
Towards Integrated Engineering of Adaptive Resilient Systems 
 

Elena Troubitsyna 
Åbo Akademi University,  

Turku, Finland 
e-mail: Elena.Troubitsyna@abo.fi 

 
 

Abstract— Resilience is an ability of a system to deliver 
trustworthy services despite changes. It is a much sought after 
property in a wide range of applications. However, currently, 
development of resilient adaptive systems constitutes a major 
engineering challenge due to a diversity of methods and tools 
used in the development and a lack of support for efficient 
information engineering. In this paper, we discuss the 
challenges engineering resilient adaptive systems. We propose 
the Problem-Design-Exploration framework as a model of the 
adaptive service development process and define the key 
concepts supporting multi-view engineering. Moreover, we 
discuss the advantages of the Open Services for Lifecycle 
Collaboration (OSLC) as a technology enabling integrated 
information engineering for resilient adaptive systems.  

Keywords-resilience; adaptability; changes; evolution; integrated 
engineering environment.  

I. INTRODUCTION  
Resilience is an ability of a system to deliver trustworthy 

services despite changes [1]. It is a much sought after 
property in a wide range of applications. Resilience is an 
evolution of the dependability concept [2] that puts an 
emphasis on the ability of a system to adapt to changes. 
However, currently, development of resilient adaptive 
systems constitutes a major engineering challenge [3]. 
Firstly, the existing development methods are unable to 
efficiently and confidently cope with the overwhelming 
system complexity and deliver required assurance of system 
trustworthiness. Secondly, they do not provide efficient 
platform for integrating changes in the system design. 
Finally, they give a rather limited support for innovation and 
experimentation, i.e., do not allow the designers to assess 
the impact of changes on system behavior with high 
productivity and confidence.   

In this paper, we discuss the challenges in creating an 
efficient environment for engineering resilient adaptive 
systems.  We explore the challenges in adapting to changes 
of different nature and introduce the Problem-Design-
Exploration framework [4] - [8] as a model for the 
development process of resilient adaptive systems.  We 
propose the fitness criteria that can be used to assess how 
adaptation to a change impacts different resilience 
attributes.  

Since resilience is a multi-facet characteristic, diverse 
engineering tools are used for such an assessment [1]. We 
discuss the problem of tool integration and demonstrate how 
Open Services for Lifecycle Collaboration framework [9] 

can facilitate creation of an integrated engineering 
environment.  

We believe that the problems discussed in this paper 
constitute the important challenges in the area of adaptive 
resilient systems engineering.  

The paper is structured as follows: in Section II, we 
introduce the concept of resilience. We show its connection 
with the dependability concept and discuss the role of 
changes. In Section III, we introduce the Problem-Design-
Exploration framework and define the fitness criteria 
relevant for the design of resilient system. In Section IV, we 
discuss the tool integration problem. In Section V, we 
outline the benefit of OSLC as a technological enabler of 
the integrated development. Finally, in Section VI, we 
overview the related work and conclude.    

II. RESILIENCE AND ADAPTABILITY 
Resilience is an ability of the system to persistently 

deliver its services in a dependable way despite changes [1].  
The concept of resilience is an evolution of the concept of 
dependability – a system property to deliver services that 
can be justifiably trusted [2]. Dependability is a multi-facet 
system characteristic that includes the following attributes: 
  

• availability is the ability of the system to provide 
service at any given instance of time; 

• reliability is the ability of the system to 
continuously provide correct service over a given 
period of time; 

• safety is the ability of a system to deliver service 
under given conditions without catastrophic 
consequences to its user(s) or environment; 

• integrity is the absence of improper system 
alteration; 

• maintainability is the ability of a system to be 
restored to a state, in which it can deliver correct 
service; 

• confidentiality is the absence of unauthorized 
disclosure of information. 

 
Faults of different nature might jeopardizes 

dependability by propagating to the system or service 
interface level and, as a result, introduce undesirable 
deviations in service provisioning. 

