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Abstract—Covert channels in modern communication 

networks are a source of security concerns. Such channels can 

be used to conduct hidden communications, facilitate 

command and control of botnets or inject malicious contents 

into unsuspected end user devices or network nodes. The vast 

majority of the documented covert channels make use of the 

upper layers of the OSI model. In this work, we present a proof 

of concept on a new covert channel in IEEE 802.11 networks, 

making use of the Protocol Version field in the MAC header. 

This is achieved by forging modified CTS and ACK frames. 

Forward error correction mechanisms and interleaving were 

implemented to increase the proposed channel's robustness to 

error. A laboratory implementation of the proposed channel 

and the results of tests conducted on the proposed channel, 

including measurements of channel errors and available data 

rate for transmission, are presented. The results validate the 

viability of the proposed covert channel and demonstrate that 

robustness of the channel to frame errors can be improved by 

using well known forward error correction and interleaving 

techniques.  

Keywords - IEEE802.11 MAC frame; frame forging; covert 

channel; protocol version 

I.  INTRODUCTION 

As wireless networks become more ubiquitous, so do our 
dependencies on them. According to an industry report, in 
2012 over a billion devices will be shipped with technology 
based on this standard onboard and the number is projected 
to be over two billion in 2014 [1]. Mobility and ease of 
access of wireless networks are very attractive characteristics 
to the end users, but along with them come additional 
security concerns [2].  

In order to protect wireless networks from being 
exploited, we need to constantly evaluate their vulnerabilities 
and devise techniques to mitigate them. Finding possible 
covert channels presents an ongoing challenge, and the 
potential uses for such channels range from well-intentioned 
authentication mechanisms [3] to malware propagation [4], 
exfiltration [5] or command and control of botnets [6].  

Many covert channels have been documented over the 
years and reflect the technological stage of the networks at 
which they were documented. The idea of network covert 
channels was documented 25 years ago by Girling [7], 
although the concept of a system-based covert channel was 
initially presented by Lampson in 1973 [8]. The vast 

majority of academic research has focused on documenting 
covert channels in layer 3 (network layer) or above 
(transport, session, presentation and application layers) of the 
OSI model [9]. These types of covert channels based on 
higher layer protocols span a wider variety of networks, 
since they are not limited by the physical or medium access 
mechanisms. The two most explored protocols above layer 2 
(data link layer) are IP and TCP [10]. Even higher layer 
protocols, such as ICMP, HTTP or DNS, have several 
documented covert channels [10].  

Recently, researchers began investigating wireless 
networks, specifically identifying covert channels in the 
MAC layer [11,12,13]. Frame forging plays a key role in this 
type of covert channel. Creating fake frames with modified 
header bits is a recurring theme to implement such channels. 
MAC header fields such as the sequence number [12], 
initialization vector [12] or destination address [13], have 
been used to hide the covert information. 

Frikha, et al. [12] proposed two different 
implementations of a covert channel, both using fields in the 
802.11 MAC header. The first one uses the 8 most 
significant bits of the sequence control field; the second 
implementation applies to networks that use Wired 
Equivalent Privacy (WEP) where the initialization vector 
subfield is used to carry the covert message. Another covert 
channel, as proposed by Butti [13], uses part of the 
destination address field of ACK frames to hide the payload. 
Each of these approaches relies on the forging of frames by 
manipulating the contents of the MAC header in order to 
hide the covert information.   

In this paper, a covert channel that will use the MAC 
header of control frames is proposed to hide the covert 
information. This will be achieved by forging frames that use 
the protocol version bits in a way that was not intended by 
the designers of the IEEE 802.11 standard. Specifically, the 
protocol version field and selected control bits in the MAC 
header field are used to accomplish this. Our work also 
addresses the error robustness and throughput of the channel, 
supported by experimental results. 

The rest of the paper is organized as follows. Section II 
presents an overview of the IEEE802.11 MAC frame fields 
and an analysis of network frame traffic. The proposed 
covert channel is described in Section III. Section IV 
presents the results of experiments. 
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II. IEEE802.11 NETWORKS AND FRAME TRAFFIC 

IEEE 802.11 based wireless nodes share a common 
medium for communication. The fundamental building block 
of the 802.11 architecture is called the Basic Service Set 
(BSS). One BSS may be connected to other BSSs via a 
Distribution System (DS). Within this framework, stations 
can connect in ad-hoc mode or infrastructure mode. The 
simpler case is ad-hoc mode, where two stations can connect 
directly, point to point, without a DS and an Access Point 
(AP). If we have the stations connecting via an AP and 
making use of a DS, then we say they are setup in 
infrastructure mode.  

