
Dynamic QoS on SIP Sessions Using OpenFlow

Jérémy Pagé⇤, Charles Hubain† and Jean-Michel Dricot‡

OPERA Wireless Communications
Université libre de Bruxelles

Brussels, Belgium
Email: ⇤jeremy.page@ulb.ac.be, †charles.hubain@ulb.ac.be, ‡jean-michel.dricot@ulb.ac.be

Abstract—With the increase in Internet bandwidth demand and
emergence of new multimedia internet applications, new tech-
nologies are needed to guarantee the Quality of Service (QoS).
Traditionally, QoS has been enforced using predefined Service
Level Agreements (SLAs), which lack dynamic adaptability and
flexibility. This article introduces an implementation leveraging
the Software Defined Networking (SDN) protocol OpenFlow to
dynamically adapt QoS to the network usage by analyzing Session
Initiation Protocol (SIP) session negotiations. The implementation
is verified on real world OpenFlow-enabled switches with differ-
ent types of traffic QoS requirements.

Keywords–SDN; OpenFlow; QoS; SIP; SDP.

I. INTRODUCTION

Over the last decade, with the increase of bandwidth de-
mand, new multimedia internet applications have emerged such
as, Voice over IP (VoIP), IP Television (IPTV), online gaming,
etc. Those applications have strong requirements regarding
the QoS in terms of bandwidth, latency, packet loss and
jitter. To guarantee those requirements, predefined SLAs have
traditionally been used but they lack the flexibility to adapt
dynamically to the client needs. Besides those applications, the
network environment can also have strong requirements, e.g.,
a medical-grade network regarding the transmission of delay-
sensitive information [1], [2]. Indeed, when medical data or
audio/video data transmission is required, the latency must be
as low as possible and a bandwidth must be guaranteed.

In addition, the deployment of new network services in the
operator networks comes at a high cost. Indeed the integration
and operation typically come with separate hardware entities.
Network Functions Virtualization (NFV) [3], [4] aims to
address this problem by allowing to deploy network services
onto virtualized industry servers, which can be located in data
centers. Network functions can thus be deployed as virtualized
instances without the need to install hardware equipment. By
migrating the hardware to software, NFV is expected to lower
not only the Capital Expenditure but also the Operational
Expenditure [5]. The services can be deployed more flexibly
and scaled up and down very quickly. As explained in [5],
from an architecture perspective, NFV can be complementary
to technologies, such as SDN and cloud computing.

Moreover, SDN aims to solve the lack of flexibility of the
SLAs. SDN [6], [7] provides an abstraction between the data-
plane forwarding (hardware) and the control-plane (software).
It makes the control-plane programmable by a centralized SDN
controller on a per data flow basis. The OpenFlow protocol [8]
is an open standard implementation for the signaling between
an SDN switch and an SDN controller.

Previous studies such as [5] has focused on the deployment
of an Long-Term Evolution (LTE) Evolved Packet Core (EPC)
system in an operator cloud environment with SDN as a
network enabler. In the LTE EPC architecture, IP Multimedia
Subsystem (IMS) is used for the VoIP and the SIP serves as the
signaling protocol [9]. SIP is independent of the technologies
chosen, and can be used regardless of IMS. Furthermore, SIP
is the de facto standard for initializing multimedia communi-
cations between entities and, this protocol provides sufficient
information to deduce QoS needs.

In a previous work [10], we demonstrated the integration
of SDN and the 4G architecture towards 5G and we presented
the benefits of SDN in the mobile environment in terms of
performances and flexibility.

The paper is organized as follows. The next section
presents the related works. Section III gives a short introduc-
tion to OpenFlow. Section IV describes the 5G architecture
proposed in [10]. Section V introduces the protocols SIP
and Session Description Protocol (SDP). Section VI explains
how OpenFlow can be used to implement dynamic QoS.
Section VII describes the implementation and verification that
have been made over real world HP 2920 switches (imple-
menting OpenFlow). The last section presents the conclusion
and future works.

