
A MAC Layer Covert Channel in 802.11 Networks

Ricardo Goncalves

Department of Electrical and

Computer Engineering, Naval

Postgraduate School

Monterey, California

santana.goncalves@marinha.pt

Murali Tummala

Department of Electrical and

Computer Engineering, Naval

Postgraduate School

Monterey, California

mtummala@nps.edu

John C. McEachen

Department of Electrical and

Computer Engineering, Naval

Postgraduate School

Monterey, California

mceachen@nps.edu

Abstract—Covert channels in modern communication

networks are a source of security concerns. Such channels can

be used to conduct hidden communications, facilitate

command and control of botnets or inject malicious contents

into unsuspected end user devices or network nodes. The vast

majority of the documented covert channels make use of the

upper layers of the OSI model. In this work, we present a proof

of concept on a new covert channel in IEEE 802.11 networks,

making use of the Protocol Version field in the MAC header.

This is achieved by forging modified CTS and ACK frames.

Forward error correction mechanisms and interleaving were

implemented to increase the proposed channel's robustness to

error. A laboratory implementation of the proposed channel

and the results of tests conducted on the proposed channel,

including measurements of channel errors and available data

rate for transmission, are presented. The results validate the

viability of the proposed covert channel and demonstrate that

robustness of the channel to frame errors can be improved by

using well known forward error correction and interleaving

techniques.

Keywords - IEEE802.11 MAC frame; frame forging; covert

channel; protocol version

I. INTRODUCTION

As wireless networks become more ubiquitous, so do our
dependencies on them. According to an industry report, in
2012 over a billion devices will be shipped with technology
based on this standard onboard and the number is projected
to be over two billion in 2014 [1]. Mobility and ease of
access of wireless networks are very attractive characteristics
to the end users, but along with them come additional
security concerns [2].

In order to protect wireless networks from being
exploited, we need to constantly evaluate their vulnerabilities
and devise techniques to mitigate them. Finding possible
covert channels presents an ongoing challenge, and the
potential uses for such channels range from well-intentioned
authentication mechanisms [3] to malware propagation [4],
exfiltration [5] or command and control of botnets [6].

Many covert channels have been documented over the
years and reflect the technological stage of the networks at
which they were documented. The idea of network covert
channels was documented 25 years ago by Girling [7],
although the concept of a system-based covert channel was
initially presented by Lampson in 1973 [8]. The vast

majority of academic research has focused on documenting
covert channels in layer 3 (network layer) or above
(transport, session, presentation and application layers) of the
OSI model [9]. These types of covert channels based on
higher layer protocols span a wider variety of networks,
since they are not limited by the physical or medium access
mechanisms. The two most explored protocols above layer 2
(data link layer) are IP and TCP [10]. Even higher layer
protocols, such as ICMP, HTTP or DNS, have several
documented covert channels [10].

Recently, researchers began investigating wireless
networks, specifically identifying covert channels in the
MAC layer [11,12,13]. Frame forging plays a key role in this
type of covert channel. Creating fake frames with modified
header bits is a recurring theme to implement such channels.
MAC header fields such as the sequence number [12],
initialization vector [12] or destination address [13], have
been used to hide the covert information.

Frikha, et al. [12] proposed two different
implementations of a covert channel, both using fields in the
802.11 MAC header. The first one uses the 8 most
significant bits of the sequence control field; the second
implementation applies to networks that use Wired
Equivalent Privacy (WEP) where the initialization vector
subfield is used to carry the covert message. Another covert
channel, as proposed by Butti [13], uses part of the
destination address field of ACK frames to hide the payload.
Each of these approaches relies on the forging of frames by
manipulating the contents of the MAC header in order to
hide the covert information.

In this paper, a covert channel that will use the MAC
header of control frames is proposed to hide the covert
information. This will be achieved by forging frames that use
the protocol version bits in a way that was not intended by
the designers of the IEEE 802.11 standard. Specifically, the
protocol version field and selected control bits in the MAC
header field are used to accomplish this. Our work also
addresses the error robustness and throughput of the channel,
supported by experimental results.

The rest of the paper is organized as follows. Section II
presents an overview of the IEEE802.11 MAC frame fields
and an analysis of network frame traffic. The proposed
covert channel is described in Section III. Section IV
presents the results of experiments.

88Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

II. IEEE802.11 NETWORKS AND FRAME TRAFFIC

IEEE 802.11 based wireless nodes share a common
medium for communication. The fundamental building block
of the 802.11 architecture is called the Basic Service Set
(BSS). One BSS may be connected to other BSSs via a
Distribution System (DS). Within this framework, stations
can connect in ad-hoc mode or infrastructure mode. The
simpler case is ad-hoc mode, where two stations can connect
directly, point to point, without a DS and an Access Point
(AP). If we have the stations connecting via an AP and
making use of a DS, then we say they are setup in
infrastructure mode.

A. 802.11 MAC frame format

A generic MAC format for an 802.11 MAC frame can be
seen in Figure 1. The frame consists of the MAC header, the
frame body and the Frame Check Sequence (FCS).

Figure 1. MAC frame format (from [14]).

The first field in the MAC header is the Frame Control
(FC), consisting of two octets, and its contents are shown in
Figure 2, with the protocol version field highlighted. This
field consists of two bits that represent the version number of
the 802.11 protocol being used. As of this writing, PV is
expected to be set to zero [14]. This value may change in the
future if a newer version of the standard is released.

Figure 2. Frame control field (from [14]).

In the proposed covert channel, we utilize the remaining
three possible combinations of the PV field to hide the covert
information.

B. Frame Types of Interest

Four different types of frames exist in the 802.11
protocol: management, data, reserved and control frames.

Control type frames facilitate the exchange of data
frames between stations. Within the existing control
subtypes, we are interested in the smaller sized frames, the
Acknowledgement (ACK) and the Clear To Send (CTS).
These frames also tend to be present in large volume.

The IEEE 802.11 MAC layer makes use of the
CSMA/CA scheme, in order to minimize the number of
collisions and subsequent frame loss. To address the hidden
node problem, a RTS/CTS handshake mechanism is used.
The CTS is a 14-byte long frame whereas the RTS is 20
bytes long.

The ACK frame is generated when a station correctly
receives a packet, and it is intended to signal the source
station that the reception was successful. For this reason, this
type of frame also tends to be very common in an operational
wireless network. The length of this frame is the same as the
CTS, 14 bytes.

Both frames share the same format and they only differ
in one bit in the subtype field within the frame control. The
ACK frame has the subtype value set to 1101; the CTS sets it
to 1100.

C. Network Analysis

A heavily used 802.11 network on campus is monitored
to collect frame traffic on multiple channels. From the MAC
frame traffic collected, channel 1 is found to be the one with
most traffic volume and number of users. We collected over
22 million packets to analyze the following frame basic
characteristics.

Ideally, we want a frame that is short in length, common
in occurrence, and still valid if some bits are changed.
Additionally, its presence in bursts shouldn't be a rare event.
These features are desirable for achieving a reasonable
throughput while providing covertness.

The results of our analysis are shown in Figure 3 as a pie
chart, which represents the frequency of occurrence of
different types of frames. The data frames are dominant,
followed by CTS, ACK and beacons. The "others" refers to
the sum of all other frames that represent less than 1%
individually. From this plot we can clearly see that two types
of control frames matching our needs stand out, the ACK
and the CTS.

Figure 3. Frequency of occurrence of the monitoried frame types.

D. Choosing the Frame Type

In the process of choosing a frame for the covert channel,
several frames were considered, such as RTS and ACK.
These frames could serve as well as the CTS, but they were
found to be less frequent than CTS. Also, among these three
frames, RTS is the longest one with 20 bytes, and the CTS
and ACK have only 14 bytes. For this reason we narrowed
the options to ACK and CTS.

From monitoring of frame traffic on the campus wireless
network and empirical analysis, we found that the CTSs
occur with a frequency two times higher than that of the
ACKs. The monitoring was conducted in different traffic
scenarios, ranging from low traffic periods to high levels of

89Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

utilization of the network. We chose to use CTS for building
the proposed covert channel as the CTS traffic volume is
large and is of same frame size as ACK. By choosing CTS,
we can minimize the chance of causing a traffic anomaly
based on the type and frequency of packets flowing through
the network.

