
Improving Performance of Multithreaded Scalar Architectures

for Embedded Microcontrollers

Horia V. Căpriţă

Department of Computer and Electronic Engineering

“Lucian Blaga” University of Sibiu

Sibiu, Romania

e-mail: horia.caprita@ulbsibiu.ro

Mircea Popa

Faculty of Automation and Computers

“Politehnica” University of Timişoara

Timişoara, Romania

e-mail: mircea.popa@ac.upt.ro

Ioan Z. Mihu

Department of Computer and Electronic Engineering

“Lucian Blaga” University of Sibiu

Sibiu, Romania

e-mail: ioan.z.mihu@ulbsibiu.ro

Abstract – The primary aim followed in the development of

computing systems is increasing the overall performance. The

market always requires faster, more efficient and powerful

products regardless of the applications that are used: high-end

applications, telecommunications, automotive, low-power

embedded applications, etc. Regardless of the type of

application processed, the products based on simple single core

systems have already shown their limitations in obtaining the

desired performance. Multicore processing is currently a way

to improve the performance of a computing system. Multicore

devices have become ubiquitous in everyday life and are used

in all areas. In this paper we present and evaluate an

interleaved multithreaded scalar architecture having limited

resources which supports hardware scouting technique. We

will show that the implementation of hardware scouting is

viable and efficient on scalar multithreaded systems, systems

that have the advantage that use limited hardware resources

for efficient processing. This scalar architecture will be used in

our future research as a basic processing element (Base Core

Equivalent) in developing of new multicore microcontrollers

that will be efficient in terms of energy consumption and

processing rate.

Keywords–multithreaded architecture; multicore

microcontroller; embedded systems; energy-efficient systems.

I. INTRODUCTION

The nowadays diversity of the end-user equipments that
rely on a processing unit (e.g., personal computers, mobile or
automotive devices) was made possible by the integration of
architectural innovative solutions. The software applications
for these devices require more and more computing power
regardless of hardware platform that are used. As a result,
more and more companies have adopted multicore
technology in order to develop more efficient processors,
leading to the development of more efficient end-user
equipment. This is a life cycle that could be maintained by

developing new architectural types to support the next
generation of software applications.

The Amdahl law shows us that the fraction of sequential
code within the program limits the performance of parallel
machines [1] [9]. Reducing this negative effect due to
portion of sequential code of a program can be done by
improving the core's performance which can affect the
parallel execution performance [9]. Despite this,
improvement of overall performance can be done using
multicore systems. The performance of a multicore system

is n , where n is the number of cores [2].

In embedded systems design it applies the same laws
used in designing of general purpose systems. Fulminant
development of embedded applications which demand
massive calculations, led to the concept of high-performance
embedded computing (HPEC) [10]. Moreover, embedded
applications must comply with more stringent rules than
HPC applications on supercomputers. The efficiency of
energy of embedded applications is the first criterion used in
evaluation. This efficiency can be achieved in different
ways: by reducing the operating frequency, by implementing
dynamic reconfigurable architectures like drowsy cache [7]
[10], or by creating multicore processors based on simple
processing elements having limited resources [5]. These
techniques can be combined to obtain an efficient processor
in terms of energy consumption and performance. These
designing constraints lead to the development of energy-
efficient high performance embedded computing
applications (HPEEC) [10] in which, unlike the field of
supercomputers (HPC), not only the raw performance is
important, but the amount of energy consumed to achieve
this performance.

The profiles of nowadays embedded applications are
getting closer to those of general purpose applications. These
applications can claim hardware capability to provide
support for massive calculations (e.g., multimedia
applications), can be parallel or distributed, can have real-

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

time features (working with an RTOS), must be reliable
(reliably constrained) and last, but not least, must be energy
efficient.

Multicore embedded systems represent a solution to
implement HPEEC applications. By combining a multicore
system with multithreaded technology we can achieve more
efficient systems in terms of processing rate and the energy
consumption [6] [10].

In this paper, we will introduce a multithreaded scalar
architecture that uses the hardware scouting technique [6].
This scalar architecture could be used as a basic processing
element (Base Core Equivalent - BCE) for developing
multicore microcontrollers that are efficient in terms of
energy consumption and processing rate.

In Section II, we will present a short state of the art of the
multithreaded architectures. Section III explains the
principles of our proposed multithreaded architecture. In
Section IV and V, we will present the results and the
conclusions of our research.

