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Abstract – The primary aim followed in the development of 

computing systems is increasing the overall performance. The 

market always requires faster, more efficient and powerful 

products regardless of the applications that are used: high-end 

applications, telecommunications, automotive, low-power 

embedded applications, etc. Regardless of the type of 

application processed, the products based on simple single core 

systems have already shown their limitations in obtaining the 

desired performance. Multicore processing is currently a way 

to improve the performance of a computing system. Multicore 

devices have become ubiquitous in everyday life and are used 

in all areas. In this paper we present and evaluate an 

interleaved multithreaded scalar architecture having limited 

resources which supports hardware scouting technique. We 

will show that the implementation of hardware scouting is 

viable and efficient on scalar multithreaded systems, systems 

that have the advantage that use limited hardware resources 

for efficient processing. This scalar architecture will be used in 

our future research as a basic processing element (Base Core 

Equivalent) in developing of new multicore microcontrollers 

that will be efficient in terms of energy consumption and 

processing rate. 

Keywords–multithreaded architecture; multicore 

microcontroller; embedded systems; energy-efficient systems. 

I.  INTRODUCTION 

The nowadays diversity of the end-user equipments that 
rely on a processing unit (e.g., personal computers, mobile or 
automotive devices) was made possible by the integration of 
architectural innovative solutions. The software applications 
for these devices require more and more computing power 
regardless of hardware platform that are used. As a result, 
more and more companies have adopted multicore 
technology in order to develop more efficient processors, 
leading to the development of more efficient end-user 
equipment. This is a life cycle that could be maintained by 

developing new architectural types to support the next 
generation of software applications. 

The Amdahl law shows us that the fraction of sequential 
code within the program limits the performance of parallel 
machines [1] [9]. Reducing this negative effect due to 
portion of sequential code of a program can be done by 
improving the core's performance which can affect the 
parallel execution performance [9]. Despite this, 
improvement of overall performance can be done using 
multicore systems. The performance of a multicore system 

is n , where n is the number of cores [2]. 

In embedded systems design it applies the same laws 
used in designing of general purpose systems. Fulminant 
development of embedded applications which demand 
massive calculations, led to the concept of high-performance 
embedded computing (HPEC) [10]. Moreover, embedded 
applications must comply with more stringent rules than 
HPC applications on supercomputers. The efficiency of 
energy of embedded applications is the first criterion used in 
evaluation. This efficiency can be achieved in different 
ways: by reducing the operating frequency, by implementing 
dynamic reconfigurable architectures like drowsy cache [7] 
[10], or by creating multicore processors based on simple 
processing elements having limited resources [5]. These 
techniques can be combined to obtain an efficient processor 
in terms of energy consumption and performance. These 
designing constraints lead to the development of energy-
efficient high performance embedded computing 
applications (HPEEC) [10] in which, unlike the field of 
supercomputers (HPC), not only the raw performance is 
important, but the amount of energy consumed to achieve 
this performance. 

The profiles of nowadays embedded applications are 
getting closer to those of general purpose applications. These 
applications can claim hardware capability to provide 
support for massive calculations (e.g., multimedia 
applications), can be parallel or distributed, can have real-
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time features (working with an RTOS), must be reliable 
(reliably constrained) and last, but not least, must be energy 
efficient. 

Multicore embedded systems represent a solution to 
implement HPEEC applications. By combining a multicore 
system with multithreaded technology we can achieve more 
efficient systems in terms of processing rate and the energy 
consumption [6] [10]. 

In this paper, we will introduce a multithreaded scalar 
architecture that uses the hardware scouting technique [6]. 
This scalar architecture could be used as a basic processing 
element (Base Core Equivalent - BCE) for developing 
multicore microcontrollers that are efficient in terms of 
energy consumption and processing rate. 

In Section II, we will present a short state of the art of the 
multithreaded architectures. Section III explains the 
principles of our proposed multithreaded architecture. In 
Section IV and V, we will present the results and the 
conclusions of our research. 

II. RELATED WORK 

Multithreaded architectures (MT) allow execution of 
instructions fetched from multiple threads at a time. This 
paradigm is based on resource sharing when more threads 
compete for these resources. This thread overlapping 
influences in a positive way the overall processing 
performance [15]. Threads competition also leads to unfair 
resources sharing between them which can affect the 
processing rate of a single thread at a time. A worst case 
occurs when we run threads with a low hit rate in cache. 
Such a thread can block the reorder buffer because the 
instructions that follow after a data cache miss event will not 
be issued or will not be able to complete due the stalls 
imposed by the memory operations with high latencies. 
Moreover, there may be critical resources assigned to this 
thread, leading to “starvation” and stalling of other 
independent threads of current thread. The thread stalling 
during a memory access limits the exploitation of memory 
level parallelism (MLP). As a result, the overall performance 
of multithreaded processor may be affected. 