A. 802.11 MAC frame format 

A generic MAC format for an 802.11 MAC frame can be 
seen in Figure 1. The frame consists of the MAC header, the 
frame body and the Frame Check Sequence (FCS). 

 

 
Figure 1.  MAC frame format (from [14]). 

The first field in the MAC header is the Frame Control 
(FC), consisting of two octets, and its contents are shown in 
Figure 2, with the protocol version field highlighted. This 
field consists of two bits that represent the version number of 
the 802.11 protocol being used. As of this writing, PV is 
expected to be set to zero [14]. This value may change in the 
future if a newer version of the standard is released.  

 

 
Figure 2.  Frame control field (from [14]). 

In the proposed covert channel, we utilize the remaining 
three possible combinations of the PV field to hide the covert 
information. 

B. Frame Types of Interest 

Four different types of frames exist in the 802.11 
protocol: management, data, reserved and control frames. 

Control type frames facilitate the exchange of data 
frames between stations. Within the existing control 
subtypes, we are interested in the smaller sized frames, the 
Acknowledgement (ACK) and the Clear To Send (CTS).  
These frames also tend to be present in large volume. 

The IEEE 802.11 MAC layer makes use of the 
CSMA/CA scheme, in order to minimize the number of 
collisions and subsequent frame loss. To address the hidden 
node problem, a RTS/CTS handshake mechanism is used. 
The CTS is a 14-byte long frame whereas the RTS is 20 
bytes long. 

The ACK frame is generated when a station correctly 
receives a packet, and it is intended to signal the source 
station that the reception was successful. For this reason, this 
type of frame also tends to be very common in an operational 
wireless network. The length of this frame is the same as the 
CTS, 14 bytes. 

Both frames share the same format and they only differ 
in one bit in the subtype field within the frame control. The 
ACK frame has the subtype value set to 1101; the CTS sets it 
to 1100. 

C. Network Analysis 

A heavily used 802.11 network on campus is monitored 
to collect frame traffic on multiple channels. From the MAC 
frame traffic collected, channel 1 is found to be the one with 
most traffic volume and number of users. We collected over 
22 million packets to analyze the following frame basic 
characteristics. 

Ideally, we want a frame that is short in length, common 
in occurrence, and still valid if some bits are changed. 
Additionally, its presence in bursts shouldn't be a rare event. 
These features are desirable for achieving a reasonable 
throughput while providing covertness.  

The results of our analysis are shown in Figure 3 as a pie 
chart, which represents the frequency of occurrence of 
different types of frames. The data frames are dominant, 
followed by CTS, ACK and beacons. The "others" refers to 
the sum of all other frames that represent less than 1% 
individually. From this plot we can clearly see that two types 
of control frames matching our needs stand out, the ACK 
and the CTS. 

 
Figure 3.  Frequency of occurrence of the monitoried frame types. 

D. Choosing the Frame Type 

In the process of choosing a frame for the covert channel, 
several frames were considered, such as RTS and ACK. 
These frames could serve as well as the CTS, but they were 
found to be less frequent than CTS. Also, among these three 
frames, RTS is the longest one with 20 bytes, and the CTS 
and ACK have only 14 bytes. For this reason we narrowed 
the options to ACK and CTS.  

From monitoring of frame traffic on the campus wireless 
network and empirical analysis, we found that the CTSs 
occur with a frequency two times higher than that of the 
ACKs. The monitoring was conducted in different traffic 
scenarios, ranging from low traffic periods to high levels of 
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utilization of the network. We chose to use CTS for building 
the proposed covert channel as the CTS traffic volume is 
large and is of same frame size as ACK. By choosing CTS, 
we can minimize the chance of causing a traffic anomaly 
based on the type and frequency of packets flowing through 
the network.  

Since CTS and ACK have a similar frame structure, it is 
easier to switch from one to the other, according to our 
objectives. The main concept of the proposed covert channel 
applies equally to both frames. It is even possible to have one 
end of the channel transmitting ACK frames, and the other 
transmitting CTS frames, without any loss or degradation of 
performance. Alternating frame types, such as transmitting a 
forged ACK followed by a forged CTS is also viable. Many 
other variations are also feasible. 

