
infrastructure is an unaffordable luxury. Intuitively, there are
resource benefits by merging the two planes into a shared
set of communication links. Multiplexing and switching units
external to the NE can allow the two types of traffic to
be logically separated yet sharing a link. This solution is
expensive and cumbersome in terms of hardware resources
though, and offers no fail-over mechanisms.

In a more straightforward manner, the OpenVswitch [2]
offers a mode whereby it at startup time allows Dynamic Host
Configuation Protocol (DHCP), ARP and TCP traffic to and
from the SDNC to pass through its switching fabric. The trick
is to assign the control plane IP address of the NE to the
switch pseudo interface, not to a physical port. OpenVswitch
will then use its switching fabric as a MAC learning switch to
find a path to the SDNC, using the OpenFlow NORMAL output
port.

Despite a low cost solution to the in-band control plane
problem, it still offers no fail-over mechanism. Besides, the
presence of redundant links in the data plane will result in
traffic loops.

OpenVswitch offers redundant link management through
the STP. However, STP will simply disable links that result in
loops and prune the link structure into a tree. Nor will STP
support the tight traffic policing and priority mechanisms that
are the hallmark of the SDN architecture.

Therefore, there is a need for a mechanism to allow an in-
band control plane to be dynamically overlaid on the data plane
link structure, without reserving valuable links for fail-over
purposes only. The load-sharing capabilities of the redundancy
must be utilized and the traffic policing enforced by the SDNC
must not be hindered. This paper investigates two approaches
to meet these requirements:

1) A reactive method, where the individual NEs discover
the path to the SDNC and connects to it.

2) A proactive method, where the SDNC keeps a cat-
alogue of the switches and the links, and actively
constructs a tree structure and connects the switches
accordingly.

Both methods allow the NEs to be indirectly connected to
the SDNC, and both allow for fail-over operations to take place
if a link or an NE falls out of service. However, they differ
in their programming structure and how well they fit into the
software environment.

III. TECHNOLOGY PLATFORM

In this section, the choice of technology components will
be described. The components are all software, including
operating system, hypervisor and system-level components.

The study of a medium sized networks with more than
10 nodes is best conducted in a virtualized environment. The
hypervisor of choice is Oracle’s VirtualBox, which is free,
easily configured, and offers the right degree of scalability.
The limit of four ports per VM is the most limiting factor
during the experiment.

For the NEs, complete instances of Linux were chosen.
The reason for this choice is that the experimental network is
used for testing several services and protocols auxiliary to the
OpenFlow protocol, and a general computing platform offers
the necessary flexibility and software availability, contrary to
Mininet. The Linux instances do not need a GUI and was
installed with a text console interface only for the sake of
saving memory.

The chosen OpenFlow switch (the NE) implementation
is OpenVswitch [2], which is easy to install, relatively easy
to configure, and offers the necessary inspection and logging
mechanisms for testing and debugging purposes.

As the network controller (SDNC), the Ryu framework was
used [9]. Ryu is very popular as an experimental platform
with a relatively low abstraction level: OpenFlow statements
are generally not automatically generated, but individually
constructed through Python programming code. For the exper-
imentation at hand, Ryu performs well and with good stability,
although the API and the required design patterns takes some
time to learn.

For all the chosen technology components, an important
property is the community support offered. Most problems are
easily solved through these support resources.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

Fig. 1: Current SDN laboratory configuration

IV. EXPERIMENTAL NETWORK

The network used in the experiment is shown in Figure 1.
The network consists of a number of green switching nodes
(NEs), a number of yellow general clients and a number of blue
nodes for serving IPSec, OpenVPN, DHCP, DNS, VXLAN etc.

The links between the NEs are somewhat redundant and
consequently form loops. The redundant links are essential for
the study of fail-over mechanisms and load balancing services.
The experimental network was used also for investigating
security mechanisms in an SDN based environment [5], thus
the presence of IPSec, MacSec and TLS is indicated in the
figure.

V. SOFTWARE DESIGN PATTERNS

Adaptive forwarding would intuitively need general pro-
grammable logic in the switches, in order to test environmental
conditions and make decisions accordingly. This is particularly
likely when the data plane and the control plane use the same
links, and an NE would need to find an alternative forwarding
path in a situation where it is isolated from the SDNC.

Another matter is that the NE does not have any direct
mechanism to reveal the physical port it uses for the control
plane traffic. The controller needs that information in order to
install flows that avoid traffic loops (the use of the OpenFlow
NORMAL output port must be avoided for the same reason).