Engineering of resilient systems relies on four main 
techniques: fault prevention, fault removal, fault forecasting 
and fault tolerance [1] [2]. Fault prevention is a set of 

66Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-422-0

EMERGING 2015 : The Seventh International Conference on Emerging Networks and Systems Intelligence



techniques aimed at preventing introduction of faults during 
the development process. It relies on formal and structured 
techniques aiming at ensuring high quality of the system 
and spotting problems in the design before the system 
becomes operational.   

Fault removal techniques are used to identify and 
remove errors in the system. The activities of fault removal 
process include system verification as well as corrective and 
preventive maintenance of the system. Fault forecasting 
aims at predicting and evaluating  the impact of fault on the 
system behaviour. It might be performed qualitatively or 
quantitatively. The qualitative assessment aims at 
identifying and classifying failures as well as defining 
combinations of faults that may lead to a system failure. The 
quantitative analysis is performed to assess the degree of 
satisfaction of the different attributes of dependability.  

Finally, fault tolerance techniques aim at ensuring that 
the system continues to deliver its services or behaves 
predictably even in presence of faults. 

Several decades of research have resulted in creating a 
solid body of techniques for engineering dependable 
systems. Majority of these techniques rely on assumption of 
exhaustive knowledge of system and its environment 
behavior, i.e., are static by nature. However, currently it is 
widely recognized that changes are inevitable and hence, the 
systems should be able to adapt to them while remaining 
dependable, i.e., be resilient. 

The changes with which the system should be able to 
cope might be external, i.e., in the operating environment of 
the system or internal ones. In general, the changes can be 
classified according to their character as follows:  

 
• nature: functional, environmental or 

technological; 
• prospect: foreseen, foreseeable, unforeseen (or 

drastic) changes; 
• timing: short term (e.g., seconds to hours), 

medium term (e.g., hours to months) and long 
term changes (e.g., months to years). 

 
The changes cause continuous system evolution. The 

evolutionary development approach is supported by agile 
development model, Scrum development approach as well as 
DevOps. All these models emphasis the need for iterative 
development and continuous experimentation with the 
system under construction. Therefore, engineering of 
adaptive resilient systems provide a powerful support for 
change management, continuous evolution and 
experimentation. That requires an integration of current 
approaches to engineering dependable systems into a highly 
dynamic engineering environment facilitating modelling, 
design and assessment of resilient systems as well as 
supporting a novel iterative model of development process. 

In the next section, we propose the Problem-Design-
Exploration framework as a model for the development of 
adaptive resilient systems and demonstrate how to tailor to 
address various aspects of resilience.   

III. PROCESS OF ENGINEERING ADAPTIVE RESILIENT 
SYSTEMS 

The Problem-Design Exploration Model [4] proposes to 
model design process as two interacting evolutionary 
domains – problem space  P  and solution space  S, as shown 
in Figure 1. The clear distinction between problem and 
solution spaces is supported in analytical [5], empirical   [6] 
and prescriptive [7]  research.  The problem space contains 
mental representations  of  the  developer’s  interpretation  of 
the requirements” and “the design space” contains mental 
representations of the developer’s specific solutions [8].  

 
 

 
 
 

 
 

 
 

 
Figure 1. Problem-Design-Exploration Process. 

 
The exploration process shown in Figure 1 has the 

following characteristics: 
 
1. It is carried in two distinct search spaces: Problem 

Space and Design Space. 
2. These state spaces interact in real time. 
3. The horizontal movement represents is an evolutionary 

process such that 
a. Problem space P(t) evolves to P(t+1), P(t+2) etc., 
b. Solution space S(t) evolves to S(t+1), S(t+2), etc. 
4. The diagonal movement represents a process where 

goals lead to solution. It exists in two variants: “Problem 
leads to Solution” (downward arrow) or “Solution 
refocusses the Problem” (upward arrow).  