II. RELATED WORK

Providing QoS for SIP-based applications started
in 2002 [11]. The idea is to extend the SIP protocol to
encapsulate the Common Open Policy Service (COPS)
protocol, which could then be used in a DiffServ network.
However it requires a complex network architecture and
modifying existing SIP applications.

In 2006, the authors of [12] introduced an architecture for
SIP-based QoS applications. This architecture combined both
DiffServ and IntServ and generally works with standard SIP
end systems.

In 2007, the authors of [13] proposed to use the SDP
(included in some of the SIP messages) to negotiate SLAs.
This has the advantage of requiring very limited modifications
to existing applications but the authors did not expand on how
the QoS would be enforced.

PolicyCop, a framework for autonomic QoS policy en-
forcement using SDN, was introduced in 2013 [14]. It uses
OpenFlow to provide a dynamic, flexible, efficient and simpler
alternative to DiffServ. Unfortunately, the implementation is
not yet complete and the paper only presents link failure tests.

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

OpenFlow
Controller

OpenFlow
Channel

Flow
Table

(Rules)

OpenFlow
Protocol

OpenFlow Switch

Figure 1. OpenFlow Controller and Switches

III. OPENFLOW

As defined in the SDN architecture, OpenFlow separates
the data-plane from the control-plane. The networking devices,
i.e., the OpenFlow switches, form the data-plane where data
packets flow according to rules (flows). Each rule is composed
of matching parameters and a set of actions to execute when
there is a match. Examples of matching parameters include:
Internet Protocol (IP) address source/destination, Media Ac-
cess Control (MAC) address source/destination, Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP)
source/destination port. Examples of actions include: sending
the packet on a specific port, changing some header fields of
the packet.

Every switch is connected to the controller and communi-
cates with the OpenFlow protocol (Figure 1). The OpenFlow
controller can inject flows, i.e., rules, into the switches in order
to define the routing of specific packets. When the switch
receives a new flow, it adds it in its flow table. When an
incoming packet arrives, the flow table of the switch is looked
up to match the packet according to the flows. If there is
a match, the set of actions defined by the flow is executed.
If there is no match, the packet is sent to the controller for
inspection. The controller can then decide which action to take
(e.g., create a new flow, drop the packet, send the packet to a
specific port) [15].

IV. PREVIOUS WORK: 5G OPENFLOW INTEGRATION

In a previous work, the integration of OpenFlow in the
core network of the mobile architecture between the Evolved
NodeB (eNodeB) and the Packet Data Network Gateway
(P-GW) has been demonstrated [10]. As it can be observed in
Figure 2, the proposed solution removes the Serving Gateway
(S-GW) and introduces the OpenFlow Controller. Hence, al-
lowing for a faster circuit-switched transport from the antenna
to the core network. The control path from the Mobility Man-
agement Entity (MME) to the P-GW and the data path from
the eNodeB to the P-GW is comprised of OpenFlow Switches
as underlying infrastructure. These switches are controlled by
and connected to the controller.

When a new User Equipment (UE) connects to the net-
work, it sends an Attach Request to the MME through the
eNodeB (the antenna). The MME authenticates the user using
information from the Home Subscriber Server (HSS) (the user
database) and retrieves which services it can access to, e.g.,
IMS for VoIP, Internet. The MME selects the P-GW for the
corresponding service and forwards the request to it. The

UE

MME*

eNodeB*

SDN
Controller

P-GW*

HSS

IP Services

LTE-Uu

S6a

SGi

S1-MME*

S11*

S5/S8*

SDN Switches

Figure 2. Proposed 5G Architecture [10]

controller is able to intercept and analyze the request in order
to optimize the path and to proactively create the flows in the
switches. These flows are created for the control path and for
the data path. Each flow can have different QoS parameters
attached to them, as it will be shown in the next sections,
in order to satisfy some requirements. When the P-GW sends
back a response, the flows are already created and the response
is sent back to the UE, which is then successfully connected
to the service.