The OpenFlow mechanisms that were used for building the
necessary distributed logic were:

1) The output port CONTROLLER which allows traffic
that matches a flow to be handled over to the SDNC,
with information about the ingress port of the switch.
This mechanism is part of the Port Discovery proce-
dure which will be discussed in Section VI-A.

2) The use of flows associated with expiry mechanisms
and high priority in combination with low priority
flows without expiration. In case the high priority
flows fail to be renewed, they will disappear and the
low priority flow will be set in effect. The necessary
fail-over mechanisms are built on this design pattern,
which is also proposed by Canini et al. in [6].

3) Timestamps on certain connection requests. Where
there are several paths from an NE to the SDNC,
the first node common to these paths will experience
connection requests from the same node over a short
period of time. The timestamps will serve to recog-
nize the first request and discard the others.

4) Proxy operation of broadcasts. To avoid traffic loops,
NEs cannot broadcast received data, only data which
is locally originated. Broadcast packets are passed on
to the SDNC which may locally resolve the situation
or pass them on to each NEs with the instruction to
flood them.

5) Data plane forwarding based on MPLS labels. Flood-
ing as seen in MAC-learning bridges cannot be
used, but the SDNC keeps track of all client MAC
addresses and their associated NE. The SDNC will
install flows (on-demand) to attach MPLS labels to
frames signifying the egress NE in the path to the
destination. Forwarding in the data plane is based on
MPLS labels only.

In the following sections the two different algorithms
will be described in more details. The two alternatives are
designated as reactive and proactive, respectively.

VI. REACTIVE ADAPTIVE FORWARDING ALGORITHM

This algorithm does not presume any knowledge about
the collection of links and switches. The knowledge is built
through a discovery process. The switches can be in one of
three states: Disconnected, Connected and Operating:

Disconnected: The switch is not under control of the
SDNC and contains only flows installed during the bootstrap
process. These flows floods TCP and ARP packets originated
from the switch (in-port: LOCAL) destined to the SDNC, and
sends ARP and TCP traffic from the SDNC to the LOCAL port
for processing by the MAC-learning switch fabric.

Connected: The switch is under control of the SDNC
through the OpenFlow protocol, but is unable to bridge con-
nections from lower-tier switches. In this mode, it still floods
locally generated packets to the SDNC. The SDNC will initiate

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

Fig. 2: State diagram of a switch/NE

the Port Discovery procedure when the switch enters the
connected mode.

Operating: The Port Discovery procedure is completed,
and the switch now communicates unicast (called “unicast
flows”) with the SDNC through its command-port (c-port).
The switch is able to receive connection requests (TCP SYN)
from lower-tier switches and pass them on towards the SDNC,
which happens later as explained in Section VI-B.

The state transitions are shown in Figure 2. Note that
the transition from Operating to Disconnected happens as the
installed flows expires due to lost communication from the
SDNC. The SDNC has to refresh the “unicast flows” on a
regular basis to avoid them from expiring. If the communi-
cation is lost, the flows that floods packets to the SDNC will
again come into effect and let the NE look for other paths to the
SDNC. This is the fail-over mechanism available in OpenFlow
when the NE becomes disconnected from the SDNC.

A. The Port Discovery procedure

The port on a NE currently used for the southbound
interface is called the command port (c-port). The c-port
value is important to the SDNC, since it need to set up
flows in the NE for unicast communication with the SDNC.
Unicast communication is also necessary for forwarding of
TCP connections from lower-tier NEs without creating traffic
loops.

The procedure to identify the c-port and for subsequent
flow installation is called the Port Discovery procedure and is
shown in Figure 3. It consists of the following steps:

1) The SDNC sends a UDP packet to the NEs IP
address. It will be trapped by a flow (installed during
the Connected state) and sent back to the SDNC as
an OpenFlow PacketIn message, revealing the ingress
port of the UDP packet. This port will be used also
for the southbound traffic, called the c-port.

2) Flows will be installed for the NE-SDNC communi-
cation to take place over the (c-port,LOCAL) pair of
ports.

3) Flows will be installed on-demand to handle connec-
tion from NEs in the lower tiers of the link tree. The
individual flows will be installed as the lower-tier
NEs floods their TCP SYN packets, since their MAC
address and the connected NE port is not known
until then. The detail of lower-tier connections will
be presented in Section VI-B.

Fig. 3: Protocol elements of the Port Discovery procedure. Red arrows indicate
flooded traffic. DP=data plane, CP=control plane

Fig. 4: Protocol elements for lower-tier NEs connecting to the SDN via a
higher-tier NE

B. Connection of lower-tier NEs

NEs do not know if they are directly or indirectly connected
to the SDNC, and they do not know which port that leads
in that direction. The state diagram and the Port Discovery
procedure just described are valid for all NEs regardless their
position in the link tree.