 
The problem space P(t) is the design goal at time t and 

S(t) is the solution space, which defines the current space for 
the design solutions. The solution space S(t) provides not 
only a state space where a design solution can be found, but 
it also prompts new requirements for P(t+1), which were not 
in the original problem space, P(t). This is represented by the 
dashed upward arrow from design space S(t) to problem 
space P(t+1). The upward arrow is opposite:   S(t) becomes 
the goal and a “search” is carried out in the problem space, 
P(t+1), for a “solution”. This iterative relationship between 
problem space and design space evolves over time. 

The Problem-Design-Evolution framework fits the main 
requirement for a development model of resilient adaptive 
systems because it explicitly supports evolution. Indeed, both 
the problem space and the solution space co-evolve 
simultaneously as a result of exploration. The basis for co-
evolution is to consider the representation and application of 

Design 
Space 

Problem 
Space 

Fitness Fitness 

Evolution 

Evolution 
P(t) P(t+1) 

S(t) S(t+1) 

67Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-422-0

EMERGING 2015 : The Seventh International Conference on Emerging Networks and Systems Intelligence



the fitness function so that the problem definition can change 
in response to the current solution space.  

To tailor the Problem-Design-Evolution model to 
engineering of resilient adaptive systems, we need to 
understand how changes affect the main design objectives. 
The design objectives are defined by the dependability 
attributes. Therefore, we should devise the guidelines to be 
followed while assessing the impact of changes and creating 
a corresponding artefact in the design space. These 
guidelines are defined as the fitness criteria. 

Table 1 presents the examples of the fitness criteria that 
might be evaluated while introducing changes of different 
nature in the design of resilient services.  

The Problem-Design-Evolution paradigm provides us 
with a suitable general model of the process of adaptive 
system development. However, we also need to “zoom into” 
the development process and address the problem of 
integration. Indeed, a variety of methods and tools are used 
to achieve different design objectives. Therefore, to support 
the process of designing resilient adaptive services, we need 
to create an integrated development environment that 
establishes and information continuum between diverse 
methods and tools. The problem is traditionally addressed by 
the Application Lifecycle Management – the concept that we 
study next.  

IV. INTEGRATED ENGINEERING ENVIRONMENT 
Application Lifecycle Management (ALM) is a concept 

that aims at studying “The coordination of development 
lifecycle activities, including requirements, modelling, 
development, build and testing, through:  

1. enforcement of processes that span these activities;  
2. management of relationships between development 

artefacts used or produced by these activities; and  
3. reporting on progress of the development effort as a 

whole” [10]. 
 
The term artifact broadly refers to any item (requirement, 
code, model, test case) produced during the development of 
software. ALM often seen as a concept that tries to 
syncronise all the lifecycle activities instead of focusing on 
any specific lifecycle activity [10].   

The concept of ALM is still rather new and lacks well-
established definition.  In this paper, we focus on the 
technological aspects of ALM – the tool integration.  

Tool integration is a rapidly growing interdisciplinary 
research area. It is a cross-road between Software 
engineering, Systems engineering, Human-Machine 
interactions and Economics. The tool integration discussion 
was originated in STONEMAN report [11] where among the 
other Buxton introduces the notion of integrating tools 
throughout a software project life-cycle.   

The essence of tool integration was defined in the 
seminal paper by Wasserman [12]. He introduced the 
following 5 types of tool integration: Control, Data, 
Platform, Presentation and Process Integration. 

Control Integration is the ability of tools to notify each 
other of events and activate each other under program 
control.  

Data Integration is the ability of tools to share data with 
each other and manage the relationships among data objects 
produces by each other. 

Platform Integration is a set of system services that 
provide network and operating systems transparency to tools 
and tool frameworks. 

Presentation Integration refers to the set of services and 
guidelines that allow tools to achieve a common 
representation from the user’s perspective. 