Since CTS and ACK have a similar frame structure, it is
easier to switch from one to the other, according to our
objectives. The main concept of the proposed covert channel
applies equally to both frames. It is even possible to have one
end of the channel transmitting ACK frames, and the other
transmitting CTS frames, without any loss or degradation of
performance. Alternating frame types, such as transmitting a
forged ACK followed by a forged CTS is also viable. Many
other variations are also feasible.

The fact that both CTS and ACK frames do not contain a
source address also contributes to a higher level of
stealthiness, since it is not possible to immediately identify
the source of the transmission.

III. PROPOSED COVERT CHANNEL

This section describes the proposed covert channel and
the use of forward error correction and bit interleaving

mechanisms to improve its performance.

A. MAC Header Manipulation

In the proposed covert channel we use two bits in the
protocol version field of the MAC header of an 802.11 CTS
packet to carry hidden information. The proposed covert
channel uses the protocol version bits in a variety of ways to
signal the beginning and end of the transmission as well as to
carry the information, one bit at a time. A graphical
representation of the bits being used is shown in Figure 4.

Figure 4. Manipulated bits in Frame control field (blue squares).

In order to facilitate communication in the proposed
covert channel, we divided the transmission into three
segments: start message delimiter, message, and end
message delimiter. The start and end delimiters are realized
by transmitting a sequence of five frames with 01 in the
protocol version field. The message bits are transmitted
using combinations of 10 as binary "0" and 11 as binary "1"
in the protocol version field. The message is organized into
8-bit ASCII characters.

B. Forward Error Correction

Since we are operating in a shared media, collisions will
eventually occur. This will be interpreted as an error, since a
frame carrying covert payload will be lost. To mitigate the
effect of frame losses, and thus reduce the number of errors
in the covert channel, the use Forward Error Correction
(FEC) was considered.

There are several options for implementing FEC: block
codes such as Hamming and Reed-Solomon, convolutional
codes, turbo codes, or low density parity check codes. In this
work, however, a convolutional code was used for error
correction.

A convolutional coder takes an m - bit message and

encodes it into an n - bit symbol. The ratio m
n

 is known as

the code rate. In our case a code rate of 2
3

 was used,

meaning the encoded message will be one and a half times as
long as the original message. This will increase the time
needed to transmit the same message as before, since a
higher number of bits is being sent.

Another important parameter in convolutional coding is
the constraint length. This parameter, k, represents the
number of bits in the encoder memory that affect the
generation of the n output bits [15]. A constraint length of 4
is used in our experiments.

Forward error correction is typically applied to a
transmission of a stream of bits sent and received
sequentially. In our case, however, the bits are embedded
into independent frames, which are prone to loss. As a result,
when a frame is lost, the receiver has no indication that a bit
was missing. Consequently, we now need to know exactly
which frames were lost in order to apply the FEC correctly.

One option is to use the eight flag bits in the frame
control field of the MAC header to index a longer sequence
number, which makes determining the location of lost frames
an easier task. These flag bits will not carry any covert
information but serve only the error correction function.
However, it is important to state that applying this use of the
flag bits will increase the probability of detection of the
covert channel, since unexpected flag attributions will be
present. In this situation, we move from a minimum
deviation of two bits (as in Figure 4) to a maximum of 10
bits (as in Figure 5). This presents a tradeoff between
detectability and error performance, and the user must
exercise the option to choose one over the other as dictated
by the application. In order not to use the flag bits one could
use the type and subtype fields of the MAC header. The
IEEE802.11 standard defines some bit combinations of the
subtype field as “Reserved”. Exploring these combinations
could be an option, although we did not test it.

Figure 5 is a representation of how we accommodated the
information and sequence bits within the MAC header.

The blue squares represent our covert channel bits. These
bits are used in the same way as before: the first bit (B0)
signals the presence of the channel and the second is payload
(B1). The red circles refer to the sequence bits, which are
placed in the flag bits of the frame control field.

Figure 5. Representation of the frame structure using the flag bits for

sequencing (red circles).

90Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

Given that we have eight flags, this gives us a total of
256 possible sequence numbers. This alone provides a
reasonable amount of protection against a long burst of
frame losses, when compared to the previous approach.

C. Forward Error Correction and Interleaving

We now consider sending more than one bit of
information per forged frame.