The following paragraphs describe the process whereby
an NE establishes an indirect connection to the SDNC. The
protocol elements of this process is shown in Figure 4.

ARP and TCP SYN packets flooded from an NE in the
Disconnected state will be received by one or more of its
link neighbors. Each of them will, provided that they are in
Operating state, pass the frame towards the SDNC, which will
respond by an installation of the flows for passing southbound
traffic between the ingress port and the c-port, i.e., connecting
the lower-tier NE to the control plane link tree so that it will
enter the Connected state.

Three details should be mentioned: (1) This process will be
repeated for every tier of NEs towards the SDNC, since they all
need these flows to be installed to serve the new connecting
NE, (2) the flows are given an idle_timeout expiration
time, to sanitize stale flows if forwarding paths change, (3)
several of the NEs neighbors may try to create a forwarding
path to SDNC, and a timestamp based mechanism will reject
a connection attempt if the same lower-tier NE has connected
through the same higher-tier NE recently (the last 10 seconds),
applying the heuristic that the first received connection request
has chosen the best path. This suppression mechanism will

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

have to keep rejecting until the lower-tier NE has completed
the Port Discovery procedure and started to use c-port (rather
than flooding) for communication with the SDNC, i.e., it will
have entered the Operating state.

VII. PROACTIVE ADAPTIVE FORWARDING ALGORITHM

Another algorithm for dynamic path discovery and manage-
ment was investigated, based on a proactive design principle.
The NEs, the clients, the communication links and the ports
they are connected to are known in advance in the form of a
catalogue, and the spanning tree calculation can be done by
the controller and the resulting structure be imposed on the
NE structure proactively.

Having a detailed catalogue of the communication re-
sources and the connected clients may sound cumbersome,
but it is frequently seen in military application that detailed
information about the system configuration is a prerequisite
for the planning of an operation. For this reason, the presence
of a catalogue is not regarded as an unreasonable requirement.
The following sections will present the essential characteristics
of the proactive algorithm and implementation details.

A. SDNC-initiated connections

The Ryu framework does not offer any blocking operations
for connecting to NEs. The TCP connection always originates
from the NE and results in an event in the controller code. An
unconnected NE will continuously make connection attempts,
so once the SDNC has created a path between it and the NE, a
connection is expected to take place within a few seconds. The
failure of a connection is therefore indicated in the SDNC code
by a timeout event, while a successful connection is indicated
by a connection event.

Once connected, the liveness of the connection is moni-
tored by the SDNC through heartbeat messages. Connection
loss is signalled in the SDNC by a dpset event.

B. No port discovery needed

Port details are recorded in the catalogue so the Port
Discovery procedure described in Section VI-A is no longer
necessary. The c-port is now used differently than in the
reactive algorithm; the c-port is used only for transit traffic to
and from lower-tier NEs. The control plane traffic originated
in the NE (ARP and TCP port 6633 from the LOCAL port)
is flooded to all ports, like in the Connected state in Section
VI. Similar incoming control plane traffic from any port is
forwarded to the LOCAL port. This choice was made to
simplify the procedure whereby the SDNC will operate an
NE through a different port, as a part of a fail-over procedure.
The flooded traffic will not be forwarded by the neighbor NEs
except for the parent node in the spanning tree, which is given
explicit flow instructions for that purpose.

Figure 5 shows how connections are being made by NEs in
successively lower tiers in the spanning tree. The tree structure
is shown on the right side, and the interaction diagram shows
the details of the protocol. The spanning tree is traversed in-
order and connections are accepted from successively lower
tiers of the tree. Dotted lines are links that are not part of
the spanning tree but still employed by the data plane. The

grey boxes on the interaction diagram on the left indicates
operations that are given a deadline and watched by a timer
mechanism. Transactions shown with a red arrow are flooded
to all output ports of the NE.

C. Fail-over procedure

The failure of a NE or a link, indicated by the loss of a
TCP connection or failure to create one, will cause a fail-over
procedure to be executed. The loss of connection to a node can
be caused by failure in any link or node along the path from the
SDNC to the NE, and a link failure will cause loss in all nodes
connected along that link, but the resulting software events may
be generated in any order. It is therefore a complicated task to
identify the exact failed link, and a heuristic has been chosen to
simplify the algorithm: Communication loss to a node is taken
as an indication of a failure in the link closest to it, i.e., the link
connecting to the nearest parent node. This simplification may
generate unnecessary fail-over actions, but the spanning tree
will still be operating correctly and the optimized tree structure
will be constructed later as a result of other procedures soon
to be described.