Process integration  defines linkage between tool usage 
and the software development process. Usually it tries to tie 
process integration to the definition and integration of 
process models.  

From the ALM point of view, tool integration should 
therefore produce integrated environments that support the 
entire software development lifecycle. According to 
Pederson [13] an integrated environment allows the users 
easily move from one function to another without having to 
work with multiple, disconnected tools and manually 
integrate data between these tools.  

It is easy to observe that the evolutionary aspect will 
result in creating various dynamically changing 
interdependencies and data. Now, we discuss the 
technological platform enabling creation and maintenance of 
such an integrated environment.  

We can now define the requirements to integrated 
environment for engineering resilient adaptive systems as 
follows:  

 
1. The integrated engineering environment should be 

non obtrusive and support heterogeneous design 
space. 

2. The environment should allows the designers to 
continue to use their native tools regardless whether 
they are open source or proprietary 

3. The environment should enable global traceability 
and querying of information by different engineering 
teams.  The new information, introduced as a result 
of changes, should be easy to incorporate and link. 
 

In the next section, we introduce OSLC and show that it 
satisfies the abovementioned criteria. 

 
 

                          
 
 
 
 
 

68Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-422-0

EMERGING 2015 : The Seventh International Conference on Emerging Networks and Systems Intelligence



TABLE I. EXAMPLES OF FITNESS CRITERIA.
 

 Functional Environmental Technological 
availability 

 
Can new functionality 
result in an interruption of 
a service? 

 

Can the system cope with 
peak loads? 
 

How new platforms affect 
performance? 
 

reliability 
 

Does new functionality 
reduce the level of 
redundancy? 
 

Can the system maintain 
reliable operation under 
the stress conditions? 
 

Does the changed 
platform increase 
redundancy? 
 

safety 
 

Does new functionality 
expand safety kernel? 
 
 

Which safety mechanisms 
are affected the by 
change? 
 
 

Does new technological 
platform allow for the use 
of existing safety 
mechanisms? 
 

integrity 
 

Does new functionality 
requires weakening access 
policy? 
 
 

Does the new 
environment introduce 
different data handling 
mechanisms/policy? 

Does the new platform 
allows for the same 
degree of data protection? 
 
 

maintainability 
 

Can the relationships 
between the new and 
existing functions be 
properly documented and 
observed? 
 

Which maintainability 
requirement will be 
introduced in the new 
environment? 

How the existing 
maintainability routine 
will be affected? 
 

confidentiality 
 
 

Does new functionality 
increases openness of the 
system? 
 

How can confidentiality 
be preserved if new access 
channels are introduced? 
 

Does new platform 
introduced any additional 
vulnerabilities? 

 

V. INTEGRATED INFORMATION ENGINEERING 
OSLC [9] is an open community, whose main goal is to 

create specifications for integrating tools, their data and 
workflows in support of end-to-end lifecycle processes. 
OSLC is organised into workgroups that address integration 
scenarios for individual topics such a change management, 
test management, requirements management and 
configuration  management. Such topics are called OSLC 
domains. Each workgroup explores integration scenarios for 
a given domain and specifies a common vocabulary for the 
lifecycle artefacts needed to support the scenarios. OSLC has 
received a notable industrial uptake. 

Essentially, OSLC specifications focus on defining how 
the external resources of a particular tool can be accessed, 
browsed over, and specific change requests can be made. 

OSLC does not aim at standardising the behaviour or 
capability of any tool. Instead, OSLC specifies a minimum 
amount of protocol and a small number of resource types to 
allow two different tools to work together in a collaborative 
way. 

To ensure coherence and integration across these 
domains, each workgroup builds on the  concepts and   rules 
 

 

 
 
defined in the OSLC Core specification. The OSLC Core 
specifies the primary integration techniques for integrating 
 lifecycle tools. This consists mostly of standard rules and 
patterns for using HTTP and RDF that all the domain 
workgroups must adopt in their specifications. 