V. SIP AND SDP
The SIP [9] protocol is used to negotiate multimedia

sessions between multiple clients. Figure 3 presents the SIP
architecture comprising the SIP servers (proxy and registrar)
and two UEs, Alice and Bob. First of all, the SIP clients
need to register themselves to the registrar server. They send
a REGISTER SIP request to their proxy which forwards it to
the registrar. When a client is registered, it opens a multimedia
session with another registered client by sending an INVITE
SIP request to the proxy with the username of the other client.

The proxy behaves as an intermediary between the clients
who do not know each others’ IP addresses. It forwards the
INVITE SIP request to the recipient. If the receiver accepts
the session, i.e., responding with a 200 OK SIP response,
the session is established. Nevertheless, SIP is only providing
the signaling and not the media transfer. When the session is
established, the data path is going directly from end to end,
not passing through the proxy. Real-time Transport Protocol
(RTP) [16], for example, is a protocol used to exchange
multimedia data. Figure 4 shows an example of the initiation
and termination of a SIP session.

In order for RTP to transfer media from end to end,
SDP [17] can be used to describe the media codecs supported
by the clients and the connection parameters (IP addresses,
port numbers, protocol). The SDP part is embedded in the
INVITE request and in the 200 OK corresponding response.
The clients can send media streams from end to end as shown,
but the server can also act as a media proxy. Figure 5 shows an

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

Alice Bob

Proxy

3. RTP media

Registrar

1.
b

RE
G

IS
TE

R

1.a
 R

EG
ISTE

R

1.
b

RE
G

IS
TE

R

1.a REGISTER

2.a
 IN

VIT
E

2.b INVITE

Figure 3. SIP Architecture

Figure 4. SIP Flow Example

example of a SIP INVITE message with a SDP part where the
IP address is 192.0.1.100 and the port number is 49172.

The session traffic between two clients is uniquely iden-
tified by combining the SDP information, which produces a
pair of IP addresses, a pair of port numbers and a protocol.

VI. DYNAMIC QOS WITH OPENFLOW

The flexibility of OpenFlow allows to dynamically attribute
a specific QoS for incoming packets by creating flows with the
attributed QoS. First, in order to intercept all the SIP packets
in the controller, a flow is created in each switch where the
matching is done on the port 5060 (the default SIP port) and
the actions set is composed of one action: send the packet
to the controller. If the switches are configured to send the
packets to the controller when there is no match, this flow is
optional because the default behavior of the switch would be
to send the packet to the controller.

By intercepting all the SIP signaling, the controller is
able to analyze their content and to attribute a QoS to each
one of the sessions. This attribution is done by extracting

1 INVITE sip:bob@example.com SIP/2.0
2 Via: SIP/2.0/UDP client1.example.com:5060;branch=z9hG4bK74bf9
3 Max-Forwards: 70
4 From: Alice <sip:alice@example.com>;tag=9fxced76sl
5 To: Bob <sip:bob@example.com>
6 Call-ID: 3848276298220188511@example.com
7 CSeq: 1 INVITE
8 Contact: <sip:alice@client1.example.com;transport=udp>
9 Content-Type: application/sdp

10 Content-Length: 144
11

12 v=0
13 o=alice 2890844526 2890844526 IN IP4 client1.example.com
14 s=-
15 c=IN IP4 192.0.1.100
16 t=0 0
17 m=audio 49172 RTP/AVP 0
18 a=rtpmap:0 PCMU/8000

Figure 5. SIP Message Example with SDP Part

the IP address, port numbers and media parameters from the
SDP parts of the SIP messages. Once the controller detects
that a session has been established (a 200 OK following an
INVITE), it can enforce the attributed QoS for this session by
creating flows in the switches along the path of this session.
The matching part of the flows contains the IP addresses and
port numbers extracted from the SDP part. The actions set of
the flows contains an action attributing the QoS parameter and
action outputting the packet to the right destination.