The fact that both CTS and ACK frames do not contain a 
source address also contributes to a higher level of 
stealthiness, since it is not possible to immediately identify 
the source of the transmission. 

III. PROPOSED COVERT CHANNEL 

This section describes the proposed covert channel and 
the use of forward error correction and bit interleaving 

mechanisms to improve its performance.  

A. MAC Header Manipulation 

In the proposed covert channel we use two bits in the 
protocol version field of the MAC header of an 802.11 CTS 
packet to carry hidden information. The proposed covert 
channel uses the protocol version bits in a variety of ways to 
signal the beginning and end of the transmission as well as to 
carry the information, one bit at a time. A graphical 
representation of the bits being used is shown in Figure 4. 

 

 
Figure 4.  Manipulated bits in Frame control field (blue squares). 

In order to facilitate communication in the proposed 
covert channel, we divided the transmission into three 
segments: start message delimiter, message, and end 
message delimiter. The start and end delimiters are realized 
by transmitting a sequence of five frames with 01 in the 
protocol version field. The message bits are transmitted 
using combinations of 10 as binary "0" and 11 as binary "1" 
in the protocol version field. The message is organized into 
8-bit ASCII characters. 

B. Forward Error Correction 

Since we are operating in a shared media, collisions will 
eventually occur. This will be interpreted as an error, since a 
frame carrying covert payload will be lost. To mitigate the 
effect of frame losses, and thus reduce the number of errors 
in the covert channel, the use Forward Error Correction 
(FEC) was considered. 

There are several options for implementing FEC: block 
codes such as Hamming and Reed-Solomon, convolutional 
codes, turbo codes, or low density parity check codes. In this 
work, however, a convolutional code was used for error 
correction. 

A convolutional coder takes an m - bit message and 

encodes it into an n - bit symbol. The ratio m
n

 is known as 

the code rate. In our case a code rate of 2
3

 was used, 

meaning the encoded message will be one and a half times as 
long as the original message. This will increase the time 
needed to transmit the same message as before, since a 
higher number of bits is being sent. 

Another important parameter in convolutional coding is 
the constraint length. This parameter, k, represents the 
number of bits in the encoder memory that affect the 
generation of the n  output bits [15]. A constraint length of 4 
is used in our experiments. 

Forward error correction is typically applied to a 
transmission of a stream of bits sent and received 
sequentially. In our case, however, the bits are embedded 
into independent frames, which are prone to loss. As a result, 
when a frame is lost, the receiver has no indication that a bit 
was missing. Consequently, we now need to know exactly 
which frames were lost in order to apply the FEC correctly.  

One option is to use the eight flag bits in the frame 
control field of the MAC header to index a longer sequence 
number, which makes determining the location of lost frames 
an easier task. These flag bits will not carry any covert 
information but serve only the error correction function. 
However, it is important to state that applying this use of the 
flag bits will increase the probability of detection of the 
covert channel, since unexpected flag attributions will be 
present. In this situation, we move from a minimum 
deviation of two bits (as in Figure 4) to a maximum of 10 
bits (as in Figure 5).  This presents a tradeoff between 
detectability and error performance, and the user must 
exercise the option to choose one over the other as dictated 
by the application.  In order not to use the flag bits one could 
use the type and subtype fields of the MAC header. The 
IEEE802.11 standard defines some bit combinations of the 
subtype field as “Reserved”. Exploring these combinations 
could be an option, although we did not test it. 

Figure 5 is a representation of how we accommodated the 
information and sequence bits within the MAC header.  

The blue squares represent our covert channel bits. These 
bits are used in the same way as before: the first bit (B0) 
signals the presence of the channel and the second is payload 
(B1). The red circles refer to the sequence bits, which are 
placed in the flag bits of the frame control field.  

 

 
Figure 5.  Representation of the frame structure using the flag bits for 

sequencing (red circles). 
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Given that we have eight flags, this gives us a total of 
256 possible sequence numbers. This alone provides a 
reasonable amount of protection against a long burst of 
frame losses, when compared to the previous approach.  

C. Forward Error Correction and Interleaving 

We now consider sending more than one bit of 
information per forged frame.  

Since each frame now carries more than one information 
bits, the loss of one or more frames has a bigger impact on 
the number of errors in the channel. In order to mitigate this 
effect, we interleave the bit string resulting from the 
convolutional coder. This consisted of breaking the coded 
message in blocks of 8 bits, building a matrix with each 
block in a different row. By reading the matrix out by 
column, from top to bottom, we generate a new string of bits, 
effectively interleaving all the 8 bit blocks.  The number of 
rows depends on the length of the message we are 
transmitting.  