OSLC is based on the W3C Linked Data. The four rules 
of linked data introduced by Berners-Lee [14] are as follows:  

 
• Use URIs as names for things. 
• Use HTTP URIs so that people can look up 

those names. 
• When someone looks up a URI, provide useful 

information, using the standards (RDF*, 
SPARQL). 

• Include links to other URIs, so that they can 
discover more things. 
 

In OSLC, each artefact in the lifecycle -- for example, a 
requirement, defect, test case, source file, or development 
plan and so on -- is an HTTP resource that is manipulated 
using the standard methods of the HTTP specification (GET, 
PUT, POST, DELETE). 

According to the third rule of linked data, each resource 
has an RDF representation. OSLC mandates RDF/XML, 

69Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-422-0

EMERGING 2015 : The Seventh International Conference on Emerging Networks and Systems Intelligence



which is the most widely adopted RDF notation, but can 
have representations in other formats, like JSON or HTML. 

The OSLC Core specification defines a number of simple 
usage patterns of HTTP and RDF and a small number of 
resource types that help tools integrate and make the 
lifecycle work. The OSLC domain workgroups specify 
additional resource types specific to their lifecycle domain, 
but do not add new protocol. 

OSLC defines the concept of ServiceProvider to allow 
applications to expose their external resources for integration 
scenarios. ServiceProviders answer two basic questions, 
which are: 

• To which URLs should one POST to create new 
resources? 

• Where can one GET a list of existing resources? 
A ServiceProvider is intended to represent a "container" 

of resources that is hosted by a tool, not the tool itself. A 
single instance of a tool will typically host multiple 
ServiceProviders, for example one for each "project" or 
"product". 

ServiceProvider is the central organising concept of 
OSLC, enabling tools to expose resources and allowing 
consumers to navigate to all of the resources, and create new 
ones. 

Two fundamental properties of a ServiceProvider are 
given below: 

• oslc:creation: the URL of a resource to which 
you can POST representations to create new 
resources. 

• oslc:queryBase: the URL of a resource that you 
can GET to obtain a list of existing resources in 
the ServiceProvider. 

ServiceProviders have a third important property -- 
dialog -- that is the foundation of the second major OSLC 
integration technique based on invocation of HTML web 
user interface dialogs of one tool by another. 

There are three different approaches to implementing an 
OSLC provider for software: 

• Native Support approach is to add OSLC 
support directly into the application, modifying 
whatever code is necessary to implement the 
corresponding OSLC specification. 

• Plugin approach is add OSLC support to the 
application by developing code that plugs-in to 
the application and uses its add-on API. 

• Adapter approach is to create new web 
application that acts as an OSLC Adapter, runs 
along-side of the application, provides OSLC 
support and "under the hood" makes calls to the 
application web APIs to create, retrieve, update 
and delete resources. 

 
The Native approach allows tool vendors to add the 

OSLC support to their own products. The Plugin and 
Adapter approaches are best suited for adding OSLC support 
to the tools that have been bought from a tool vendor or 
obtained from an open source project.  

Eclipse Lyo is an SDK to help the Eclipse community 
adopt OSLC specifications and build OSLC-compliant tools. 

Lyo OSLC4J is a Java toolkit for building Open Services 
for Lifecycle Collaboration providers and consumers. It 
includes: 

• annotations to decorate Java objects with OSLC 
attributes; 

• annotations to assist with resource preview UIs; 
• built-in support for service provider and 

resource shape documents; 
• libraries to simplify service provider and 

consumer development; 
• Tests for the sample applications to complement 

the Lyo OSLC Test Suite. 
 

We argue that OSLC satisfies the criteria defined in 
Section V for an integrated engineering environment for 
designing resilient adaptive systems. Firstly, it is non-
obtrusive because it does not enforce any standards on the 
engineering tools. Secondly, it allows the designers to 
continue to use their native tools and smoothly introduce the 
facilities for linked data. Thirdly, it support highly dynamic 
information creation and management via support of linked 
data.  