Since each frame now carries more than one information
bits, the loss of one or more frames has a bigger impact on
the number of errors in the channel. In order to mitigate this
effect, we interleave the bit string resulting from the
convolutional coder. This consisted of breaking the coded
message in blocks of 8 bits, building a matrix with each
block in a different row. By reading the matrix out by
column, from top to bottom, we generate a new string of bits,
effectively interleaving all the 8 bit blocks. The number of
rows depends on the length of the message we are
transmitting.

Figure 6 is a schematic representation of this idea. At the
output of the convolutional coder we interleave the bits in
groups of 8 bits. This will result in a new string of zeros and
ones, which goes into the covert channel processing block.
Here the string is separated in groups of n bits, and each
group will become the payload of the forged frames.

Notice that only information bits are encoded and
interleaved; in this implementation the convolutional coder is
applied after we have the complete message we want to
transmit.

Figure 6. FEC and interleaving block diagram.

One possible implementation is to use six bits for
payload. The frame is forged as follows: six information bits
are placed in the selected flag bits, three other bits are used
for sequence numbers, and the first PV bit is set to one,
indicating the use of the covert channel. Figure 7 illustrates
the proposed structure. The blue squares indicate payload
bits, and the red circles are sequence numbers. The green
diamond (B0) indicates the presence of the covert channel.
Bits B1, B8 and B9 form the sequence number yielding a
sequence length of 8. Bits B10-B15 form the payload of six
bits to carry the message.

Figure 7. Representation of the frame structure using three bits for

sequencing (red squares) and six bits for payload (blue squares).

IV. EXPERIMENTS AND RESULTS

In order to implement the proposed covert channel, we
developed the necessary code to forge, transmit, and receive

frames. Python was the chosen programming language, due
to its simplicity, available libraries and extension modules
that facilitated our task. Regarding the OS, a Linux
environment was elected, for being more flexible, open
source and GNU licensed.

The code is divided into three threads running
simultaneously. One thread runs as the receiver, another one
as the transmitter, and the third one as a control mechanism
in order to handle possible discrepancies in the identification
of the beginning and end of the covert communication. Other
version 1 frames (with bad checksums) where found
circulating in the network, and become noise to our version 1
frames forming the start and end delimiters. Thread3 is
responsible for filtering out these unwanted frames.

A. Test bed

Frame traffic was recorded over operational wireless
networks, during week days, in order to capture the real-
world scenarios.

Three different scenarios were considered and tested. All
scenarios consisted of transmitting similar messages during
approximately the same time of day. The difference between
the scenarios is the way the data was transmitted since we
varied the number of payload bits and applied different error
mitigation mechanisms.

It is important to notice that stations A and B were
operating in the ad-hoc mode, outside the infrastructure
wireless network being monitored. The stations transmit
without any coordination from the access point. This likely
causes collisions, and thus frame losses, which are
interpreted as errors for analysis purposes.

A standard sentence was used for all scenarios, with a
total of 1408 bytes. In the first scenario, the messages were
sent without any error control. The second scenario
introduced the use of FEC, and the third used a combination
of FEC and interleaving, in order to improve the error
robustness of transmitted message. In the following analysis,
in order to have a performance benchmark, we used the first
scenario as the baseline for comparison with the FEC
scenarios,.

B. Results

1) Scenario 1

In Figure 8(a) we can see the profile of the traffic
collected for a period of about ten hours on channel 1. Figure
8(b) displays the percentage of errors detected upon
reception of the test sentence.

Summarizing this analysis, we observed an average error
of approximately 3% for the sentence over a total of 30 sets
of transmissions. No error correction or sequencing is at
work in this scenario.

91Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

Figure 8. Network traffic profile and percentage of errors for sentence and

sequence receptions in channel 1.

2) Scenario 2

The percentage of errors as a function of 15 repeated
transmissions of the sentence, in channel 1, over a period of
4 hours, is shown in Figure 9. The length of the transmitted

sentence is now 2,112 bits long because we applied a 2
3

rate encoder on a 1,408-bit string. The red stems (x)
represent the number of errors detected in the received
sentence, and the blue stems (o) the number of errors in the
received sentence with FEC. In most cases the number of
errors drops to zero or is significantly reduced.