The literature contains references to methods that try to 
reduce these negative effects. Hardware scouting [6] consists 
of launching a hardware thread (invisible in software) that 
runs in front of the main application thread. The main role of 
this thread is to bring data and instructions, which are 
necessary for the execution, in internal caches. A “load miss” 
event will start this hardware thread. In this case, the 
multithreaded architecture will create a checkpoint with the 
current state of the thread and then will continue to execute 
instructions that follow after the load, until the requested data 
is brought from system memory. At this point, the processor 
will restore the program state based on the last saved 
checkpoint and will rerun instructions that follow after the 
load using new conditions. The advantage of this method is 
that the instructions re-launched in the second step will be 
already available in the primary caches because were 
extracted from memory by hardware thread. Chaudry et al. 
[6] show an increase of 40% of the CPU performance when 

using an L2 cache of 512 KB. Using the hardware thread can 
be considered as a sophisticated mechanism of prefetching. 

Another version of hardware scouting is presented in 
[12]. Ramirez et al. propose a method to exploit the memory 
level parallelism (MLP) to increase the performance of 
Simultaneous Multithreaded processors (SMT): Run-ahead 
Threads (RaT). Run-ahead execution is a method in which 
data and instructions are speculatively mapped in caches 
[11]. Ramirez et al. have developed the RaT method which 
is a strategy of fetching used to increase the performance of 
memory-bound threads without affecting the quantity of 
instruction level parallelism exploited in those threads. This 
method is applied to threads that could stall due to high 
latency memory operations. The appearance of a high-
latency load instruction determines the owner thread to 
become a runner-ahead thread. This thread will become 
speculative and will use for a short time some hardware 
resources, so that other threads will not be limited to getting 
access to the CPU. At the same time, the prefetching 
operations from other threads will increase the degree of 
memory level parallelism, too. The SMT model used in 
simulations allows resource sharing [12]. More threads 
coexist in the pipeline and share structures like instruction 
queues, reorder buffer, physical registers, functional units 
and caches. This method has the advantage that will increase 
the performance of a simultaneous multithreaded processor 
by speculating load-miss events coming from different 
threads. 

In our previous paper [4] we showed that the 
multithreaded model can be effective when it is implemented 
on a scalar processor. Our model was inspired by the models 
presented in [13] and [14]. It was adapted to be used in 
embedded multicore systems [5] in which energy savings 
can be made by simplifying the underlying architectural 
model of a BCE's. 

This research focuses on scalar multithreaded 
architectures (having limited resources) that are capable to 
adapt the hardware scouting method used by others on 
superscalar multithreaded processors [6]. We will show that 
the implementation of this technology is viable and efficient 
on multithreaded scalar systems, systems that have the 
advantage that use limited hardware resources for efficient 
processing. 

III. HSSS-IMT MULTITHREADED SCALAR 

ARCHITECTURE AND HARDWARE SCOUTING 

In this paper, we present and evaluate an interleaved 
multithreaded scalar architecture having limited resources 
which supports hardware scouting technique (HSSS-IMT 
architecture) [6]. This scalar architecture can be used as a 
basic processing element (Base Core Equivalent - BCE) in 
multicore microcontroller’s development process; this basic 
processor could be efficient in terms of energy consumption 
and processing rate. 

The HSSS-IMT architecture is based on the SS - IMT 
architecture presented in [4]. SS-IMT is a multithreaded 
architecture based on a scalar processor [3]. SS-IMT is 
modified to interleave instructions that are coming from 
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different threads in order to execute them using the same 
pipeline. 

Interleaved Multithreading technique (IMT) is often 
called fine-grain multithreading [15]. The processor switches 
to another thread after each instruction fetch (Fig. 1). An 
instruction feeds the pipeline after the previous statement 
issued. IMT eliminates hazards control and data 
dependencies between instructions. Memory latencies are 
hidden by the scheduler. The thread that has generated a 
latency of memory will be stalled by the scheduler; the 
interleaving through the pipeline will continue just for 
instructions that becomes from other threads (Fig. 2). The 
instructions on the stalled thread will be scheduled again for 
execution when the memory transaction was done. 