VI. RELATED WORK AND CONCLUSIONS 
Tool integration facilitates a productive development 

environment by allowing the user to launch tools and transfer 
information easily between different tools. Booch and Brown 
[15] introduced an interesting vision of a ‘frictionless 
surface’ provided by Collaborative Development 
Environments. They argue that such environments can 
remove the points of friction in the daily life of the developer 
that hinder effective operation. These friction points relate to 
issues, such as insufficient work product collaboration and 
problems maintaining effective group communication, 
including knowledge and experience, project status and 
project memory. 

In his recent paper [16], Ralph introduces a further 
development of the Problem-Design-Exploration framework 
-- The Sensemaking-Coevolution-Implementation Theory of 
software design. In this theory, he aims at blending the 
boundaries between the problem and design space. It is an 
interesting theory that fits the novel trends in software 
development, such as DevOps. We are planning to 
investigate the use of this theory in the development of 
resilient adaptive systems in our future work.  

The notion of resilience is a subject of active research 
discussions. Among the most prominent initiatives that 
contributed to defining the concept of resilience and 
taxonomy of related terms are the projects ReSIST [17] and 
Resilinets [18]. In our paper, we rely on the definitions 
introduced in these projects.  

The concept of resilience addresses a wide variety of 
issues in system design [18]. Therefore, an integration 
various design methods and tools is especially interesting for 
resilient systems engineering. The problem of integration has 
been explored in the context of formal modelling and 

70Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-422-0

EMERGING 2015 : The Seventh International Conference on Emerging Networks and Systems Intelligence



verification of safety-critical and fault tolerant systems. In 
particular, [19], [20] and [21] address an integration of safety 
analysis into formal system model.  

In this paper, we discussed the problems in establishing 
an integrated environment for engineering resilient adaptive 
services. We introduced the Problem-Design-Exploration 
framework as the model of engineering for resilience. The 
model is targeted towards supporting continuous 
experimentation and introducing changes in the design. We 
defined the fitness criteria, which serve as guidelines while 
assessing the impact of changes on resilience and devising 
the suitable design solution.  

Resilience introduces multiple, sometimes conflicting 
objectives in service design. Since diverse methods and tools 
are used to achieve them, it is important to provide the 
designers with a powerful platform for integrated 
engineering. We discussed the problem of tool integration 
and identified the need to support dynamic data as the main 
requirement for the technological support. We argued that 
OSLC provide us with an adequate technological support for 
creating and integrated engineering environment and enables 
non-intrusive integration that supports experimentation.  

ACKNOWLEDGMENT 
This work is supported by the Finnish National Program 

Need for Speed http://www.n4s.fi/en/.  

REFERENCES 
 
[1] J. C. Laprie, “From Dependability to Resilience,” In 38th 

IEEE/IFIP Conference On Dependable Systems and 
Networks, IEEE Computer Press, pp. G8-G9, 2008.   

[2] J. C. Laprie, Dependability: Basic Concepts and Terminology. 
New York, Springer-Verlag, 1991. 

[3] Top Challenging Issues for Software Development. [Online]. 
Available from  http://www.iaria.org/conferences2013/ 
filesICSEA13/. 01.05.2015. 

[4] M. Maher, J. Poon, and S. Boulanger, “Formalising 
design exploration as co-evolution: a combined gene 
approach”, Preprints of the Second IFIP WG5.2   
Workshop on Advances in Formal Design Methods for 
CAD, 1995, pp. 1–28, doi=10.1.1.56.4459&rep=rep1& 
type=pdf. 

[5] K. Dorst and N. Cross. “Creativity in the design process: co-
evolution of problem–solution,” Design Studies, 22(5), pp. 
425–437, Elsevier 2001.  