Figure 6 is a schematic representation of this idea. At the 
output of the convolutional coder we interleave the bits in 
groups of 8 bits. This will result in a new string of zeros and 
ones, which goes into the covert channel processing block. 
Here the string is separated in groups of n  bits, and each 
group will become the payload of the forged frames. 

Notice that only information bits are encoded and 
interleaved; in this implementation the convolutional coder is 
applied after we have the complete message we want to 
transmit.  

 

 
 

Figure 6.  FEC and interleaving block diagram. 

One possible implementation is to use six bits for 
payload. The frame is forged as follows: six information bits 
are placed in the selected flag bits, three other bits are used 
for sequence numbers, and the first PV bit is set to one, 
indicating the use of the covert channel.  Figure 7 illustrates 
the proposed structure. The blue squares indicate payload 
bits, and the red circles are sequence numbers. The green 
diamond (B0) indicates the presence of the covert channel. 
Bits B1, B8 and B9 form the sequence number yielding a 
sequence length of 8. Bits B10-B15 form the payload of six 
bits to carry the message. 

 

 
Figure 7.  Representation of the frame structure  using three bits for 

sequencing (red squares) and six bits for payload (blue squares). 

IV. EXPERIMENTS AND RESULTS 

In order to implement the proposed covert channel, we 
developed the necessary code to forge, transmit, and receive 

frames. Python was the chosen programming language, due 
to its simplicity, available libraries and extension modules 
that facilitated our task. Regarding the OS, a Linux 
environment was elected, for being more flexible, open 
source and GNU licensed.  

The code is divided into three threads running 
simultaneously. One thread runs as the receiver, another one 
as the transmitter, and the third one as a control mechanism 
in order to handle possible discrepancies in the identification 
of the beginning and end of the covert communication. Other 
version 1 frames (with bad checksums) where found 
circulating in the network, and become noise to our version 1 
frames forming the start and end delimiters. Thread3 is 
responsible for filtering out these unwanted frames.  

A. Test bed 

Frame traffic was recorded over operational wireless 
networks, during week days, in order to capture the real-
world scenarios. 

Three different scenarios were considered and tested. All 
scenarios consisted of transmitting similar messages during 
approximately the same time of day. The difference between 
the scenarios is the way the data was transmitted since we 
varied the number of payload bits and applied different error 
mitigation mechanisms. 

It is important to notice that stations A and B were 
operating in the ad-hoc mode, outside the infrastructure 
wireless network being monitored. The stations transmit 
without any coordination from the access point.  This likely 
causes collisions, and thus frame losses, which are 
interpreted as errors for analysis purposes. 

A standard sentence was used for all scenarios, with a 
total of 1408 bytes. In the first scenario, the messages were 
sent without any error control. The second scenario 
introduced the use of FEC, and the third used a combination 
of FEC and interleaving, in order to improve the error 
robustness of transmitted message. In the following analysis, 
in order to have a performance benchmark, we used the first 
scenario as the baseline for comparison with the FEC 
scenarios,. 

B. Results 

1) Scenario 1 
 

In Figure 8(a) we can see the profile of the traffic 
collected for a period of about ten hours on channel 1. Figure 
8(b) displays the percentage of errors detected upon 
reception of the test sentence.  

Summarizing this analysis, we observed an average error 
of approximately 3% for the sentence over a total of 30 sets 
of transmissions. No error correction or sequencing is at 
work in this scenario. 
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Figure 8.  Network traffic profile and percentage of errors for sentence and 

sequence receptions in channel 1. 

 

2) Scenario 2 
 

The percentage of errors as a function of 15 repeated 
transmissions of the sentence, in channel 1, over a period of 
4 hours, is shown in Figure 9. The length of the transmitted 

sentence is now 2,112 bits long because we applied a 2
3

 

rate encoder on a 1,408-bit string. The red stems (x) 
represent the number of errors detected in the received 
sentence, and the blue stems (o) the number of errors in the 
received sentence with FEC. In most cases the number of 
errors drops to zero or is significantly reduced. 

 
Figure 9.  Percentage of erros before (red cross) and after FEC (blue 

circle) per received sentence, using flag bits for sequencing. 

This is consistent with our expectations. We have one 
outlier in that for the 13th repetition of the sentence we got a 
higher number of errors with FEC.  