If a disconnected node has not alternative paths to it, the
parent node will keep its existing flow, expecting the node to
resume operation later. This rule alleviates the consequences
of a mistaken fault detection, as discussed in the previous
paragraph.

Figure 6 shows state transitions on a spanning tree during
a link failure. Since node E is first reported as disconnected,
the fail-over action in State 2 is taken. Later, when node C
also is reported as lost, the fail-over action shown in State 3
is taken. All nodes are now connected, although node E is
one step deeper than necessary in the tree. On a later instance,
the SDNC can use the Peer Discovery information (cf. Section
VIII-B) to learn that the link C-E is in operation, and optimize
the spanning tree accordingly.

VIII. BROADCAST-FREE OPERATION

The suggested network design is an L2 switched network
with topology loops, and must therefore refrain from ordinary
broadcast-operation in order to avoid endless traffic loops.
The switches cannot broadcast received frames as a part of
the switches’ MAC-learning process. For this purpose four
services have been implemented:

A. Proxy ARP

ARP requests from a client (connected to an NE) are
trapped by the NE and passed to the SDNC for resolu-
tion. For this purpose, the SDNC maintains an ARP table
(MACaddr,IPaddr) which learns from all packets delivered to
the SDNC, not only ARP replies. In case of a table miss, the
SDNC will instruct every individual NE to flood the request,
and the resulting ARP reply is trapped in the first switch and
sent to the SDNC, which will update its ARP table. Since NEs
do not forward the flooded request, traffic loops will not be
formed.

Actually, the ARP table also contains columns for the
identifier of the NE connecting to the client, and the port
number of the NE used for the connection. This information is

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

Fig. 5: Connection creation in a spanning tree of NEs using the proactive algorithm. See the text for detailed explanations.

Fig. 6: A possible set of state transitions in the spanning tree as a result of
superficial fault detection. See text for full details.

used for MPLS based forwarding, explained in section VIII-C.
The bond between L2-mechanisms like MPLS to an IPv4
protocol like ARP is not a good design, and Section VIII-D
will describe a cleaner alternative to broadcast operation.

B. Peer Discovery

To identify all links in the data plane, and to detect link
failure, regular messages are sent from SDNC to every NE with
instructions to flood the data through all ports. At the other end
of the link, the received frame is passed to the SDNC which
adds a timestamp and updates its link database. This method is
quite similar to what is found in OpenFlow Discovery Protocol
[10] and Bidirectional Forward Detection (RFC 5880).

In the case of the proactive algorithm (cf. Section VII),
explicit messages for this purpose may not be necessary, since
every NE will reply to heartbeat polling from the SDNC with a
flooded frame, and these frames can be used for peer discovery.
This protocol variant has not been tested.

C. MPLS based forwarding

In the NEs, traditional MAC-learning is not used, since that
involves broadcast operations. Instead, every NE is associated

with an MPLS label value, and every frame sent from a client
will be given an MPLS label indicating the egress NE on the
path to the destination. The egress NE will strip off the MPLS
label and deliver the frame to the destination host.

This process relies on a number of information sources:
The ingress switch needs a flow to attach the MPLS label,
and the egress switch will need a flow to strip off the
MPLS label and deliver the frame through the correct port.
Intermediate NEs will need flows to associate MPLS labels
with an output port. This forwarding information is derived
from the peer discovery protocol link database (using a shortest
path calculation) and installed as flows in NEs as needed.

D. Multicast trees

The ARP proxy described in Section VIII-A binds L2-
mechanisms to the IPv4 protocol, which is not a desirable de-
sign, since the infrastructure should not make any assumptions
with regard to the network-layer protocol in use. Therefore,
at a later iteration of the design, the peer discovery link
database was used to build multicast trees for every NE, so
that broadcast frames initiated from one NE will propagate to
every NE in a loop-free manner, and the NE will again deliver
the frame to every connected client. MPLS labels are used
to identify the originating NE of a broadcast frame, so that
intermediate NEs may make the correct forward decisions.

This arrangement permits the use of, e.g., IPv6 Neighbor
Discovery Protocol (NDP), so that IPv6 and IPv4 traffic can
use the same mechanisms for broadcast frames. However, it is
not established if the ARP proxy described in Section VIII-A
is still more effective in terms of link usage.

IX. PERFORMANCE AND SCALABILITY

The performance and the scalability of the proactive and
reactive algorithms will be discussed in this section. The lab
design shown in Figure 1 was used to develop the algorithms
and test the functional correctness of the reactive algorithm
(the proactive design has not been tested). However, this design

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

was not sufficient for scalability experiments or comprehensive
performance measurements.