[6] J. S. Gero and T. McNeill, “An approach to the analysis of 
design protocols”, Design  Studies. 19 (1),  pp. 21–61, 
Elsevier, 1998. 

[7] P. Checkland, Systems Thinking, Systems Practice, Wiley, 
1999. 

[8] S. Purao, M. Rossi, and A. Bush, “Towards an 
understanding of problem and design spaces during 

object-oriented systems development”, Information 
and Oranisation, 12 (4) , pp. 249-281, Pergamon, 2002.  

[9] OSLC: (Open Services for Lifecycle Collaboration.) [Online] 
Available from http://open-services.net/ 01.05.2015. 

[10] C. Schwaber, “The Changing Face of Application Life-Cycle 
Management”, Forrester Research Inc., White Paper, August 
2006. [Online] Available from www.serena.com 
/docs/repository/alm/changing-face-applic.pdf 01.05.2015. 

[11] J. N. Buxton. “STONEMAN, Requirements for Ada 
Programming Support Environments,” Technical Report. 
Department of Defense. 1980. 

[12] A. I. Wasserman, “Tool Integration in Software Engineering 
Environments”. In Software Engineering Environments: 
International Workshop on Environments, Chinon, France, 
September 1989, ISBN:3-540-53452-0. 

[13] J. Pederson, “Creating a tool independent system engineering 
environment”, IEEE Aerospace Conference, March 2006. 

[14] W3C web site. [Online] Available from 
http://www.w3.org/DesignIssues/LinkedData.html 01.05.2015. 

[15] G. Booch and A. Brown, “Collaborative development 
environments”, Advances in Computers, Vol. 59, Academic 
Press. 2003. doi=10.1.1.84.3292 

[16] P. Ralph, “The Sensemaking-Coevolution-Implementation 
Theory of software design,” Science of Computer 
Programming, v.101, pp.21-41, April 2015.  

[17] ReSIST project. [Online]. Available from http://www.resist-
noe.org/ 01.05.2015. 

[18] RESILINETS project [Online]. Available from 
https://wiki.ittc.ku.edu/resilinets/ Accessed 01.05.2015. 

[19] E. Troubitsyna, “Elicitation and Specification of Safety 
Requirements”,  The Third International Conference on 
Systems (ICONS’08), IEEE Computer Society, April 2008, 
ISBN978-0-7695-3105-2. 

[20] K. Sere, K. and E. Troubitsyna, “Safety Analysis in Formal 
Specification”, World Congress on Formal Methods 1999, 
LNCS 1709, pp. 1564-1583, Springer, 1999, ISBN:3-540-
66588-9. 

[21] I. Lopatkin, A. Iliasov, A. Romanovsky, Y. Prokhorova, and 
E. Troubitsyna, “Patterns for Representing FMEA in Formal 
Specification of Control Systems”. Proceedings of the 13th 
IEEE International High Assurance Systems Engineering 
Symposium (HASE 2011), pp. 146-151, IEEE, 2011, ISBN 
978-1-4673-0107-7. 

[22] A. Iliasov, A.Romanovsky, L.Laibinis, E.Troubitsyna, and 
T.Latvala, “Augmenting Event-B modelling with real-time 
verification,” FormSERA@ICSE 2012, pp. 51-57, IEEE 
Computer, 2012. 

[23] E. Troubitsyna, “Reliability assessment through probabilistic 
refinement,” Nordic Journal of Computing 6 (3), 320-342, 
1999. 

 
 

 
 
 
 

 
 

71Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-422-0

EMERGING 2015 : The Seventh International Conference on Emerging Networks and Systems Intelligence


	I. Introduction
	II. Resilience and Adaptability
	III. Process of Engineering Adaptive Resilient Systems
	IV. Integrated Engineering Environment
	V. Integrated Information Engineering
	VI. Related Work and Conclusions
	Acknowledgment
	References