There are several possibilities to enforce QoS using Open-
Flow. OpenFlow defines a specific action to enqueue packets
on a specific output queue, guaranteeing a minimal band-
width [15]. However its implementation is optional, and there
is no mechanism to configure those queues with OpenFlow.
The HP 2920-24G switch used for the verification does not
implement the enqueue method defined in OpenFlow [18,
p. 12]. A generic workaround has been implemented by
the modification of the IP version 4 (IPv4) header fields to
attribute a QoS class. Indeed, the cited switch is compliant
with IEEE 802.1p [19, p. 14]. OpenFlow defines actions to set
the IPv4 Type of Service (ToS) field, the Virtual Local Area
Network (VLAN) Identifier (ID), or the VLAN Priority Code
Point (PCP) [15].

On HP switches the VLAN PCP field is directly mapped
to specific QoS output queues [20]. Changing it allows to give
some packets a higher priority and thus enforce QoS. On other
hardware, the method used to enforce a specific QoS must be
adapted.

VII. IMPLEMENTATION AND VERIFICATION

The verification architecture is presented in Figure 6 and
can be described as follows. 3 HP 2920 switches are connected
to an OpenFlow Controller running on a server (Ubuntu 14.04
LTS). Each one of the switches is also connected to a host
computer (Ubuntu 14.04 LTS). The topology used can be ex-
tended to a more complex one, by including more switches and
hosts. When the network grows, the question of the scalability
can arise. According to [21], the scalability concerns are not
unique to SDN and solutions exist. However, the scalability
issues are still studied and are not trivial [22]. HyperFlow [23],
e.g., is a distributed control plane for OpenFlow and provides
scalability.

The verification procedure was conducted as follows. First,
Host 2 connects to Host 1 and maximize the utilization of the

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

OpenFlow
Switch 1

OpenFlow
Switch 2

OpenFlow
Switch 3

Host 1 Host 2 Host 3

OpenFlow
Controller

Figure 6. Verification Architecture

0 5 10 15 20
0

20

40

60

80

100

Time [sec]

B
an

dw
id

th
[M

bi
ts

/s
ec

]

non-prioritary
prioritary

Figure 7. Bandwidth of a Priority and non-Priority UDP Traffic over Time

available bandwidth for a period of 20 seconds. During this
period, some measurements are made on the bandwidth used
and the jitter observed. After approximately 5 seconds, Host 3
connects to Host 1 and tries also to maximize the utilization
of the bandwidth, but for a period of 10 seconds. The traffic
generated by the Host 3 has priority over the traffic generated
by the Host 2. The tool used to generate the traffic and to
analyze the bandwidth and jitter is iPerf [24].

Figure 7 and 8 show the effect of such QoS implemen-
tation on the two UDP traffics that compete for the same
100 Mbps bandwidth. The results indicate that around 80%
of the bandwidth is allocated to the priority traffic. Also the
jitter, which is crucial to real-time multimedia applications,
is significantly limited with respect to the non-priority traffic.
This demonstrates that a line rate QoS using OpenFlow is
possible on real world hardware.

When this dynamic QoS implementation is used in con-
junction with the detection of new media traffic by analyzing
the SIP signaling, the controller can enforce a specific QoS
for new media sessions based on the SDP parameters.

VIII. CONCLUSION AND FUTURE WORK

This article presents and verifies that SDN is an elegant
solution to the QoS problem of modern internet multimedia
applications. By analyzing on the fly the SIP signaling, the
OpenFlow controller was able to dynamically enforce QoS
over negotiated sessions. The integration of OpenFlow in the

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time [sec]

Ji
tte

r
[m

se
c]

non-prioritary
prioritary

Figure 8. Jitter of a Priority and non-Priority UDP Traffic over Time

mobile architecture with a dynamic QoS for the SIP traffic
towards IMS allows to be more proactive and flexible. Indeed,
the approach is entirely software and the granularity is higher.
The network can be programmed in software and the packets
can be inspected until the fourth layer. Moreover line rate
OpenFlow dynamic QoS performances were shown to be
possible on real world hardware with results comparable to
traditional static configurations.

Future work will focus on the integration of this imple-
mentation on a full-featured IMS platform (Voice over LTE
(VoLTE)). Also, further tests will include various traffic and
the proposed approach will be included with different kinds of
protocols and networks.

ACKNOWLEDGMENT

This work is supported by a grant of Innoviris, the Brussels
Institute for Research and Innovation.