The chosen baseline for the performance discussion is the
Spanning Tree Protocol in the default configuration. A number
of measurements indicated that STP recovers the network in
30 seconds after a link failure. The reactive algorithm, with
our chosen parameters, exhibits an average recovery time of
14 seconds.

A link discovery mechanism based on polling (in the form
of renewed flows) will introduce a trade-off between failure
detection time and generated traffic volume. A halved detection
time will require the doubled number of liveness control mes-
sages. Besides, once a link connection has been established, an
unconnected switch will make connection attempt with regular
intervals and thus introduce a mean delay after a path to the
SDNC has been established.

With regards to scalability, both the reactive and proactive
algorithms need to build up a path between NE and SDN step
by step. As the number N of NEs grow, the average number
of links D between an NE and the SDN is expected to be
growing like the depth of a tree:

D = O(logN) (1)

The establishment of a single step in the path from an NE to
the SDN will generate a constant number of messages, so the
total volume M of messages associated with path discovery
from every NE is expected to be

M = O(NlogN) (2)

The required time T for re-connection is assumed to grow
with the number of links in the path and with the same order
as D:

T = O(logN) (3)

During the experiments, it was observed that a connection
from an NE before the SDNC had closed the previous SSL
connection resulted in a “duplicate connection attempt”. A
re-connection attempt from an NE should not happen earlier
than this timeout value in the SDNC, which is a configurable
parameter value in Ryu.

X. CONCLUSION AND FUTURE RESEARCH

The contribution of this paper is a detailed analysis and a
proof-of-concept implementation of an in-band control plane
with failure detection and dynamic path discovery. These

properties allow for a control plane that survives link and
node failure, since it will employ alternative paths to connect
the NEs to SDNC. An important contribution is that these
mechanisms are offered in the presence of link loops. Link
loops represent redundant communication resources which
should be employed for load balancing and traffic separation,
not only for resilience, which is why the Spanning Tree
Protocol was abandoned.

Future research and development on this topic will include
better testing of the separation between L2 and L3 protocols,
so that the ARP proxies are replaced by mechanisms to
distribute broadcast frames along multicast trees. We also are
in the process to include multi-tenancy separation in the L2
forwarding mechanisms based on the clients’ X.509 certificate
information. IPv6 support will also be added to the prototype.

REFERENCES

[1] J. Spencer and T. J. Willink, “SDN in coalition tactical networks,”
in 2016 IEEE Military Communications Conference, MILCOM 2016,
Baltimore, MD, USA, November 1-3, 2016, pp. 1053–1058, 2016.

[2] “Open vSwitch.” http://openvswitch.org. Online, Accessed Aug 2019.
[3] L. Schiff, S. Schmid, and M. Canini, “Ground control to major faults:

Towards a fault tolerant and adaptive SDN control network,” in 46th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops, DSN Workshops 2016, Toulouse, France, June
28 - July 1, 2016, pp. 90–96, 2016.

[4] L. Schiff, S. Schmid, and P. Kuznetsov, “In-band synchronization for
distributed sdn control planes,” SIGCOMM Comput. Commun. Rev.,
vol. 46, pp. 37–43, Jan. 2016.

[5] A. Fongen and G. Køien, “Trust management in tactical coalition soft-
ware defined networks,” in 2018 International Conference on Military
Communications and Information Systems, ICMCIS 2018, pp. 1–8,
Institute of Electrical and Electronics Engineers Inc., 5 2018.

[6] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, “A self-
organizing distributed and in-band SDN control plane,” in 37th IEEE
International Conference on Distributed Computing Systems, ICDCS
2017, Atlanta, GA, USA, June 5-8, 2017, pp. 2656–2657, 2017.

[7] Y.-L. Su, I.-C. Wang, Y.-T. Hsu, and C. H.-P. Wen, “FASIC: A fast-
recovery, adaptively spanning in-band control plane in software-defined
network,” in IEEE GLOBECOM 2017, pp. 1–6, Institute of Electrical
and Electronics Engineers Inc., 12 2017.

[8] O. N. Foundation, “SDN architecture, issue 1.0.”
https://www.opennetworking.org/, 2014. Online, Accessed July
2019.

[9] “Ryu SDN Framework.” https://osrg.github.io/ryu/. Online, Accessed
Aug 2019.

[10] “OpenFlow Discovery Protocol.” http://groups.geni.net/geni/wiki/
OpenFlowDiscoveryProtocol. Online, Accessed Aug 2019.

15Copyright (c) IARIA, 2019. ISBN: 978-1-61208-740-5

EMERGING 2019 : The Eleventh International Conference on Emerging Networks and Systems Intelligence