II. RELATED WORK

Multithreaded architectures (MT) allow execution of
instructions fetched from multiple threads at a time. This
paradigm is based on resource sharing when more threads
compete for these resources. This thread overlapping
influences in a positive way the overall processing
performance [15]. Threads competition also leads to unfair
resources sharing between them which can affect the
processing rate of a single thread at a time. A worst case
occurs when we run threads with a low hit rate in cache.
Such a thread can block the reorder buffer because the
instructions that follow after a data cache miss event will not
be issued or will not be able to complete due the stalls
imposed by the memory operations with high latencies.
Moreover, there may be critical resources assigned to this
thread, leading to “starvation” and stalling of other
independent threads of current thread. The thread stalling
during a memory access limits the exploitation of memory
level parallelism (MLP). As a result, the overall performance
of multithreaded processor may be affected.

The literature contains references to methods that try to
reduce these negative effects. Hardware scouting [6] consists
of launching a hardware thread (invisible in software) that
runs in front of the main application thread. The main role of
this thread is to bring data and instructions, which are
necessary for the execution, in internal caches. A “load miss”
event will start this hardware thread. In this case, the
multithreaded architecture will create a checkpoint with the
current state of the thread and then will continue to execute
instructions that follow after the load, until the requested data
is brought from system memory. At this point, the processor
will restore the program state based on the last saved
checkpoint and will rerun instructions that follow after the
load using new conditions. The advantage of this method is
that the instructions re-launched in the second step will be
already available in the primary caches because were
extracted from memory by hardware thread. Chaudry et al.
[6] show an increase of 40% of the CPU performance when

using an L2 cache of 512 KB. Using the hardware thread can
be considered as a sophisticated mechanism of prefetching.

Another version of hardware scouting is presented in
[12]. Ramirez et al. propose a method to exploit the memory
level parallelism (MLP) to increase the performance of
Simultaneous Multithreaded processors (SMT): Run-ahead
Threads (RaT). Run-ahead execution is a method in which
data and instructions are speculatively mapped in caches
[11]. Ramirez et al. have developed the RaT method which
is a strategy of fetching used to increase the performance of
memory-bound threads without affecting the quantity of
instruction level parallelism exploited in those threads. This
method is applied to threads that could stall due to high
latency memory operations. The appearance of a high-
latency load instruction determines the owner thread to
become a runner-ahead thread. This thread will become
speculative and will use for a short time some hardware
resources, so that other threads will not be limited to getting
access to the CPU. At the same time, the prefetching
operations from other threads will increase the degree of
memory level parallelism, too. The SMT model used in
simulations allows resource sharing [12]. More threads
coexist in the pipeline and share structures like instruction
queues, reorder buffer, physical registers, functional units
and caches. This method has the advantage that will increase
the performance of a simultaneous multithreaded processor
by speculating load-miss events coming from different
threads.

In our previous paper [4] we showed that the
multithreaded model can be effective when it is implemented
on a scalar processor. Our model was inspired by the models
presented in [13] and [14]. It was adapted to be used in
embedded multicore systems [5] in which energy savings
can be made by simplifying the underlying architectural
model of a BCE's.

This research focuses on scalar multithreaded
architectures (having limited resources) that are capable to
adapt the hardware scouting method used by others on
superscalar multithreaded processors [6]. We will show that
the implementation of this technology is viable and efficient
on multithreaded scalar systems, systems that have the
advantage that use limited hardware resources for efficient
processing.

III. HSSS-IMT MULTITHREADED SCALAR

ARCHITECTURE AND HARDWARE SCOUTING

In this paper, we present and evaluate an interleaved
multithreaded scalar architecture having limited resources
which supports hardware scouting technique (HSSS-IMT
architecture) [6]. This scalar architecture can be used as a
basic processing element (Base Core Equivalent - BCE) in
multicore microcontroller’s development process; this basic
processor could be efficient in terms of energy consumption
and processing rate.

The HSSS-IMT architecture is based on the SS - IMT
architecture presented in [4]. SS-IMT is a multithreaded
architecture based on a scalar processor [3]. SS-IMT is
modified to interleave instructions that are coming from

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

different threads in order to execute them using the same
pipeline.

Interleaved Multithreading technique (IMT) is often
called fine-grain multithreading [15]. The processor switches
to another thread after each instruction fetch (Fig. 1). An
instruction feeds the pipeline after the previous statement
issued. IMT eliminates hazards control and data
dependencies between instructions. Memory latencies are
hidden by the scheduler. The thread that has generated a
latency of memory will be stalled by the scheduler; the
interleaving through the pipeline will continue just for
instructions that becomes from other threads (Fig. 2). The
instructions on the stalled thread will be scheduled again for
execution when the memory transaction was done.