REFERENCES
[1] L. Skorin-Kapov and M. Matijasevic, “Analysis of QoS requirements for

e-Health services and mapping to Evolved Packet System QoS classes,”
Int. J. Telemedicine Appl., vol. 2010, Jan. 2010, pp. 9:1–9:18.

[2] A. Zvikhachevskaya, G. Markarian, and L. Mihaylova, “Quality of ser-
vice consideration for the wireless telemedicine and e-health services,”
in WCNC, 2009, pp. 3064–3069.

[3] SDN and OpenFlow World Congress, “Network Functions Virtualiza-
tion,” White Paper, Oct. 2012.

[4] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the
art, challenges, and implementation in next generation mobile networks
(vEPC),” IEEE Network, vol. 28, no. 6, 2014, pp. 18–26.

[5] A. Basta, W. Kellerer, M. Hoffmann, K. Hoffmann, and E.-D. Schmidt,
“A virtual SDN-enabled LTE EPC architecture: a case study for S-
/P-Gateways functions,” in 2013 IEEE SDN for Future Networks and
Services (SDN4FNS), Nov. 2013, pp. 1–7.

[6] Open Networking Foundation, “Software-Defined Networking: the new
norm for networks,” ONF White Paper, Apr. 2012.

[7] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, 2014, pp. 1617–1634.

[8] N. McKeown et al., “OpenFlow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, Apr. 2008, pp. 69–74.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

[9] J. Rosenberg et al., “SIP: session initiation protocol,” Tech. Rep., 2002.
[10] J. Pagé and J.-M. Dricot, “Software-Defined Networking for low-

latency 5G core network,” in 2016 International Conference on Military
Communications and Information Systems (ICMCIS). IEEE, May
2016.

[11] S. Salsano and L. Veltri, “QoS control by means of COPS to support
SIP-based applications,” IEEE Network, vol. 16, no. 2, 2002, pp. 27–33.

[12] E.-H. Cho, K.-S. Shin, and S.-J. Yoo, “SIP-based QoS support archi-
tecture and session management in a combined IntServ and DiffServ
networks,” Computer Communications, vol. 29, no. 15, 2006, pp. 2996–
3009.

[13] H. Park, J. Yang, J. Choi, and H. Kim, “QoS negotiation for IPTV
service using SIP,” in The 9th International Conference on Advanced
Communication Technology, vol. 2. IEEE, 2007, pp. 945–948.

[14] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop:
an autonomic QoS policy enforcement framework for software defined
networks,” in 2013 IEEE SDN for Future Networks and Services
(SDN4FNS). IEEE, 2013, pp. 1–7.

[15] OpenFlow Switch Specification, “Version 1.0. 0 (Wire Protocol 0x01).”
Open Networking Foundation, Dec. 2009.

[16] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A

Transport Protocol for Real-Time Applications,” RFC 3550 (INTER-
NET STANDARD), Internet Engineering Task Force, Jul. 2003, URL:
http://www.ietf.org/rfc/rfc3550.txt [accessed: 2016-08-30].

[17] M. Handley and V. Jacobson, “Session Description Protocol,” Apr. 1998.
[18] Hewlett Packard, “HP Switch Software OpenFlow administrator guide

for K/KA/WB 15.17,” Jun. 2015.
[19] ——, “HP 2920 Switch Series.”
[20] ——, “HP Switch Software advanced traffic management guide

WB.15.17,” Jun. 2015.
[21] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability

of software-defined networking,” IEEE Communications Magazine,
vol. 51, no. 2, 2013, pp. 136–141.

[22] B. J. van Asten, N. L. M. van Adrichem, and F. A. Kuipers, “Scalability
and Resilience of Software-Defined Networking: an overview,” CoRR,
vol. abs/1408.6760, 2014.

[23] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proceedings of the 2010 internet network
management conference on Research on enterprise networking, 2010,
p. 3.

[24] NLANR/DAST: iPerf - the network bandwidth measurement tool. URL:
https://iperf.fr [accessed: 2016-08-30].

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