We recorded a total of 67 errors in this experiment 
(without FEC), which translates into an average of 4.5 errors 
per sentence, or an average error percentage of 0.21%. After 
the execution of FEC, the total number of errors dropped to 
21, resulting in an average of 1.4 errors per sentence or an 
overall average of 0.09%, relative to the 1,408 bits of the 
original message. However, this gain was the direct result of 

having to transmit more bits to send the same message, when 
compared to the first scenario with no FEC, thus reducing 
the data rate. 

 

3) Scenario 3 
 
The percentage of errors per sentence repetition can be 

seen in Figure 10. From this figure we can notice an outlier 
at repetition 12, actually gaining errors after the FEC. This 
was an isolated event and it was excluded from this analysis. 
The result is an average number of 1.53 errors per repetition 
or 0.07% of the total amount of bits sent per sentence. 
Following the sequence number tracking, de-interleaving and 
correcting the bit sequence, the total number of errors is 
reduced to zero. These are significant results; however, the 
sample space is small, and we cannot conclude that this level 
of robustness will be achieved in every reception. 

 
Figure 10.  Percentage of erros before (red cross) and after FEC (blue 

circle) per received sentence with interleaving.  

C. Throughput Analysis 

 
In order to evaluate the throughput offered in each 

scenario, the rate at which the frames were transmitted was 
measured. Being a proof of concept, code efficiency was not 
a major concern, and the results are presented for analysis 
purpose only, meaning significant improvements may be 
easily achieved. This was done using Airopeek and by 
averaging the rate of the forged frames on a per second (fps) 
basis.  Depending on the network usage at the time, the 
frame rate varies significantly. Another factor responsible for 
this variation is the continuous adjustment of the maximum 
data rate of the network as dictated by the channel 
conditions. For IEEE 802.11b networks the maximum 
network data rate possible values are 1, 2, 5.5, and 11 Mbps 
[14].  

To obtain a benchmark for performance comparison, we 
first determine the maximum data rate possible for the covert 
channel under optimal conditions. The following conditions 
are assumed: (i) The channel is ideal with no errors; (ii) there 
is only one station with frames to transmit; and (iii) we use a 
data rate of 2 Mbps, the highest possible for 802.11b control 
frames (basic rate set) [14]. 

a) 

b) 
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The medium access scheme has to obey some 
predetermined timing constraints, set by the standard. Figure 
11 is a graphical representation of the timing requirements 
for transmitting a frame. 

 
Figure 11.  Timing constraints in an 802.11 frame transmission [After 16]. 

Applying the work of Xiao and Rosdhal [17] to the 
proposed covert channel, the minimum amount of time 

necessary to transmit a forged CTS is min
t 376 µs, 

corresponding to a maximum of 2659 forged frames per 
second. At one bit per frame the maximum bit rate is 2659 
bps; at six bits per frame we get 15.954 kbps. The measured 
throughput values, however, will be significantly smaller. 

When we transmit one bit of information in each forged 
frame, we have an overhead of the start and end delimiters 
for a total of 10 signaling frames. The measured average 
frame rate was 61 frames per second. Since each frame 
represents a bit, and considering our message payload of 
1408 bits, we transmit a total of 1418 bits. At 61 fps this 
corresponds to a total transmission time of 23.25 sec, and a 
useful bit rate or throughput of 60.5 bits per second (bps).  

On the other hand, when we transmitted 6 bits per forged 
frame and introduced the use of interleaving, the measured 
average transmission rate was 32 fps. By transmitting a total 
of 2122 bits, we obtained a total transmission time of 11 
seconds. The resulting throughput value is 127.4 bps, 
considerable improvement over the previous case.  

 

V. CONCLUSIONS  

This work presented, implemented and tested a previously 
undocumented covert channel in an IEEE802.11 network. 
We used the protocol version field in the MAC header to 
hide and transfer the covert information. Robustness to errors 
in the covert channel is improved by the use of forward error 
correction and bit interleaving. The proposed covert channel 
was implemented by developing the necessary code in 
Python. A GUI chat console is used for message 
transmission. The test bed used for experiments operated in a 
Linux environment. Preliminary results indicate significant 
improvement in the error performance of the channel. The 
achieved throughput of the covert channel is measured and 
the maximum channel data rate is also determined. The case 
of 6-bit payload along with convolutional coding and 
interleaving yielded the highest measured throughput. 
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