Figure 9. Percentage of erros before (red cross) and after FEC (blue

circle) per received sentence, using flag bits for sequencing.

This is consistent with our expectations. We have one
outlier in that for the 13th repetition of the sentence we got a
higher number of errors with FEC.

We recorded a total of 67 errors in this experiment
(without FEC), which translates into an average of 4.5 errors
per sentence, or an average error percentage of 0.21%. After
the execution of FEC, the total number of errors dropped to
21, resulting in an average of 1.4 errors per sentence or an
overall average of 0.09%, relative to the 1,408 bits of the
original message. However, this gain was the direct result of

having to transmit more bits to send the same message, when
compared to the first scenario with no FEC, thus reducing
the data rate.

3) Scenario 3

The percentage of errors per sentence repetition can be

seen in Figure 10. From this figure we can notice an outlier
at repetition 12, actually gaining errors after the FEC. This
was an isolated event and it was excluded from this analysis.
The result is an average number of 1.53 errors per repetition
or 0.07% of the total amount of bits sent per sentence.
Following the sequence number tracking, de-interleaving and
correcting the bit sequence, the total number of errors is
reduced to zero. These are significant results; however, the
sample space is small, and we cannot conclude that this level
of robustness will be achieved in every reception.

Figure 10. Percentage of erros before (red cross) and after FEC (blue

circle) per received sentence with interleaving.

C. Throughput Analysis

In order to evaluate the throughput offered in each

scenario, the rate at which the frames were transmitted was
measured. Being a proof of concept, code efficiency was not
a major concern, and the results are presented for analysis
purpose only, meaning significant improvements may be
easily achieved. This was done using Airopeek and by
averaging the rate of the forged frames on a per second (fps)
basis. Depending on the network usage at the time, the
frame rate varies significantly. Another factor responsible for
this variation is the continuous adjustment of the maximum
data rate of the network as dictated by the channel
conditions. For IEEE 802.11b networks the maximum
network data rate possible values are 1, 2, 5.5, and 11 Mbps
[14].

To obtain a benchmark for performance comparison, we
first determine the maximum data rate possible for the covert
channel under optimal conditions. The following conditions
are assumed: (i) The channel is ideal with no errors; (ii) there
is only one station with frames to transmit; and (iii) we use a
data rate of 2 Mbps, the highest possible for 802.11b control
frames (basic rate set) [14].

a)

b)

92Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

The medium access scheme has to obey some
predetermined timing constraints, set by the standard. Figure
11 is a graphical representation of the timing requirements
for transmitting a frame.

Figure 11. Timing constraints in an 802.11 frame transmission [After 16].

Applying the work of Xiao and Rosdhal [17] to the
proposed covert channel, the minimum amount of time

necessary to transmit a forged CTS is min
t 376 µs,

corresponding to a maximum of 2659 forged frames per
second. At one bit per frame the maximum bit rate is 2659
bps; at six bits per frame we get 15.954 kbps. The measured
throughput values, however, will be significantly smaller.

When we transmit one bit of information in each forged
frame, we have an overhead of the start and end delimiters
for a total of 10 signaling frames. The measured average
frame rate was 61 frames per second. Since each frame
represents a bit, and considering our message payload of
1408 bits, we transmit a total of 1418 bits. At 61 fps this
corresponds to a total transmission time of 23.25 sec, and a
useful bit rate or throughput of 60.5 bits per second (bps).

On the other hand, when we transmitted 6 bits per forged
frame and introduced the use of interleaving, the measured
average transmission rate was 32 fps. By transmitting a total
of 2122 bits, we obtained a total transmission time of 11
seconds. The resulting throughput value is 127.4 bps,
considerable improvement over the previous case.

V. CONCLUSIONS

This work presented, implemented and tested a previously
undocumented covert channel in an IEEE802.11 network.
We used the protocol version field in the MAC header to
hide and transfer the covert information. Robustness to errors
in the covert channel is improved by the use of forward error
correction and bit interleaving. The proposed covert channel
was implemented by developing the necessary code in
Python. A GUI chat console is used for message
transmission. The test bed used for experiments operated in a
Linux environment. Preliminary results indicate significant
improvement in the error performance of the channel. The
achieved throughput of the covert channel is measured and
the maximum channel data rate is also determined. The case
of 6-bit payload along with convolutional coding and
interleaving yielded the highest measured throughput.