One way to increase the performance of this architecture
is the hardware scouting [6]. The study presented in this
paper is focused on hardware implementation and adaptation
of hardware scouting technique to the scalar multithreaded
architecture SS-IMT. When a load-miss (long latency) event
occur, the new architecture, called Hardware Scouting SS-
IMT (HSSS-IMT), continues to use the fetch algorithm that
applies Round-Robin on all available threads, including the
thread that generated the long-latency event.

Figure 1. Round Robin context switching in SS-IMT.

Figure 2. Stalled thread in SS-IMT.

Moreover, when a long - latency event occurs, HSSS-
IMT will create a checkpoint that will contain the status of
all architectural registers of the thread that generated the
memory latency. Unlike SS-IMT, HSSS-IMT processor will
not block the fetching of instructions belonging to the thread
which generates the latency. These instructions (following
load-miss instruction) become pseudo-executed instructions
and will continue to be scheduled for execution under
Round-Robin algorithm (Fig. 3). Thus, in the HSSS-IMT
processor there are no stalled threads.

When a memory transaction ends, the instructions which
follow after the Load and were pseudo-executed will be
flushed from pipeline, while the thread context will be
restored from the last saved checkpoint. Check pointing
mechanism is implemented in "Check pointing and Flush"
block (Fig. 4). Starting from now, the instructions of the
thread that generated the long latency event will be rerun
through all phases of the instruction cycle (instruction fetch,
decode, execute, write back) and using the right context. The
advantage of the hardware scouting method will be that, this
time, the rescheduled instructions have been already in the
instruction cache and their operands could be already loaded
into the data cache. Such an instruction will be executed with
maximum speed allowed by this architecture.

Figure 3. HSSS-IMT: when a load misses, the next instructions will be

fetched, and a new checkpoint is created.

Figure 4. HSSS-IMT architecture.

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

IV. RESULTS

Being a multithreaded environment, we used benchmarks
as threads for our HSSS-IMT evaluation. By porting SPEC
CPU2000 [8] suite we obtained 7 integer benchmarks and 9
floating point benchmarks that we have used in simulations
(Table I). These benchmarks represent the threads
concurrently processed in our architectures (e.g., the
evaluation of 8-contexts HSSS-IMT processor was done
using 8 concurrent benchmarks as inputs).

TABLE I. SPEC CPU2000 BENCHMARKS PORTED TO HSSS-IMT

SPEC CPU2000
Benchmark type

Benchmark name

Integer bzip2.ss, gcc.ss, gzip.ss, mcf.ss, parser.ss,
twolf.ss, vortex.ss

Floating point ammp.ss, applu.ss, apsi.ss, art.ss, equake.ss,
mesa.ss, mgrid.ss, swim.ss, wupwise.ss

We created some groups of benchmarks named “thread

sets”. For example, Gr-2TH-1 thread set contains bzip2.ss
and ammp.ss benchmarks, while Gr-8Th-1 thread set
contains bzip2.ss, gcc.ss, gzip.ss, mcf.ss, ammp.ss, applu.ss,
apsi.ss and art.ss benchmarks. We defined three versions of
HSSS-IMT architectures: two hardware contexts (2 threads),
four hardware contexts (4 threads) end eight hardware
contexts (8 threads). We extended the number of sets for D-
cache and I-cache accordingly with the number of threads
that we’ve used in simulations. We evaluated the
performance of HSS-IMT related to the performance of the
basic architecture SS-IMT. Each result was obtained running
100 millions of instructions/benchmark on SS-IMT and
HSSS-IMT architectures.

In [4], we proposed a multithreaded model based on
Simple Scalar (SS) architecture [3]. Our model, named
Simple Scalar Interleaved Multithreaded architecture (SS-
IMT), was inspired by multithreaded architectures presented
in [13] and [14]. It was adapted to be used in embedded
multicore systems [5]. In Figure 5 and Figure 6 we depict the
average performance of the SS-IMT architectures with 2, 4
and 8 contexts (threads). Each average value has been
obtained using instruction and data caches with 32, 64, 128
and 256 KB per context.

Figure 5. The overall performance (IPC) of SS-IMT architectures [4].