One way to increase the performance of this architecture 
is the hardware scouting [6]. The study presented in this 
paper is focused on hardware implementation and adaptation 
of hardware scouting technique to the scalar multithreaded 
architecture SS-IMT. When a load-miss (long latency) event 
occur, the new architecture, called Hardware Scouting SS-
IMT (HSSS-IMT), continues to use the fetch algorithm that 
applies Round-Robin on all available threads, including the 
thread that generated the long-latency event. 

 
 

 
Figure 1.  Round Robin context switching in SS-IMT. 

 
 

 

Figure 2.  Stalled thread in SS-IMT. 

Moreover, when a long - latency event occurs, HSSS-
IMT will create a checkpoint that will contain the status of 
all architectural registers of the thread that generated the 
memory latency. Unlike SS-IMT, HSSS-IMT processor will 
not block the fetching of instructions belonging to the thread 
which generates the latency. These instructions (following 
load-miss instruction) become pseudo-executed instructions 
and will continue to be scheduled for execution under 
Round-Robin algorithm (Fig. 3). Thus, in the HSSS-IMT 
processor there are no stalled threads. 

When a memory transaction ends, the instructions which 
follow after the Load and were pseudo-executed will be 
flushed from pipeline, while the thread context will be 
restored from the last saved checkpoint. Check pointing 
mechanism is implemented in "Check pointing and Flush" 
block (Fig. 4). Starting from now, the instructions of the 
thread that generated the long latency event will be rerun 
through all phases of the instruction cycle (instruction fetch, 
decode, execute, write back) and using the right context. The 
advantage of the hardware scouting method will be that, this 
time, the rescheduled instructions have been already in the 
instruction cache and their operands could be already loaded 
into the data cache. Such an instruction will be executed with 
maximum speed allowed by this architecture. 

 
 

 
Figure 3.  HSSS-IMT: when a load misses, the next instructions will be 

fetched, and a new checkpoint is created. 

 

 
 

Figure 4.  HSSS-IMT architecture. 
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IV. RESULTS 

Being a multithreaded environment, we used benchmarks 
as threads for our HSSS-IMT evaluation. By porting SPEC 
CPU2000 [8] suite we obtained 7 integer benchmarks and 9 
floating point benchmarks that we have used in simulations 
(Table I). These benchmarks represent the threads 
concurrently processed in our architectures (e.g., the 
evaluation of 8-contexts HSSS-IMT processor was done 
using 8 concurrent benchmarks as inputs). 

TABLE I.  SPEC CPU2000 BENCHMARKS PORTED TO HSSS-IMT 

SPEC CPU2000 
Benchmark type 

Benchmark name 

Integer bzip2.ss, gcc.ss, gzip.ss, mcf.ss, parser.ss, 
twolf.ss, vortex.ss 

Floating point ammp.ss, applu.ss, apsi.ss, art.ss, equake.ss, 
mesa.ss, mgrid.ss, swim.ss, wupwise.ss 

 
We created some groups of benchmarks named “thread 

sets”. For example, Gr-2TH-1 thread set contains bzip2.ss 
and ammp.ss benchmarks, while Gr-8Th-1 thread set 
contains bzip2.ss, gcc.ss, gzip.ss, mcf.ss, ammp.ss, applu.ss, 
apsi.ss and art.ss benchmarks. We defined three versions of 
HSSS-IMT architectures: two hardware contexts (2 threads), 
four hardware contexts (4 threads) end eight hardware 
contexts (8 threads). We extended the number of sets for D-
cache and I-cache accordingly with the number of threads 
that we’ve used in simulations. We evaluated the 
performance of HSS-IMT related to the performance of the 
basic architecture SS-IMT. Each result was obtained running 
100 millions of instructions/benchmark on SS-IMT and 
HSSS-IMT architectures. 

In [4], we proposed a multithreaded model based on 
Simple Scalar (SS) architecture [3]. Our model, named 
Simple Scalar Interleaved Multithreaded architecture (SS-
IMT), was inspired by multithreaded architectures presented 
in [13] and [14]. It was adapted to be used in embedded 
multicore systems [5]. In Figure 5 and Figure 6 we depict the 
average performance of the SS-IMT architectures with 2, 4 
and 8 contexts (threads). Each average value has been 
obtained using instruction and data caches with 32, 64, 128 
and 256 KB per context. 

 

 
Figure 5.  The overall performance (IPC) of SS-IMT architectures [4]. 

 
Figure 6.  The overall performance (D-cache hit rate) of SS-IMT 

architectures [4]. 

As we can see from the previous figures, we note that 
IPC is growing together with the number of contexts 
(threads), while D-cache performance decreases. This 
decrease is due to the number of threads increasing, threads 
which concurrently coexist in D-cache [4]. 