REFERENCES

[1] D. McGrath, "WLAN chip set shipments projected to
double," in EE Times, 2/17/2011. (accessed March 17, 2011)

http://www.eetimes.com/electronics-news/4213260/WLAN-
chip-set-shipments-projected-to-double

[2] Y. Xiao, C. Bandela, and Y. Pan, "Vulnerabilities and security
enhancements for the IEEE 802.11 WLANs," in Proceedings
of the IEEE Global Telecommunications Conference
(GLOBECOM) 2005, pp. 1655-1659, 2005.

[3] T.E. Calhoun, R. Newman, and R. Beyah, "Authentication in
802.11 LANs Using a Covert Side Channel," in
Communications, 2009. ICC '09., IEEE International
Conference, pp. 1-6, 14-18 June 2009.

[4] E. Couture, "Covert Channels," SANS Institute InfoSec
Reading Room (accessed January 17, 2011).

http://www.sans.org/reading_room/whitepapers/detection/cov
ert-channels_33413

[5] A. Giani, V. H. Berk, and G. V. Cybenko, "Data Exfiltration
and Covert Channels," Process Query Systems, Thayer
School of Engineering at Dartmouth (accessed February 02,
2011).

http://www.pqsnet.net/~vince/papers/SPIE06_exfil.ps.gz

[6] D.T. Ha, G. Yan, S. Eidenbenz, and H.Q. Ngo, "On the
effectiveness of structural detection and defense against P2P-
based botnets," in Dependable Systems & Networks, 2009.
DSN '09. IEEE/IFIP International Conference, pp. 297-306,
June 29 2009-July 2 2009.

[7] C.G. Girling, "Covert Channels in LAN's," in Software
Engineering, IEEE Transactions, vol. SE-13, no. 2, pp. 292-
296, Feb. 1987.

[8] B. Lampson, "A note on the confinement problem," in
Communications of the ACM, vol. 16, pp. 613-615, October
1973.

[9] H. Zimmermann, OSI Reference Model, IEEE Transactions
on Communications, Vol. COMM-28(4), April 1980.

[10] M. Smeets and M. Koot, "Research report: covert channels,"
Master’s thesis, University of Amsterdam, February 2006.

[11] T. Calhoun, X. Cao, Y. Li, and R. Beyah, "An 802.11 MAC
layer covert channel,” in Wireless Communications and
Mobile Computing, Wiley InterScience (accessed January
2011).

http://onlinelibrary.wiley.com/doi/10.1002/wcm.969/pdf

[12] L. Frikha, Z. Trabelsi, and W. El-Hajj, "Implementation of a
Covert Channel in the 802.11 Header," in Wireless
Communications and Mobile Computing Conference, 2008.
IWCMC '08., pp. 594-599, 6-8 August 2008.

[13] L. Butti, Raw Covert (accessed September 2010)

http://rfakeap.tuxfamily.org/#Raw_Covert

[14] Institute of Electrical and Electronics Engineers, 802.11,
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications (accessed January 17, 2011).

http://ieeexplore.ieee.org

[15] S. Lin and D. J. Costello., Error Control Coding:
Fundamentals and Applications, Pearson Prentice Hall, New
Jersey, 1983.

[16] W. Stallings, Wireless Communications and Networks,
Second edition, Pearson Prentice Hall, New Jersey, 2005.

[17] Y. Xiao and J. Rosdahl, "Throughput and delay limits of
IEEE 802.11," in Communications Letters, IEEE, vol.6, no.8,
pp. 355- 357, Aug 2002.

93Copyright (c) The Government of USA, 2011. Used by permission to IARIA. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

http://get.adobe.com/reader/otherversions
http://get.adobe.com/reader/otherversions
http://www.eetimes.com/electronics-news/4213260/WLAN-chip-set-shipments-projected-to-double
http://www.eetimes.com/electronics-news/4213260/WLAN-chip-set-shipments-projected-to-double
http://rfakeap.tuxfamily.org/
http://ieeexplore.ieee.org/
http://ironbark.bendigo.latrobe.edu.au/subjects/DC/lectures/22/#Raw_Covert
http://www.secdev.org/projects/scapy/