Figure 6. The overall performance (D-cache hit rate) of SS-IMT

architectures [4].

As we can see from the previous figures, we note that
IPC is growing together with the number of contexts
(threads), while D-cache performance decreases. This
decrease is due to the number of threads increasing, threads
which concurrently coexist in D-cache [4].

HSSS-IMT evaluation has been done using data caches
having 32, 64, 128 and 256 KB per thread. In Figure 7 we
represent the performance in terms of IPC for HSSS-IMT
architecture with 2 hardware contexts. For evaluation we
have used 18 groups of 2 benchmarks. These groups contain
benchmarks that have an integer or floating point profile or
could contain benchmarks from these two categories. It
could be observed that the maximum average performance is
obtained using the thread set number 2 (0.8361804 IPC),
while the worst average performance is given by the thread
set 11 (0.784226 IPC). The difference between these two
values is given by the content of the thread set (the profiles
of the SPEC CPU2000 benchmarks). The average value of
the performance for this HSSS-IMT configuration is
0.8130545 IPC.

Figure 8 depicts the HSSS-IMT performance having 4
hardware contexts. For evaluation we have used 22 groups of
4 benchmarks. Like in previous case these groups contain
mixed benchmarks and the performance grows together with
the dimension of caches.

Figure 7. The performance of 2-contexts HSSS-IMT architecture.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

Figure 8. The performance 4-contexts HSSS-IMT architecture.

It can observe that the maximum average performance is
obtained using the thread set number 9 (0.8492511 IPC),
while the worst average performance is given by the thread
set 19 (0.8001177 IPC). The average value of the
performance for this HSSS-IMT configuration is
0.817238679 IPC.

In Figure 9, we represent the performance of HSSS-IMT
architecture having 8 hardware contexts obtained with a
worst case combination of benchmarks. The average value of
the performance for this HSSS-IMT configuration is
0.820006152 IPC.

By comparing these results we can see that the
performance of HSSS-IMT architecture is superior to the
performance of SS-IMT regardless of the number of
hardware contexts that are implemented.

From Figure 10, we can observe that while the number of
HSSS-IMT contexts is growing, the average performance of
this architecture is growing too. The global performance of
HSSS-IMT architecture (0.816766446 IPC) is greater than
the global performance of the SS-IMT architecture
(0.766081157 IPC). In Figure 11 we represent the data cache
hit rate for SS-IMT and HSSS-IMT architectures. While the
number of contexts is growing we obtain a better
performance that is in opposite to the results obtained on SS-
IMT (Fig. 6).

This additional performance comes from the
implementation of the hardware scouting technique that
ameliorates the negative effect of a load-miss event [6]. The
number of scouting instructions after a load-miss event will
vary and depends on the memory latency.

The global performance of HSSS-IMT architecture
related to the SS-IMT performance is depicted in Figure 12
and Figure 13.

Figure 12 represents a synthesis of Figure 5 and Figure
10 and depicts the IPC parameter of SS-IMT and HSSS-
IMT architectures. Also, Figure 13 represents a synthesis of
Figure 6 and Figure 11 and depicts the hit rate of data caches
for these two architectures. The best results are obtained
when we increase the number of the hardware contexts
(number of threads). Average performance of this new
architecture (approx. 0.816 IPC) is greater than average

performance of SS-IMT (approx. 0.766 IPC) with
approximately 5%. Data cache hit rate grows from
approximately 0.97% in SS-IMT to 0.99% in HSSS-IMT.

Figure 9. The performance 8-contexts HSSS-IMT architecture.

Figure 10. The overall performance (IPC) of HSSS-IMT architecture.

Figure 11. The overall performance (D-cache hit rate) of HSSS-IMT

architecture.

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

Figure 12. Average performance of HSSS-IMT vs. SS-IMT.

Figure 13. Average D-cache performance for HSSS-IMT vs. SS-IMT.

Implementing the hardware scouting method on our basic
scalar multithreaded processor (SS-IMT) led us to a new
multithreaded architecture (HSSS-IMT) that has a better
performance than previous one presented in [4].

V. CONCLUSION AND FUTURE WORK

HSSS-IMT architecture benefits of full of multithreading

techniques and simultaneously of hardware scout. Moreover,
this check pointing technique offers a better utilization of
instruction and data cache memory by using hardware
scouting. From Figure 11 we can see that average data cache
hit rate of HSSS-IMT is greater with over 2% than that
obtained on SS-IMT. This rising is very important for us. By
implementing the multithreading technique on a basic scalar
processor gave us a worse performance related to this data
cache hit rate parameter [4] [5]. These performances of
HSSS-IMT show us that there exists the possibility to use
this kind of architectures to integrate it in bigger structures in
order to create multicore processors. These multicore
processors could be used in embedded systems because they
contain limited resources (e.g., they have a scalar
configuration) and they are able to manage more threads
useful to run an RTOS.