HSSS-IMT evaluation has been done using data caches 
having 32, 64, 128 and 256 KB per thread. In Figure 7 we 
represent the performance in terms of IPC for HSSS-IMT 
architecture with 2 hardware contexts. For evaluation we 
have used 18 groups of 2 benchmarks. These groups contain 
benchmarks that have an integer or floating point profile or 
could contain benchmarks from these two categories. It 
could be observed that the maximum average performance is 
obtained using the thread set number 2 (0.8361804 IPC), 
while the worst average performance is given by the thread 
set 11 (0.784226 IPC). The difference between these two 
values is given by the content of the thread set (the profiles 
of the SPEC CPU2000 benchmarks). The average value of 
the performance for this HSSS-IMT configuration is 
0.8130545 IPC. 

Figure 8 depicts the HSSS-IMT performance having 4 
hardware contexts. For evaluation we have used 22 groups of 
4 benchmarks. Like in previous case these groups contain 
mixed benchmarks and the performance grows together with 
the dimension of caches. 

 

 

Figure 7.  The performance of 2-contexts HSSS-IMT architecture. 
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Figure 8.  The performance 4-contexts HSSS-IMT architecture. 

It can observe that the maximum average performance is 
obtained using the thread set number 9 (0.8492511 IPC), 
while the worst average performance is given by the thread 
set 19 (0.8001177 IPC). The average value of the 
performance for this HSSS-IMT configuration is 
0.817238679 IPC. 

In Figure 9, we represent the performance of HSSS-IMT 
architecture having 8 hardware contexts obtained with a 
worst case combination of benchmarks. The average value of 
the performance for this HSSS-IMT configuration is 
0.820006152 IPC. 

By comparing these results we can see that the 
performance of HSSS-IMT architecture is superior to the 
performance of SS-IMT regardless of the number of 
hardware contexts that are implemented. 

From Figure 10, we can observe that while the number of 
HSSS-IMT contexts is growing, the average performance of 
this architecture is growing too. The global performance of 
HSSS-IMT architecture (0.816766446 IPC) is greater than 
the global performance of the SS-IMT architecture 
(0.766081157 IPC). In Figure 11 we represent the data cache 
hit rate for SS-IMT and HSSS-IMT architectures. While the 
number of contexts is growing we obtain a better 
performance that is in opposite to the results obtained on SS-
IMT (Fig. 6). 

This additional performance comes from the 
implementation of the hardware scouting technique that 
ameliorates the negative effect of a load-miss event [6]. The 
number of scouting instructions after a load-miss event will 
vary and depends on the memory latency. 

The global performance of HSSS-IMT architecture 
related to the SS-IMT performance  is depicted in Figure 12 
and Figure 13. 

Figure 12 represents a synthesis of Figure 5 and Figure 
10  and depicts the IPC parameter of SS-IMT and HSSS-
IMT architectures. Also, Figure 13  represents a synthesis of 
Figure 6 and Figure 11 and depicts the hit rate of data caches 
for these two architectures. The best results are obtained 
when we increase the number of the hardware contexts 
(number of threads). Average performance of this new 
architecture (approx. 0.816 IPC) is greater than average 

performance of SS-IMT (approx. 0.766 IPC) with 
approximately 5%. Data cache hit rate grows from 
approximately 0.97% in SS-IMT to 0.99% in HSSS-IMT. 

  

 
Figure 9.  The performance 8-contexts HSSS-IMT architecture.  

 
Figure 10.  The overall performance (IPC) of HSSS-IMT architecture.  

 
Figure 11.  The overall performance (D-cache hit rate) of HSSS-IMT 

architecture. 
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Figure 12.  Average performance of HSSS-IMT vs. SS-IMT. 

 
Figure 13.  Average D-cache performance for HSSS-IMT vs. SS-IMT. 

Implementing the hardware scouting method on our basic 
scalar multithreaded processor (SS-IMT) led us to a new 
multithreaded architecture (HSSS-IMT) that has a better 
performance than previous one presented in [4]. 

 

V. CONCLUSION AND FUTURE WORK 

 
HSSS-IMT architecture benefits of full of multithreading 

techniques and simultaneously of hardware scout. Moreover, 
this check pointing technique offers a better utilization of 
instruction and data cache memory by using hardware 
scouting. From Figure 11 we can see that average data cache 
hit rate of HSSS-IMT is greater with over 2% than that 
obtained on SS-IMT. This rising is very important for us. By 
implementing the multithreading technique on a basic scalar 
processor gave us a worse performance related to this data 
cache hit rate parameter [4] [5]. These performances of 
HSSS-IMT show us that there exists the possibility to use 
this kind of architectures to integrate it in bigger structures in 
order to create multicore processors. These multicore 
processors could be used in embedded systems because they 
contain limited resources (e.g., they have a scalar 
configuration) and they are able to manage more threads 
useful to run an RTOS. 