Although investigating the power consumption of this
architecture wasn’t a purpose of this paper, we can anticipate
that this type of architecture could be used to create low
power energy BCEs due to the simplicity of the processing
element [6] [11] [12].

The HPEEC domain should be sustained by developing
novel transistor technologies in order to reduce the power
consumption but, in the same time, the researchers have to
concentrate on how to create new scheduling techniques,
basic processing elements or revolutionary memory design.

ACKNOWLEDGMENT

This work was supported by Continental Automotive
Systems Sibiu, Romania, grant no. 550/25.02.2010.

REFERENCES

[1] G.M. Amdahl, “Validity of the single-processor approach for
achieving large-scale computing capabilities”, Proc. Am. Federation
of Information Processing Societies Conf., AFIPS Press, 1967, pp.
483-485.

[2] S. Borkar, “Thousand core chips - a technology perspective”, Proc. of
the 44th annual Design Automation Conference (DAC 07), 2007, pp.
746-749.

[3] D. Burger and T.M. Austin, “The SimpleScalar tool set, version 2.0”,
ACM SIGARCH Computer Architecture News, vol. 25, Issue 3, June
1997, pp. 13-25.

[4] H.V. Căpriţă and M. Popa, “Design methods of multithreaded
architectures for multicore microcontrollers”, Proc. of 6th IEEE
International Symposium on Applied Computational Intelligence and
Informatics (SACI 2011), Timisoara, Romania, 2011, pp. 427-432.

[5] H.V. Căpriţă and M. Popa, “Multithreaded peripheral processor for a
multicore embedded system”, Applied Computational Intelligence in
Engineering and Information Technology, Springer Berlin
Heidelberg, 2012, pp. 201-212.

[6] S. Chaudry, P. Caprioli, S. Yip and M. Tremblay, “High performance
throughput computing”, IEEE Micro, vol. 25, Issue 3, May 2005, pp.
32-45.

[7] K. Flautner, N. Kim, S. Martin, D. Blaauw and T. Mudge, “Drowsy
caches: simple techniques for reducing leakage power”, ISCA ‘02
Proc. of the 29th annual international symposium on Computer
architecture, vol. 30, Issue 2, 2002, pp. 148-157.

[8] J.L. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium”, Journal of Computer, vol. 33, Issue 7, July 2000,
pp. 28-35.

[9] M.D. Hill and R.M. Marty, “Amdahl’s Law in the Multicore Era”,
Journal of Computer, vol. 41, Issue 7, July 2008, pp. 33-38.

[10] A. Munir, S. Ranka and A. Gordon-Ross, “High Performance Energy
Efficient Multicore Embedded Computing”, IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 4, 2012, pp. 684-700.

[11] O. Mutlu, J. Stark, C. Wilkerson and Y.N. Patt, “Runahead execution:
an alternative to very large instruction windows for out-of-order
processors”, Proc. of International Symposium on High-Performance
Computer Architecture (HPCA 9), 2003, pp. 129-140.

[12] T. Ramirez, A. Pajuelo, O.J. Santana and M. Valero, “Runahead
threads to improve SMT performance”, Proc. of 14th International
Conference on High-Performance Computer Architecture (HPCA
14), 2008, pp. 149-158.

[13] D.M. Tullsen and J.A. Brown, “Handling long-latency loads in a
Simultaneous Multithreading processor”, Proceedings of the 34th
International Symposium on Microarchitecture, December 2001
(MICRO 34), pp. 318-327.

[14] D.M. Tullsen, S.J. Eggers, J.S. Emer, H.M. Levy, J.L. Lo and R.L.
Stamm, “Exploiting choice: instruction fetch and issue on an
implementable Simultaneous Multithreading processor”, Proc. of the
23rd Annual International Symposium on Computer Architecture,
Philadelphia, PA, 1996, pp. 191-202.

[15] T. Ungerer, B. Robic and J. Silc, “A survey of processors with
explicit multithreading”, ACM Computing Surveys, vol. 35, no. 1,
March 2003, pp. 29-63.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