Although investigating the power consumption of this 
architecture wasn’t a purpose of this paper, we can anticipate 
that this type of architecture could be used to create low 
power energy BCEs due to the simplicity of the processing 
element [6] [11] [12]. 

The HPEEC domain should be sustained by developing 
novel transistor technologies in order to reduce the power 
consumption but, in the same time, the researchers have to 
concentrate on how to create new scheduling techniques, 
basic processing elements or revolutionary memory design. 

ACKNOWLEDGMENT 

This work was supported by Continental Automotive 
Systems Sibiu, Romania, grant no. 550/25.02.2010. 

REFERENCES 

[1] G.M. Amdahl, “Validity of the single-processor approach for 
achieving large-scale computing capabilities”, Proc. Am. Federation 
of Information Processing Societies Conf., AFIPS Press, 1967, pp. 
483-485. 

[2] S. Borkar, “Thousand core chips - a technology perspective”, Proc. of 
the 44th annual Design Automation Conference (DAC 07), 2007, pp. 
746-749. 

[3] D. Burger and T.M. Austin, “The SimpleScalar tool set, version 2.0”, 
ACM SIGARCH Computer Architecture News, vol. 25, Issue 3, June 
1997, pp. 13-25. 

[4] H.V. Căpriţă and M. Popa, “Design methods of multithreaded 
architectures for multicore microcontrollers”, Proc. of 6th IEEE 
International Symposium on Applied Computational Intelligence and 
Informatics (SACI 2011), Timisoara, Romania, 2011, pp. 427-432. 

[5] H.V. Căpriţă and M. Popa, “Multithreaded peripheral processor for a 
multicore embedded system”, Applied Computational Intelligence in 
Engineering and Information Technology, Springer Berlin 
Heidelberg, 2012, pp. 201-212. 

[6] S. Chaudry, P. Caprioli, S. Yip and M. Tremblay, “High performance 
throughput computing”, IEEE Micro, vol. 25, Issue 3, May 2005, pp. 
32-45. 

[7] K. Flautner, N. Kim, S. Martin, D. Blaauw and T. Mudge, “Drowsy 
caches: simple techniques for reducing leakage power”, ISCA ‘02 
Proc. of the 29th annual international symposium on Computer 
architecture, vol. 30, Issue 2, 2002, pp. 148-157. 

[8] J.L. Henning, “SPEC CPU2000: Measuring CPU Performance in the 
New Millennium”, Journal of Computer, vol. 33, Issue 7, July 2000, 
pp. 28-35. 

[9] M.D. Hill and R.M. Marty, “Amdahl’s Law in the Multicore Era”, 
Journal of Computer, vol. 41, Issue 7, July 2008, pp. 33-38. 

[10] A. Munir, S. Ranka and A. Gordon-Ross, “High Performance Energy 
Efficient Multicore Embedded Computing”, IEEE Transactions on 
Parallel and Distributed Systems, vol. 23, no. 4, 2012, pp. 684-700. 

[11] O. Mutlu, J. Stark, C. Wilkerson and Y.N. Patt, “Runahead execution: 
an alternative to very large instruction windows for out-of-order 
processors”, Proc. of International Symposium on High-Performance 
Computer Architecture (HPCA 9), 2003, pp. 129-140. 

[12] T. Ramirez, A. Pajuelo, O.J. Santana and M. Valero, “Runahead 
threads to improve SMT performance”, Proc. of 14th International 
Conference on High-Performance Computer Architecture (HPCA 
14), 2008, pp. 149-158. 

[13] D.M. Tullsen and J.A. Brown, “Handling long-latency loads in a 
Simultaneous Multithreading processor”, Proceedings of the 34th 
International Symposium on Microarchitecture, December 2001 
(MICRO 34), pp. 318-327. 

[14] D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo and R.L. 
Stamm, “Exploiting choice: instruction fetch and issue on an 
implementable Simultaneous Multithreading processor”, Proc. of the 
23rd Annual International Symposium on Computer Architecture, 
Philadelphia, PA, 1996, pp. 191-202. 

[15] T. Ungerer, B. Robic and J. Silc, “A survey of processors with 
explicit multithreading”, ACM Computing Surveys, vol. 35, no. 1, 
March 2003, pp. 29-63. 

6Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence


